Axiomatic Foundations of a Unifying Core

Abstract : We provide an axiomatic characterization of the core of games in effectiveness form. We point out that the core, whenever it applies to appropriate classes of these games, coincides with a wide variety of prominent stability concepts in social choice and game theory, such as the Condorcet winner, the Nash equilibrium, pairwise stability, and stable matchings, among others. Our characterization of the core invokes the axioms of restricted non-emptiness, coalitional unanimity, and Maskin invariance together with a principle of independence of irrelevant states, and uses in its proof a holdover property echoing the conventional ancestor property. Taking special cases of this general characterization of the core, we derive new characterizations of the previously mentioned stability concepts.
Type de document :
Pré-publication, Document de travail
Working paper GATE 2018-17. 2018
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger
Contributeur : Nelly Wirth <>
Soumis le : mardi 11 septembre 2018 - 15:58:54
Dernière modification le : jeudi 13 décembre 2018 - 13:49:46
Document(s) archivé(s) le : mercredi 12 décembre 2018 - 16:29:57


Fichiers produits par l'(les) auteur(s)


  • HAL Id : halshs-01872098, version 1


Stéphane Gonzalez, Aymeric Lardon. Axiomatic Foundations of a Unifying Core. Working paper GATE 2018-17. 2018. 〈halshs-01872098〉



Consultations de la notice


Téléchargements de fichiers