Trend Filtering via Empirical Mode Decompositions

Abstract : The present work is concerned with the problem of extracting low-frequency trend from a given time series. To solve this problem, the authors develop a nonparametric technique called empirical mode decomposition (EMD) trend filtering. A key assumption is that the trend is representable as the sum of intrinsic mode functions produced by the EMD. Based on an empirical analysis of the EMD, the authors propose an automatic procedure for selecting the requisite intrinsic mode functions. To illustrate the effectiveness of the technique, the authors apply it to simulated time series containing different types of trend, as well as real-world data collected from an environmental study (atmospheric carbon dioxide levels at Mauna Loa Observatory) and from a large-scale bicycle rental service (rental numbers of Grand Lyon Vélo'v)
Type de document :
Pré-publication, Document de travail
Technical Report SISYPHE November 2011. 2011
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal-ens-lyon.archives-ouvertes.fr/ensl-00565293
Contributeur : Pierre Borgnat <>
Soumis le : mardi 15 février 2011 - 09:06:16
Dernière modification le : jeudi 19 avril 2018 - 14:54:03
Document(s) archivé(s) le : lundi 16 mai 2011 - 02:54:38

Fichier

CSDA_Full_revII_Feb14-10.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : ensl-00565293, version 2

Collections

Citation

Azadeh Moghtaderi, Patrick Flandrin, Pierre Borgnat. Trend Filtering via Empirical Mode Decompositions. Technical Report SISYPHE November 2011. 2011. 〈ensl-00565293v2〉

Partager

Métriques

Consultations de la notice

225

Téléchargements de fichiers

318