Free products, Orbit Equivalence and Measure Equivalence Rigidity

Abstract : We study the analogue in orbit equivalence of free product decomposition and free indecomposability for countable groups. We introduce the (orbit equivalence invariant) notion of freely indecomposable ({\FI}) standard probability measure preserving equivalence relations and establish a criterion to check it, namely non-hyperfiniteness and vanishing of the first $L^2$-Betti number. We obtain Bass-Serre rigidity results, \textit{i.e.} forms of uniqueness in free product decompositions of equivalence relations with ({\FI}) components. The main features of our work are weak algebraic assumptions and no ergodicity hypothesis for the components. We deduce, for instance, that a measure equivalence between two free products of non-amenable groups with vanishing first $\ell^2$-Betti numbers is induced by measure equivalences of the components. We also deduce new classification results in Orbit Equivalence and II$_1$ factors.
Type de document :
Article dans une revue
Groups Geometry and Dynamics, European Mathematical Society, 2012, 6 (1), pp.53-82. 〈10.4171/GGD/150〉
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger

https://hal-ens-lyon.archives-ouvertes.fr/ensl-00288583
Contributeur : Damien Gaboriau <>
Soumis le : mardi 17 février 2009 - 23:39:30
Dernière modification le : jeudi 11 janvier 2018 - 06:12:31
Document(s) archivé(s) le : mercredi 22 septembre 2010 - 12:03:01

Fichiers

Alva-Gabo-2-prunel.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Aurélien Alvarez, Damien Gaboriau. Free products, Orbit Equivalence and Measure Equivalence Rigidity. Groups Geometry and Dynamics, European Mathematical Society, 2012, 6 (1), pp.53-82. 〈10.4171/GGD/150〉. 〈ensl-00288583v2〉

Partager

Métriques

Consultations de la notice

162

Téléchargements de fichiers

88