J. Ortin and J. Martin-benito, The RNA synthesis machinery of negative-stranded RNA viruses. Virology 479-480, pp.532-544, 2015.

J. Brunel, D. Chopy, M. Dosnon, L. Bloyet, P. Devaux et al., Sequence of events in measles virus replication: Role of phosphoproteinnucleocapsid interactions, J. Virol, vol.88, pp.10851-10863, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01911320

I. Gutsche, A. Desfosses, G. Effantin, W. L. Ling, M. Haupt et al., Structural virology. Near-atomic cryo-EM structure of the helical measles virus nucleocapsid, Science, vol.348, pp.704-707, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01162615

B. Liang, Z. Li, S. Jenni, A. A. Rahmeh, B. M. Morin et al., Structure of the L protein of vesicular stomatitis virus from electron cryomicroscopy, Cell, vol.162, pp.314-327, 2015.

B. Morin, P. J. Kranzusch, A. A. Rahmeh, and S. P. Whelan, The polymerase of negativestranded RNA viruses, Curr. Opin. Virol, vol.3, pp.103-110, 2013.

D. M. Canter and J. Perrault, Stabilization of vesicular stomatitis virus L polymerase protein by P protein binding: A small deletion in the C-terminal domain of L abrogates binding, Virology, vol.219, pp.376-386, 1996.

J. Curran, J. B. Marq, and D. Kolakofsky, An N-terminal domain of the Sendai paramyxovirus P protein acts as a chaperone for the NP protein during the nascent chain assembly step of genome replication, J. Virol, vol.69, pp.849-855, 1995.

P. S. Masters and A. K. Banerjee, Complex formation with vesicular stomatitis virus phosphoprotein NS prevents binding of nucleocapsid protein N to nonspecific RNA, J. Virol, vol.62, pp.2658-2664, 1988.

M. G. Mellon and S. U. Emerson, Rebinding of transcriptase components (L and NS proteins) to the nucleocapsid template of vesicular stomatitis virus, J. Virol, vol.27, pp.560-567, 1978.

B. Morin, B. Liang, E. Gardner, R. A. Ross, and S. P. Whelan, An in vitro RNA synthesis assay for rabies virus defines ribonucleoprotein interactions critical for polymerase activity, J. Virol, vol.91, pp.1508-1524, 2017.

B. Morin, A. A. Rahmeh, and S. P. Whelan, Mechanism of RNA synthesis initiation by the vesicular stomatitis virus polymerase, EMBO J, vol.31, pp.1320-1329, 2012.

L. Bloyet, J. Brunel, M. Dosnon, V. Hamon, J. Erales et al., Modulation of re-initiation of measles virus transcription at intergenic regions by PXD to NTAIL binding strength, PLOS Pathog, vol.12, p.1006058, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01911531

R. M. Cox, S. A. Krumm, V. D. Thakkar, M. Sohn, and R. K. Plemper, The structurally disordered paramyxovirus nucleocapsid protein tail domain is a regulator of the mRNA transcription gradient, Sci. Adv, vol.3, p.1602350, 2017.

M. Aggarwal, G. P. Leser, C. A. Kors, and R. A. Lamb, Structure of the paramyxovirus PIV5 nucleoprotein in complex with an amino-terminal peptide of the phosphoprotein, J. Virol, vol.92, pp.1304-1321, 2018.

S. G. Guryanov, L. Liljeroos, P. Kasaragod, T. Kajander, and S. J. Butcher, Crystal structure of the measles virus nucleoprotein core in complex with an N-terminal region of phosphoprotein, J. Virol, vol.90, pp.2849-2857, 2015.

F. Yabukarski, P. Lawrence, N. Tarbouriech, J. Bourhis, E. Delaforge et al., Structure of Nipah virus unassembled nucleoprotein in complex with its viral chaperone, Nat. Struct. Mol. Biol, vol.21, pp.754-759, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01101596

S. Milles, M. R. Jensen, C. Lazert, S. Guseva, S. Ivashchenko et al., An ultraweak interaction in the intrinsically disordered replication machinery is essential for measles virus function, Sci. Adv, vol.4, p.7778, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01911103

J. F. Bruhn, K. C. Barnett, J. Bibby, J. M. Thomas, R. M. Keegan et al., Crystal structure of the nipah virus phosphoprotein tetramerization domain, J. Virol, vol.88, pp.758-762, 2014.

G. Communie, T. Crepin, D. Maurin, M. R. Jensen, M. Blackledge et al., Structure of the tetramerization domain of measles virus phosphoprotein, J. Virol, vol.87, pp.7166-7169, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01321590

N. Tarbouriech, J. Curran, R. W. Ruigrok, and W. P. Burmeister, Tetrameric coiled coil domain of Sendai virus phosphoprotein, Nat. Struct. Biol, vol.7, pp.777-781, 2000.

D. Blocquel, J. Habchi, E. Durand, M. Sevajol, F. Ferron et al., Coiled-coil deformations in crystal structures: The measles virus phosphoprotein multimerization domain as an illustrative example, Acta Crystallogr. D Biol. Crystallogr, vol.70, pp.1589-1603, 2014.

A. Pickar, A. Elson, Y. Yang, P. Xu, M. Luo et al., Oligomerization of mumps virus phosphoprotein, J. Virol, vol.89, pp.11002-11010, 2015.

D. Blocquel, M. Beltrandi, J. Erales, P. Barbier, and S. Longhi, Biochemical and structural studies of the oligomerization domain of the Nipah virus phosphoprotein: Evidence for an elongated coiled-coil homotrimer, Virology, vol.446, pp.162-172, 2013.

M. Beltrandi, D. Blocquel, J. Erales, P. Barbier, A. Cavalli et al., Insights into the coiled-coil organization of the Hendra virus phosphoprotein from combined biochemical and SAXS studies, Virology, vol.477, pp.42-55, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01439015

A. N. Lupas and J. Bassler, Coiled coils -a model system for the 21st Century, Trends Biochem. Sci, vol.42, pp.130-140, 2017.

D. Kolakofsky, P. L. Mercier, F. Iseni, and D. Garcin, Viral RNA polymerase scanning and the gymnastics of Sendai virus RNA synthesis, Virology, vol.318, pp.463-473, 2004.

S. Longhi, V. Receveur-bréchot, D. Karlin, K. Johansson, H. Darbon et al., The C-terminal domain of the measles virus nucleoprotein is intrinsically disordered and folds upon binding to the C-terminal moiety of the phosphoprotein, J. Biol. Chem, vol.278, pp.18638-18648, 2003.

K. Johansson, J. Bourhis, V. Campanacci, C. Cambillau, B. Canard et al., Crystal structure of the measles virus phosphoprotein domain responsible for the induced folding of the C-terminal domain of the nucleoprotein, J. Biol. Chem, vol.278, pp.44567-44573, 2003.

R. L. Kingston, D. J. Hamel, L. S. Gay, F. W. Dahlquist, and B. W. Matthews, Structural basis for the attachment of a paramyxoviral polymerase to its template, Proc. Natl. Acad. Sci. U.S.A, vol.101, pp.8301-8306, 2004.

L. Bloyet, J. Welsch, F. Enchery, C. Mathieu, S. De-breyne et al., HSP90 chaperoning in addition to phosphoprotein required for folding but not for supporting enzymatic activities of measles and nipah virus L polymerases, J. Virol, vol.90, pp.6642-6656, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01791273

H. Katoh, T. Kubota, Y. Nakatsu, M. Tahara, M. Kidokoro et al., Heat shock protein 90 ensures efficient mumps virus replication by assisting with viral polymerase complex formation, J. Virol, vol.91, pp.2220-2236, 2017.

J. A. Capra and M. Singh, Predicting functionally important residues from sequence conservation, Bioinformatics, vol.23, pp.1875-1882, 2007.

E. Salladini, V. Delauzun, and S. Longhi, The Henipavirus V protein is a prevalently unfolded protein with a zinc-finger domain involved in binding to DDB1, Mol. BioSyst, vol.13, pp.2254-2267, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01802944

K. R. Rodriguez and C. M. Horvath, Amino acid requirements for MDA5 and LGP2 recognition by paramyxovirus V proteins: A single arginine distinguishes MDA5 from RIG-I, J. Virol, vol.87, pp.2974-2978, 2013.

I. Remy and S. W. Michnick, A highly sensitive protein-protein interaction assay based on Gaussia luciferase, Nat. Methods, vol.3, pp.977-979, 2006.

B. Cevik, D. E. Holmes, E. Vrotsos, J. A. Feller, S. Smallwood et al., The phosphoprotein (P) and L binding sites reside in the N-terminus of the L subunit of the measles virus RNA polymerase, Virology, vol.327, pp.297-306, 2004.

M. Chen, J. C. Cortay, and D. Gerlier, Measles virus protein interactions in yeast: New findings and caveats, vol.98, pp.123-129, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00113111

P. B. Harbury, T. Zhang, P. S. Kim, and T. Alber, A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants, Science, vol.262, pp.1401-1407, 1993.

S. Plumet, W. P. Duprex, and D. Gerlier, Dynamics of viral RNA synthesis during measles virus infection, J. Virol, vol.79, pp.6900-6908, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00123404

S. Deiss, B. Hernandez-alvarez, K. Bär, C. P. Ewers, M. Coles et al., Your personalized protein structure: Andrei N. Lupas fused to GCN4 adaptors, J. Struct. Biol, vol.186, pp.380-385, 2014.

A. Ortega, D. Amorós, J. García-de-la, and T. , Prediction of hydrodynamic and other solution properties of rigid proteins from atomic-and residue-level models, Biophys. J, vol.101, pp.892-898, 2011.

S. H. White and W. C. Wimley, Hydrophobic interactions of peptides with membrane interfaces, Biochim. Biophys. Acta, vol.1376, pp.339-352, 1998.

M. C. Bowman, S. Smallwood, and S. A. Moyer, Dissection of individual functions of the Sendai virus phosphoprotein in transcription, J. Virol, vol.73, pp.6474-6483, 1999.

L. Skjaerven, S. M. Hollup, and N. Reuter, Normal mode analysis for proteins, Theochem, vol.298, pp.42-48, 2009.

S. M. Horikami, S. Smallwood, B. Bankamp, and S. A. Moyer, An amino-proximal domain of the L protein binds to the P protein in the measles virus RNA polymerase complex, Virology, vol.205, pp.540-545, 1994.

T. Bousse, T. Takimoto, T. Matrosovich, and A. Portner, Two regions of the P protein are required to be active with the L protein for human parainfluenza virus type 1 RNA polymerase activity, Virology, vol.283, pp.306-314, 2001.

A. Chattopadhyay and M. S. Shaila, Rinderpest virus RNA polymerase subunits: Mapping of mutual interacting domains on the large protein L and phosphoprotein p, Virus Genes, vol.28, pp.169-178, 2004.

G. D. Parks, Mapping of a region of the paramyxovirus L protein required for the formation of a stable complex with the viral phosphoprotein P, J. Virol, vol.68, pp.4862-4872, 1994.

J. Curran, T. Pelet, and D. Kolakofsky, An acidic activation-like domain of the Sendai virus P protein is required for RNA synthesis and encapsidation, Virology, vol.202, pp.875-884, 1994.

S. Smallwood, K. W. Ryan, and S. A. Moyer, Deletion analysis defines a carboxyl-proximal region of Sendai virus P protein that binds to the polymerase L protein, Virology, vol.202, pp.154-163, 1994.

B. Cevik, S. Smallwood, and S. A. Moyer, The L-L oligomerization domain resides at the very N-terminus of the sendai virus L RNA polymerase protein, Virology, vol.313, pp.525-536, 2003.

S. Chattopadhyay and A. K. Banerjee, Phosphoprotein, P of human parainfluenza virus type 3 prevents self-association of RNA-dependent RNA polymerase, L. Virology, vol.383, pp.226-236, 2009.

S. K. Choudhary, A. G. Malur, Y. Huo, B. P. De, and A. K. Banerjee, Characterization of the oligomerization domain of the phosphoprotein of human parainfluenza virus type 3, Virology, vol.302, pp.373-382, 2002.

T. Tran, N. Castagné, D. Bhella, P. F. Varela, J. Bernard et al., The nine C-terminal amino acids of the respiratory syncytial virus protein P are necessary and sufficient for binding to ribonucleoprotein complexes in which six ribonucleotides are contacted per N protein protomer, J. Gen. Virol, vol.88, pp.196-206, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00167652

J. Sourimant, M. Rameix-welti, A. Gaillard, D. Chevret, M. Galloux et al., Fine mapping and characterization of the L-polymerase-binding domain of the respiratory syncytial virus phosphoprotein, J. Virol, vol.89, pp.4421-4433, 2015.

M. Chen, J. Cortay, I. R. Logan, V. Sapountzi, C. N. Robson et al., Inhibition of ubiquitination and stabilization of human ubiquitin E3 ligase PIRH2 by measles virus phosphoprotein, J. Virol, vol.79, pp.11824-11836, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00125734

M. Chenik, M. Schnell, K. K. Conzelmann, and D. Blondel, Mapping the interacting domains between the rabies virus polymerase and phosphoprotein, J. Virol, vol.72, pp.1925-1930, 1998.

S. U. Emerson and M. Schubert, Location of the binding domains for the RNA polymerase L and the ribonucleocapsid template within different halves of the NS phosphoprotein of vesicular stomatitis virus, Proc. Natl. Acad. Sci. U.S.A, vol.84, pp.5655-5659, 1987.

A. A. Rahmeh, B. Morin, A. D. Schenk, B. Liang, B. S. Heinrich et al., Critical phosphoprotein elements that regulate polymerase architecture and function in vesicular stomatitis virus, Proc. Natl. Acad. Sci. U.S.A, vol.109, pp.14628-14633, 2012.

J. Nikolic, R. Bars, Z. Lama, N. Scrima, C. Lagaudrière-gesbert et al., Negri bodies are viral factories with properties of liquid organelles, Nat. Commun, vol.8, p.58, 2017.

B. S. Heinrich, Z. Maliga, D. A. Stein, A. A. Hyman, and S. P. Whelan, Phase transitions drive the formation of vesicular stomatitis virus replication compartments, MBio, vol.9, pp.2290-2307, 2018.

N. D. Keul, K. Oruganty, E. T. Schaper-bergman, N. R. Beattie, W. E. Mcdonald et al., The entropic force generated by intrinsically disordered segments tunes protein function, Nature, vol.563, pp.584-588, 2018.

J. T. White, D. Toptygin, R. Cohen, N. Murphy, and V. J. Hilser, Structural stability of the coiled-coil domain of tumor susceptibility gene (TSG)-101, Biochemistry, vol.56, pp.4646-4655, 2017.

J. F. Bruhn, R. N. Kirchdoerfer, S. M. Urata, S. Li, I. J. Tickle et al., Crystal structure of the marburg virus VP35 oligomerization domain, J. Virol, vol.91, pp.1085-1101, 2017.

L. Zinzula, I. Nagy, M. Orsini, E. Weyher-stingl, A. Bracher et al., Structures of ebola and reston virus VP35 oligomerization domains and comparative biophysical characterization in all ebolavirus species, Structure, vol.27, pp.39-54, 2019.

C. Leyrat, M. Renner, K. Harlos, and J. M. Grimes, Solution and crystallographic structures of the central region of the phosphoprotein from human metapneumovirus, PLOS ONE, vol.8, p.80371, 2013.

S. C. Harrison, Viral membrane fusion. Virology 479-480, pp.498-507, 2015.

M. D. Hartmann, Functional and structural roles of coiled coils, Subcell. Biochem, vol.82, pp.63-93, 2017.

C. M. Stewart, C. Z. Buffalo, J. A. Valderrama, A. Henningham, J. N. Cole et al., Coiled-coil destabilizing residues in the group A Streptococcus M1 protein are required for functional interaction, Proc. Natl. Acad. Sci. U.S.A, vol.113, pp.9515-9520, 2016.

K. K. Conzelmann and M. Schnell, Rescue of synthetic genomic RNA analogs of rabies virus by plasmid-encoded proteins, J. Virol, vol.68, pp.713-719, 1994.

F. Radecke, P. Spielhofer, H. Schneider, K. Kaelin, M. Huber et al., Rescue of measles viruses from cloned DNA, EMBO J, vol.14, pp.5773-5784, 1995.

H. Tatsuo, N. Ono, K. Tanaka, and Y. Yanagi, SLAM (CDw150) is a cellular receptor for measles virus, Nature, vol.406, pp.893-897, 2000.

S. Vincent, D. Spehner, S. Manié, R. Delorme, R. Drillien et al., Inefficient measles virus budding in murine L.CD46 fibroblasts, Virology, vol.265, pp.185-195, 1999.

P. Cassonnet, C. Rolloy, G. Neveu, P. Vidalain, T. Chantier et al., Benchmarking a luciferase complementation assay for detecting protein complexes, Nat. Methods, vol.8, pp.990-992, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-01971619

D. Hayes, T. Laue, J. Philo, and P. Sednterp, , 1995.

P. Schuck and P. Rossmanith, Determination of the sedimentation coefficient distribution by least-squares boundary modeling, Biopolymers, vol.54, pp.328-341, 2000.

W. Kabsch, XDS. Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.125-132, 2010.

P. R. Evans, An introduction to data reduction: Space-group determination, scaling and intensity statistics, Acta Crystallogr. D Biol. Crystallogr, vol.67, pp.282-292, 2011.

A. Vagin and A. Teplyakov, Molecular replacement with MOLREP, Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.22-25, 2010.

P. Emsley, B. Lohkamp, W. G. Scott, and K. Cowtan, Features and development of Coot, Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.486-501, 2010.

E. Blanc, P. Roversi, C. Vonrhein, C. Flensburg, S. M. Lea et al., Refinement of severely incomplete structures with maximum likelihood inBUSTER-TNT, Acta Crystallogr. D Biol. Crystallogr, vol.60, pp.2210-2221, 2004.

G. N. Murshudov, P. Skubák, A. A. Lebedev, N. S. Pannu, R. A. Steiner et al., REFMAC5 for the refinement of macromolecular crystal structures, Acta Crystallogr. D Biol. Crystallogr, vol.67, pp.355-367, 2011.

S. V. Strelkov and P. Burkhard, Analysis of alpha-helical coiled coils with the program TWISTER reveals a structural mechanism for stutter compensation, J. Struct. Biol, vol.137, pp.54-64, 2002.

R. C. Edgar, MUSCLE: Multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res, vol.32, pp.1792-1797, 2004.

A. Sali and T. L. Blundell, Comparative protein modelling by satisfaction of spatial restraints, J. Mol. Biol, vol.234, pp.779-815, 1993.

M. J. Harvey, G. Giupponi, and G. D. Fabritiis, ACEMD: Accelerating biomolecular dynamics in the microsecond time scale, J. Chem. Theory Comput, vol.5, pp.1632-1639, 2009.

K. Lindorff-larsen, S. Piana, K. Palmo, P. Maragakis, J. L. Klepeis et al., Improved side-chain torsion potentials for the Amber ff99SB protein force field, Proteins, vol.78, pp.1950-1958, 2010.

W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys, vol.79, pp.926-935, 1983.

K. A. Feenstra, B. Hess, and H. J. Berendsen, Improving efficiency of large time-scale molecular dynamics simulations of hydrogen-rich systems, J. Comput. Chem, vol.20, pp.786-798, 1999.

W. Humphrey, A. Dalke, and K. Schulten, VMD: Visual molecular dynamics, J. Mol. Graph, vol.14, pp.33-38, 1996.

M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith et al., GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers, pp.19-25, 2015.

A. Hoffmann and S. Grudinin, NOLB: Nonlinear rigid block normal-mode analysis method, J. Chem. Theory Comput, vol.13, pp.2123-2134, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01505843

A. C. Dahl, M. Chavent, and M. S. Sansom, Bendix: Intuitive helix geometry analysis and abstraction, Bioinformatics, vol.28, pp.2193-2194, 2012.

R. P. Joosten, T. A. Beek, E. Krieger, M. L. Hekkelman, R. W. Hooft et al., A series of PDB related databases for everyday needs, Nucleic Acids Res, vol.39, pp.411-419, 2010.

W. Kabsch and C. Sander, Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features, Biopolymers, vol.22, pp.2577-2637, 1983.

G. Tria, H. D. Mertens, M. Kachala, and D. I. Svergun, Advanced ensemble modelling of flexible macromolecules using X-ray solution scattering, IUCrJ, vol.2, pp.207-217, 2015.

. Ums3444/cnrs, . Us8/inserm, ;. T. Ens-de-lyon, S. Andrieu, ;. Dussurgey et al., Investissements d'Avenir" (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR). The studies described here were carried out with the financial support of the CNRS. A.S. is a recipient of a Ph.D. fellowship from the French Ministry of National Education, Research and Technology allotted to the Ecole Doctorale des Sciences de la Vie et de la Santé, Acknowledgments: We acknowledge the contribution of SFR Biosciences

M. H. , designed and analyzed data. S.L. supervised the project, analyzed data, and wrote the manuscript. D.G. designed and performed experiments, supervised the project, and wrote the manuscript. All authors approved the final version of the manuscript. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. The structure of the IPKI MD variant has been deposited in the PDB under PDB code 6HTL, 2018.

, , 2019.

L. Bloyet, A. Schramm, C. Lazert, B. Raynal, M. Hologne et al., Sonia Longhi, issue.5, p.3702

, Sci Adv REFERENCES

, This article cites 95 articles, 32 of which you can access for free