W. Liu, F. Lombardi, and M. Schulte, A retrospective and prospective view of approximate computing, Proceedings of the IEEE, vol.108, issue.3, pp.394-399, 2020.

, IEEE 754-2019 standard for floating-point arithmetic, IEEE, 2019.

J. Muller, Elementary Functions, Algorithms and Implementation, 2016.
URL : https://hal.archives-ouvertes.fr/ensl-00000008

J. E. Volder, The CORDIC trigonometric computing technique, IRE Transactions on Electronic Computers, issue.3, pp.330-334, 1959.

J. E. Volder, The birth of CORDIC, Journal of VLSI Signal Processing Systems, vol.25, issue.2, pp.101-105, 2000.

E. Remez, Sur un procédé convergent d'approximations successives pour déterminer les polynômes d'approximation, C.R. Académie des Sciences, vol.198, pp.2063-2065, 1934.

N. Brisebarre and S. Chevillard, Efficient polynomial ? approximations, 18th IEEE Symposium on Computer Arithmetic (ARITH-18), pp.169-176, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00119513

P. T. Tang, Table-driven implementation of the exponential function in IEEE floating-point arithmetic, ACM Transactions on Mathematical Software, vol.15, issue.2, pp.144-157, 1989.

P. T. Tang, Table-driven implementation of the logarithm function in IEEE floating-point arithmetic, ACM Transactions on Mathematical Software, vol.16, issue.4, pp.378-400, 1990.

S. , Computing elementary functions: a new approach for achieving high accuracy and good performance, Accurate Scientific Computations, vol.235, pp.1-16, 1986.

W. F. Wong and E. Goto, Fast hardware-based algorithms for elementary function computations using rectangular multipliers, IEEE Transactions on Computers, vol.43, issue.3, pp.278-294, 1994.

N. N. Schraudolph, A fast, compact approximation of the exponential function, Neural Computation, vol.11, issue.4, pp.853-862, 1999.

J. F. Blinn, Notation, Notation, Notation, Jim Blinn's Corner, ser. The Morgan Kaufmann Series in Computer Graphics and Geometric Modeling, 2003.

L. Moroz, C. Walczyk, A. Hrynchyshyn, V. Holimath, and J. Cie?li?ski, Fast calculation of inverse square root with the use of magic constant -analytical approach, Applied Mathematics and Computation, vol.316, pp.245-255, 2018.

J. N. Mitchell, Computer multiplication and division using binary logarithms, IRE Transactions on Electronic Computers, issue.11, pp.512-517, 1962.

K. H. Abed and R. E. Siferd, CMOS VLSI implementation of a lowpower logarithmic converter, IEEE Transactions on Computers, vol.52, issue.11, pp.1421-1433, 2003.

T. Juang, S. Chen, and H. Cheng, A lower error and rom-free logarithmic converter for digital signal processing applications, IEEE Transactions on Circuits and Systems II: Express Briefs, vol.56, issue.12, pp.931-935, 2009.

D. Marino, New algorithms for the approximate evaluation in hardware of binary logarithms and elementary functions, IEEE Transactions on Computers, vol.21, issue.12, pp.1416-1421, 1972.

V. Mahalingam and N. Ranganathan, Improving accuracy in Mitchell's logarithmic multiplication using operand decomposition, IEEE Transactions on Computers, vol.55, issue.12, pp.1523-1535, 2006.

M. S. Kim, A. A. Barrio, L. T. Oliveira, R. Hermida, and N. Bagherzadeh, Efficient Mitchell's approximate log multipliers for convolutional neural networks, IEEE Transactions on Computers, vol.68, issue.5, pp.660-675, 2019.

B. Yuan, Efficient hardware architecture of softmax layer in deep neural network, 2016 29th IEEE International System-on-Chip Conference (SOCC), pp.323-326, 2016.

W. Liu, J. Xu, D. Wang, C. Wang, P. Montuschi et al., Design and evaluation of approximate logarithmic multipliers for low power error-tolerant applications, IEEE Transactions on Circuits and Systems I: Regular Papers, vol.65, issue.9, pp.2856-2868, 2018.

A. Ukil, V. H. Shah, and B. Deck, Fast computation of arctangent functions for embedded applications: A comparative analysis, 2011 IEEE International Symposium on Industrial Electronics, pp.1206-1211, 2011.

M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs and mathematical tables, ser, Applied Math. Series, vol.55, 1964.

R. Lyons, Another contender in the arctangent race, IEEE Signal Processing Magazine, vol.21, issue.1, pp.109-110, 2004.

X. Girones, C. Julia, and D. Puig, Full quadrant approximations for the arctangent function, IEEE Signal Processing Magazine, vol.30, issue.1, pp.130-135, 2013.

S. Rajan, S. Wang, R. Inkol, and A. , Efficient approximations for the arctangent function, IEEE Signal Processing Magazine, vol.23, issue.3, pp.108-111, 2006.

S. Winitzki, Uniform approximations for transcendental functions, Computational Science and Its Applications -ICCSA 2003, pp.780-789, 2003.

P. Markstein, Accelerating sine and cosine evaluation with compiler assistance, 16th IEEE Symposium on Computer Arithmetic (ARITH16)

O. Niemitalo, DSP trick: Simultaneous parabolic approximation of sin and cos, 2001.

D. , A reconstruction of the tables of Briggs' Arithmetica logarithmica (1624), Inria, 2010.

M. D. Ercegovac and T. Lang, Digital Arithmetic, 2004.
URL : https://hal.archives-ouvertes.fr/ensl-00542215

P. Meher, J. Valls, T. Juang, K. Sridharan, and K. Maharatna, 50 years of CORDIC: Algorithms, architectures, and applications, IEEE Transactions on Circuits and Systems I: Regular Papers, vol.56, issue.9, pp.1893-1907, 2009.

N. Takagi, Studies on hardware algorithms for arithmetic operations with a redundant binary representation, 1987.

M. Mikaitis, D. R. Lester, D. Shang, S. Furber, G. Liu et al., Approximate fixed-point elementary function accelerator for the spinnaker-2 neuromorphic chip, 2018 IEEE 25th Symposium on Computer Arithmetic (ARITH), pp.37-44, 2018.

H. Ahmed, Efficient elementary function generation with multipliers, 9th IEEE Symposium on Computer Arithmetic, pp.52-59, 1989.

P. W. Baker, Suggestion for a fast binary sine/cosine generator, IEEE Transactions on Computers, issue.11, 1976.

T. Juang, S. Hsiao, and M. Tsai, Para-CORDIC: parallel CORDIC rotation algorithm, IEEE Transactions on Circuits and Systems I: Regular Papers, vol.51, issue.8, pp.1515-1524, 2004.

L. Chen, F. Lombardi, J. Han, and W. Liu, A fully parallel approximate CORDIC design, 2016 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), pp.197-202, 2016.

L. Chen, J. Han, W. Liu, and F. Lombardi, Algorithm and design of a fully parallel approximate coordinate rotation digital computer (cordic), IEEE Transactions on Multi-Scale Computing Systems, vol.3, issue.3, pp.139-151, 2017.

M. Ercegovac, Radix-16 evaluation of certain elementary functions, IEEE Transactions on Computers, issue.6, pp.561-566, 1973.

L. Trefethen, Approximation Theory and Approximation Practice. SIAM, 2013.

N. Brisebarre, J. Muller, and A. Tisserand, Sparse-coefficient polynomial approximations for hardware implementations, 38th IEEE Conference on Signals, Systems and Computers, 2004.

N. Brisebarre, J. Muller, and A. Tisserand, Computing machineefficient polynomial approximations, ACM Transactions on Mathematical Software, vol.32, issue.2, pp.236-256, 2006.
URL : https://hal.archives-ouvertes.fr/ensl-00086826

S. Chevillard, M. Jolde?, and C. Lauter, Sollya: An environment for the development of numerical codes, 3rd International Congress on Mathematical Software (ICMS), ser, vol.6327, pp.28-31, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00761644

S. Chevillard, J. Harrison, M. Jolde?, and C. Lauter, Efficient and accurate computation of upper bounds of approximation errors, Theoretical Computer Science, vol.412, issue.16, pp.1523-1543, 2011.
URL : https://hal.archives-ouvertes.fr/ensl-00445343

M. Daumas and G. Melquiond, Certification of bounds on expressions involving rounded operators, ACM Transactions on Mathematical Software, vol.37, issue.1, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00127769

F. De-dinechin, C. Lauter, and G. Melquiond, Assisted verification of elementary functions using Gappa, Proceedings of the 2006 ACM Symposium on Applied Computing, pp.1318-1322, 2006.

F. De-dinechin, C. Lauter, and G. Melquiond, Certifying the floatingpoint implementation of an elementary function using Gappa, IEEE Transactions on Computers, vol.60, issue.2, pp.242-253, 2011.
URL : https://hal.archives-ouvertes.fr/ensl-00200830

N. Brunie, F. De-dinechin, O. Kupriianova, and C. Lauter, Code generators for mathematical functions, 22nd IEEE Symposium on Computer Arithmetic, pp.66-73, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01084726

O. Kupriianova and C. Lauter, Metalibm: A mathematical functions code generator, Mathematical Software -ICMS 2014, pp.713-717, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01513490

F. De-dinechin and B. Pasca, Designing custom arithmetic data paths with FloPoCo, IEEE Design & Test of Computers, vol.28, issue.4, pp.18-27, 2011.
URL : https://hal.archives-ouvertes.fr/ensl-00646282

F. De-dinechin, Reflections on 10 years of FloPoCo, ARITH 2019 -26th IEEE Symposium on Computer Arithmetic, pp.1-3, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02161527

F. De-dinechin and M. Istoan, Hardware implementations of fixed-point Atan2, 22nd Symposium of Computer Arithmetic. IEEE, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01091138

D. Goldberg, Fast approximate logarithms, part i: The basics, ebay Tech Blog

G. A. Baker, Essentials of Padé Approximants, 1975.

P. Kornerup and J. Muller, Choosing starting values for certain Newton-Raphson iterations, Theoretical Computer Science, vol.351, issue.1, pp.101-110, 2006.
URL : https://hal.archives-ouvertes.fr/ensl-00000009

D. A. Sunderland, R. A. Strauch, S. W. Wharfield, H. T. Peterson, and C. R. Cole, CMOS/SOS frequency synthesizer LSI circuit for spread spectrum communications, IEEE Journal of Solid State Circuits, vol.19, issue.4, pp.497-506, 1984.

D. Dassarma and D. W. Matula, Faithful bipartite ROM reciprocal tables, 12th IEEE Symposium on Computer Arithmetic (ARITH-12), pp.17-28, 1995.

M. J. Schulte and J. Stine, Symmetric bipartite tables for accurate function approximation, 13th IEEE Symposium on Computer Arithmetic, 1997.

M. J. Schulte and J. E. Stine, Accurate function evaluation by symmetric table lookup and addition, IEEE International Conference on Application-Specific Systems, Architectures and Processors, pp.144-153, 1997.

M. J. Schulte and J. E. Stine, Approximating elementary functions with symmetric bipartite tables, IEEE Transactions on Computers, vol.48, issue.8, pp.842-847, 1999.

H. Hassler and N. Takagi, Function evaluation by table look-up and addition, 12th IEEE Symposium on Computer Arithmetic, 1995.

F. De-dinechin and A. Tisserand, Multipartite table methods, IEEE Transactions on Computers, vol.54, issue.3, pp.319-330, 2005.
URL : https://hal.archives-ouvertes.fr/ensl-00542210

S. Hsiao, C. Wen, Y. Chen, and K. Huang, Hierarchical multipartite function evaluation, IEEE Transactions on Computers, vol.66, issue.1, pp.89-99, 2017.

, Fast inverse square root -Wikipedia, the free encyclopedia, Wikipedia contributors, p.2020, 2020.

M. A. Cornea-hasegan, R. A. Golliver, and P. Markstein, Correctness proofs outline for Newton-Raphson based floating-point divide and square root algorithms, 14th IEEE Symposium on Computer Arithmetic (ARITH-14), pp.96-105, 1999.

J. Muller, N. Brunie, F. De-dinechin, C. Jeannerod, M. Joldes et al., Handbook of Floating-Point Arithmetic
URL : https://hal.archives-ouvertes.fr/ensl-00379167

, Birkhäuser Boston, 2018.

, G.1, issue.2

C. J. Walczyk, L. V. Moroz, and J. L. Cie?li?ski, He received his Ph.D. degree in 1985 from the Institut National Polytechnique de Grenoble. He is Directeur de Recherches (senior researcher) at CNRS, France, and he is the co-head of GDR-IM. His research interests are in Computer Arithmetic. Dr. Muller was co-program chair of the, general chair of the 14th IEEE Symposium on Computer Arithmetic (Adelaide, vol.7, 1961.