Deconstruction of Infinite Extensive Games using coinduction

Abstract : Finite objects and more specifically finite games are formalized using induction, whereas infinite objects are formalized using coinduction. In this article, after an introduction to the concept of coinduction, we revisit on infinite (discrete) extensive games the basic notions of game theory. Among others, we introduce a definition of Nash equilibrium and a notion of subgame perfect equilibrium for infinite games. We use those concepts to analyze well known infinite games, like the dollar auction game and the centipede game and we show that human behaviors that are often considered as illogic are perfectly rational, if one admits that human agents reason coinductively.
Type de document :
Pré-publication, Document de travail
19 p. 2009
Liste complète des métadonnées

Littérature citée [44 références]  Voir  Masquer  Télécharger

https://hal-ens-lyon.archives-ouvertes.fr/ensl-00376141
Contributeur : Pierre Lescanne <>
Soumis le : mardi 28 avril 2009 - 15:13:42
Dernière modification le : mardi 24 avril 2018 - 13:52:28
Document(s) archivé(s) le : mercredi 22 septembre 2010 - 12:56:04

Fichiers

infinite_games.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : ensl-00376141, version 2
  • ARXIV : 0904.3528

Collections

Citation

Pierre Lescanne. Deconstruction of Infinite Extensive Games using coinduction. 19 p. 2009. 〈ensl-00376141v2〉

Partager

Métriques

Consultations de la notice

239

Téléchargements de fichiers

191