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About the shock formation in multi-dimensional scalar

conservation laws

Denis Serre

École Normale Supérieure de Lyon*

Abstract

We establish a space-time integral estimate of the difference of solutions of non-degenerate

scalar conservation laws. It is valid over the maximal domain (0,Tmax)×R
d in which the

solutions are shock-free, and it fails beyond Tmax. When comparing a solution with its

shifts, we deduce a Besov-like estimate at the development of its first singularity.

Key words: Divergence-free tensors, Compensated Integrability, Scalar conservation laws,

Burgers equation, shock formation.

Mots clés: Tenseurs à Divergence nulle, Intégrabilité par Compensation, lois de conservation

scalaires, équation de Burgers, formation des chocs.
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Notations. The problems under consideration involve functions of time t and space variable

y ∈ R
d . The space-time dimension is thus n = 1+ d. If 1 ≤ p ≤ +∞, the norm in Lp(U) is

‖ ·‖p. The cone of symmetric positive semi-definite n×n matrices with real entries is Sym+
n . If

V ∈ R
n, the matrix V ⊗V ∈ Sym+

n has entries viv j. If h ∈ R
d and u : Rd → R, then τhu denotes

the function u(·+h). The Lipschitz semi-norm of s 7→ g(s) is

|g|Lip(I) = sup
s6=s′∈I

|g(s′)−g(s)|
|s′− s| .
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The sign of a real number is sgn(s) ∈ {0,±1}.

1 Introduction

Let us consider a scalar conservation law in the spacial domain R
d ,

(1) ∂tu+divy
~f (u) = 0, t > 0, y ∈ R

d .

The flux ~f : R→R
d is a given smooth vector field. Choosing an appropriate moving frame, we

may assume ~f (0) = ~f ′(0) = 0.

Depending upon ~f , equation (1) can be either linear or not, degenerate or not. Recall that if

d = 1, (1) is said genuinely non-linear whenever f ′′ does not vanish. The corresponding notion

when d ≥ 1, which we call full non-degeneracy, is that det(~f ′′, . . . , ~f (n)) does not vanish.

According to Kružkov [10], the Cauchy problem is well-posed for L∞-initial data u0, in

the sense of entropy solutions. It generates a semi-group St : u0 7→ u(t), which enjoys several

properties:

Comparison. If u0 ≤ v0 almost everywhere, then Stu0 ≤ Stv0. In particular

infu0 ≤ u(t,y)≤ supu0.

Contraction. If v0 −u0 ∈ L1(Rd), then Stv0 −Stu0 ∈ L1(Rd), and t 7→ ‖Stv0 −Stu0‖1 is non-

increasing.

Conservation. Under the same assumption as above, t 7→ ∫
Rd(Stv0−Stu0)dy is constant, equal

to
∫
Rd(v0 −u0)dy.

We aim at estimating the difference v−u of two solutions associated with initial data u0,v0.

The L1-contraction mentionned above holds uniformly in time and is valid for entropy admis-

sible solutions. The contraction fails in L2-norm, though it has been shown that in one space

dimension, the quantity

t 7→ inf
h
‖v(t)− τhu(t)‖2

is non-increasing when u is a pure shock and f is convex ; see N. Leger’s analysis [11]. Within

the more general context of systems of conservation laws endowed with a strongly convex

entropy, C. Dafermos [2] and R. DiPerna [6] established the well-known weak-strong estimate.
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This one compares a Lipschitz continuous solution u over (0,T )×R
d with a bounded entropy

admissible solution v. The relative entropy

η(v|u) :== η(v)−η(u)−dη(u) · (v−u),

satisfies a differential inequality

d

dt

∫
Rd

η(v|u)dy ≤ c(‖u‖∞)‖∇yu‖∞

∫
Rd

η(v|u)dy,

from which one infers

(2)

∫
Rd

η(v(t)|u(t))dy≤ exp

(

c(‖u0‖∞)

∫ t

0
‖∇yu(s)‖∞ ds

)∫
Rd

η(v0|u0)dy,

a kind of L2-estimate. Other results, dealing with the continuity of the map u0 7→ u, were

obtained by means of Compensated Compactness (CC), see [1, 19].

Returning to the scalar case, we recently [17] established a space-time estimate:

(3)

∫ ∞

0

∫
Rd

K(|v(t,y)−u(t,y)|) 1
d dydt ≤ c(‖u0‖2,‖v0‖2,‖u0‖∞,‖v0‖∞)‖v0 −u0‖

1
d

1 ,

where K : R+ → R+ is a function defined in Section 2.1 below. Typically, K(s) ∼ sn2
if (1) is

fully non-degenerate, thus (3) is a kind of Lp-estimate with p = n2/d > 2. However because

the solutions are bounded, we may always bound the space integral above, thanks to the L1-

contraction, ∫
Rd

K(|v(t,y)−u(t,y)|) 1
d dy ≤ c(‖u0‖∞,‖v0‖∞)‖v0 −u0‖1.

Thus the resulting bound of

(4)

∫ T

0

∫
Rd

K(|v(t,y)−u(t,y)|) 1
d dydt ≤ c(‖u0‖∞,‖v0‖∞)T ‖v0 −u0‖1

for finite T is way better than (3) as ‖v0−u0‖1 → 0. The only new feature in (3) is therefore the

finiteness of the integral when T = +∞. This kind of dispersion effect is of course intimately

related to the Strichartz-like estimates obtained in [18].

Our purpose here is to improve the estimate (3) by restricting the integration to the maximal

slab (0,T )×R
d in which both u and v are shock-free. Mind that this assumption is more

restrictive than that in weak-strong analysis. It is however meaningful since Lipschitz initial
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data yield shock-free solutions on some non-trivial slab. According to Theorem 6.1.1 of [3], we

have

− 1

T
= min

{

0, inf
y

div(~f ′ ◦ v0), inf
y

div(~f ′ ◦u0)

}

.

In order that it be valuable, our improved estimate will not be a naive consequence of the L1-

contraction property: we shall be able to replace the factor ‖v0 −u0‖1/d

1 in the right-hand side

of (3) by ‖v0 −u0‖p
1 , where the exponent p = n/d is now bigger than 1,

(5)

∫ ∞

0

∫
Rd

K(|v(t,y)−u(t,y)|) 1
d dydt ≤ c(‖u0‖∞,‖v0‖∞)‖v0 −u0‖

n
d

1 ,

Likewise, (5) does not follow from (2), because of two reasons. On the one hand the integrand

depends upon the amount of nonlinearity of the flux ~f ; a fully non-degenerate flux yields an

estimate in an Lq-space with q > 2, while (5) is trivial if det(~f ′′, . . . , ~f (n)) ≡ 0, because then

K ≡ 0. On the other hand, the estimate is valid when we integrate in t up to the blow-up time

T of one solution ; on the contrary, the integral in (2) becomes infinite in general as t → T ,

because ‖∇yu‖∞ behaves like (T − t)−1 generically.

We point out that when taking v = τhu for some small vector h, the estimate (4) is sharp

once shocks develop. This is because the left-hand side is proportional to K([u])1/d|h|, where

[u] := uright − uleft is the jump of u across the shock surface, while ‖τhu0 − u0‖1 in the right-

hand side behaves as |h| ·TV (u0). Thus both sides are of order |h| as h → 0. On the contrary

(3) writes as the tautology |h|= O(|h|1/d). When u is shock-free over (0,T )×R
d , (5) gives the

better estimates.

(6)

∫ T

0

∫
Rd

K(|u(t,y+h)−u(t,y)|) 1
d dydt ≤ c(‖u0‖∞)(|h| ·TV (u0))

n
d .

We warn that (6) would be false if we integrated beyond the shock formation, since |h| is not an

O(|h|n/d) as h → 0. The precise statement is given in Theorem 3.2 below.

Inequality (6) is a valuable information about how strong can be the development of a sin-

gularity as t → T − 0. Since shock-free solutions are reversible, it also tells us something

about the “rarefaction waves” ; by this we mean those shock-free solutions whose initial data is

BV ∩L∞(Rd), without being continuous. These data are such that the measure div(~f ′ ◦ u0) is

bounded below by some negative constant.

Our strategy is a mix between that of our work [18] with L. Silvestre, and that of F. Golse’s

work [7, 8] in space dimension d = 1 (improved later on by Golse & Perthame [9]). Because

of the multi-dimensional context, we employ the technique of Compensated Integrability (CI),
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which we developed in [14, 15] and others papers. This tool is slightly less powerful than

Compensated Compactness (CC), and our estimate of

∫ T

0

∫
Rd

K(|u(t,y+h)−u(t,y)|) 1
d dydt

depends upon the regularity of the data (bounded variation in (6)). In one space dimension,

where CC is available, Golse could assume only u0 ∈ L∞(R), so that his result expresses a

regularizing effect. Notice that his right-hand side c(‖u0‖∞,‖v0‖∞) |h| is weaker than ours

c(‖u0‖∞,‖v0‖∞)(|h| ·TV (u0))
2 as h → 0. Again, this is imposed by its validity over (0,+∞)×

R, thus beyond the shock formation, where it becomes sharp while ours fail.

Plan of the paper. Section 2 contains the definition of shock-free solutions and of the function

K involved in Estimate (6). Section 3 presents the main theorem 3.1 and its consequences.

Eventually we discuss the accuracy of our estimate in space dimension d = 1. Section 4 presents

the remaining steps of the proof, starting with the construction of a Div-BV symmetric positive

semi-definite tensor, and then applying CI.

2 Definitions and results

We begin by giving a quantitative notion of non-degeneracy. Then we explain what are shock-

free solutions. Eventually we state our main results.

2.1 Non-degeneracy and symmetric matrices

Each Lipschitz function η(s) of a real variable can be viewed as an entropy of the conservation

law, with entropy flux ~q given by ~q′ = η′~f ′. We are specially concerned with the entropies fi,

the coordinates of ~f ! Denoting~qi the corresponding fluxes, we have

qi j(s) =
∫ s

0
f ′i (ξ) f ′j(ξ)dξ.

We point out that qi j = q ji and thus the n×n matrix

A(s) :=













s f1(s) . . . fd(s)

f1(s)
...

... . . . qi j(s) . . .

fd(s)
...












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is symmetric.

If s ≤ σ, then

(7) A(σ;s) := A(σ)−A(s) =
∫ σ

s

(

1
~f ′(ξ)

)

⊗
(

1
~f ′(ξ)

)

dξ

is positive semi-definite. Following [12], we say that the conservation law is non-degenerate if

there does not exist a non-trivial interval (s,σ) on which (1,~f ′) remains in some hyperplane.

This amounts to saying that A(σ;s) is positive definite whenever s < σ.

Let us assume that (1) is non-degenerate. Then s < σ implies detA(σ;s) > 0. Since this

quantity is continuous in both arguments, we may define for every bounded interval I ⊂ R and

any increment α > 0,

KI(α) = min{det(A(s+α)−A(s)) |(s,s+α)⊂ I}.

The function α 7→ K(α) ∈ (0,+∞) is non-decreasing. Because of the concavity of det1/n over

Sym+
n , it satisfies

KI(α+β)
1
n ≥ KI(α)

1
n +KI(β)

1
n .

The paradigm of a fully non-degenerate conservation law is the multi-D Burgers equation:

(8) ∂tu+∂1
u2

2
+ · · ·+∂d

un

n
= 0,

for which

KI(α) = Hnαn2

, Hn := det

(

1

i+ j−1

)

1≤i, j≤n

.

For more general fluxes, Andreiv’s formula

detA(σ;s) =
1

n!

∫
[s,σ]n

∣

∣

∣

∣

1 . . . 1
~f ′(ξ0) . . . ~f ′(ξd)

∣

∣

∣

∣

2

dξ0 · · ·dξd

implies that KI(α) is always an O
(

αn2
)

. For a fully non-degenerate flux, we have actually

det(A(s+α)−A(s))
α→0+∼ Hn

(

det(~f ′′(s), . . . , ~f (n)(s))
)2

αn2

.
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2.2 Shock-free solutions

Let u0 ∈ L∞(Rd) be an initial data, and u be the corresponding entropy solution of the Cauchy

problem for (1). Its characterization in terms of a kinetic equation has been found by P.-L. Lions

& coll. [12] ; see also Theorem 3.21 in [13]. To describe it, we need the step function χ(ξ;s),
which vanishes for ξ(s−ξ)< 0, and equals sgn(ξ) = sgn(s) otherwise. In other terms,

χ(ξ;s) =
∂

∂ξ

(

1

2
(|ξ|− |s−ξ|)

)

.

Let us define an auxiliary function h(t,y, ,ξ) := χ(ξ;u(t,y)). Then h satifies the transport

equation

(9) ∂th+~f ′(ξ) ·∇yh = ∂ξm,

where m(·;ξ) is the non-negative measure which occurs in Kružkov’s entropy inequalities:

∂t |u−ξ|+divy[(sgn(u−ξ))(~f (u)−~f (ξ))] =−2m(ξ).

We notice that if u0 takes values in an interval I, then so does u, and thus m(ξ)≡ 0 for ξ 6∈ I.

Definition 2.1 We say that the solution u of (1) is shock-free in an open domain U if m(ξ)|U ≡ 0

for every ξ ∈ R.

This amounts to saying that u satisfies every entropy identity (just multiply by η′(ξ) and inte-

grate with respect to the kinetic variable))

(10) ∂tη(u)+div~q(u) = 0, ~q′ = η′~f ′

in U .

A specific property of shock-free solutions is

Proposition 2.1 Let (η,~q) be an entropy-flux pair of (1), and let u,v be two bounded shock-free

solutions in an open domain U of R+×R
d . Then we have

(11) ∂t [(sgn(v−u))(η(v)−η(u))]+divy[(sgn(v−u))(~q(v)−~q(u))] = 0

in U.
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Proof

Given ξ ∈ R, the flux of the entropy s 7→ (sgn(s−ξ))(η(s)−η(ξ)) is the vector field s 7→
(sgn(s−ξ))(~q(s)−~q(ξ)). Since u and v are shock-free, we thus have the entropy identities

∂t [(sgn(v−ξ))(η(v)−η(ξ))]+divy[(sgn(v−ξ))(~q(v)−~q(ξ))] = 0

∂t [(sgn(u−ξ))(η(u)−η(ξ))]+divy[(sgn(u−ξ))(~q(u)−~q(ξ))] = 0.

We conclude by using Kružkov’s trick, known as the doubling of variables trick. Having started

from equalities, we receive an equality, instead of an inequality.

Integrating in space and time, we infer a conservation property:

Corollary 2.1 Let η : R → R be a C1-function, and u0,v0 be bounded initial data such that

v0 −u0 ∈ L1(R). Assume that the corresponding solutions u,v are shock-free over (0,T )×R
d .

Then for all t ∈ (0,T ), we have

∫
Rd
[(sgn(v−u))(η(v)−η(u))](t,y)dy=

∫
Rd
[(sgn(v0 −u0))(η(v0)−η(u0))](y)dy.

Remark 2.1 Our starting point is somewhat different than in C. Dafermos’ analysis [4]. In-

stead of focusing on the continuity of the solution, we are interested in the full list of entropy

identities (10). In one space dimension, Dafermos proved that the former implies the latter, by

a clever examination of characteristics.

3 Statements and discussion

Our most general result writes

Theorem 3.1 Let u0,v0 ∈ L∞(Rd) be given initial data, such that v0 −u0 ∈ L1(Rd). Denote

I = [min{infu0, infv0},max{supu0,supv0}].

Let us assume that the corresponding solutions u,v of (1) are shock-free over (0,T )×R
d . Then

we have an inequality

(12)

∫ T

0

∫
Rd

KI(|v(t,y)−u(t,y)|) 1
d dydt ≤ c

(

|~f |Lip(I)

)

‖v0 −u0‖
n
d

1 .
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We may take

c
(

|~f |Lip(I)

)

= cd

(

d

∏
j=1

| f j|Lip(I)

)
1
d

for some absolute constant cd .

When choosing v = τhu, this yields

Corollary 3.1 Let u0 ∈ L∞(Rd) be a given initial data, and h ∈R
d be such that u0(·+h)−u0 ∈

L1(Rd). Denote

I = [infu0,supu0].

Let us assume that the corresponding solution u of (1) is shock-free over (0,T )×R
d . Then we

have an inequality

(13)

∫ T

0

∫
Rd

KI(|u(t,y+h)−u(t,y)|) 1
d dydt ≤ c

(

|~f |Lip(I)

)

ω1(h;u0)
n
d ,

where ω1(h;u0) := ‖τhu0 −u0‖1.

The best regularity estimate is thus

Theorem 3.2 Let u0 ∈ L∞(Rd)∩BV (Rd) be a given initial data, and

I = [infu0,supu0].

Let us assume that the corresponding solution u of (1) is shock-free over (0,T )×R
d . Then we

have an inequality

(14)

∫ T

0

∫
Rd

KI(|u(t,y+h)−u(t,y)|) 1
d dydt ≤ c

(

|~f |Lip(I)

)

(|h| ·TV (u0))
n
d .

Likewise, we may choose v(t,y) = u(t + τ,y). The conservation law tells us that |∂tu| ≤
|~f |Lip(I)|∇yu|, so that ‖u(τ)−u0‖1 ≤ |~f |Lip(I)τ ·TV (u0) :

Theorem 3.3 Under the same assumptions as in Theorem 3.2, and for τ ∈ (0,T ), we have an

inequality

(15)

∫ T−τ

0

∫
Rd

KI(|u(t + τ,y)−u(t,y)|) 1
d dydt ≤ c1

(

|~f |Lip(I)

)

(τ ·TV (u0))
n
d .
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For a fully non-degenerate flux, where K(s)∼ sn2
, (14,15) mean together that the restriction

of u to (0,T )×R
d belongs to the homogeneous Besov space Ḃ

1/n,n2/d
∞ . We point out that this

property is not implied, even locally, by u ∈ BV (R+×R
d) and embeddings, because of

d

n2
− 1

n2
=

d−1

n2
< 1− 1

n
=

d

n
.

Notice also that the one-dimensional case u ∈ Ḃ
1/2,4
∞ ((0,T )×R) is better than the optimal

result B
1/3,3
∞ (see [9, 5]), of course because we avoid the shocks.

3.1 Accuracy of Theorem 3.2 in dimension d = 1

In one space dimension, Estimate (14) turns out to be sharp in the following sense. Consider a

genuinely non-linear conservation law, say Burgers,

∂tu+∂y
u2

2
= 0.

Then (14) writes

∫ T

0

∫
Rd

|u(t,y+h)−u(t,y)|4dydt ≤ c‖u0‖∞(h ·TV (u0))
2.

Rarefaction wave. Assume first that u0(y) = u± where u− < u+ are constants. Then the

solution, a rarefaction wave, is shock-free over R+ ×R, and the estimate above is valid for

T =+∞. Because u ≡ u− for y < tu− and u ≡ u+ for y > tu+, the difference u(t,y+h)−u(t,y)
equals [u] := u+−u− on a small triangle, whose basis is the segment {0}× (−h,0) and upper

vertex is at t = h/[u]. Therefore

∫ T

0

∫
Rd

|u(t,y+h)−u(t,y)|4dydt ≥ [u]3h2

2
,

and both sides of the estimate have the same order h2 as h → 0.

Of course, this can be reversed by û(t,y) = u(T − t,−y), to transform the initial singularity

into a final one, a shock formation.
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Generic singularities. The above example is non-generic. What happens usually is that u(t, ·)
is locally decreasing, with a non-degenerate inflexion point. As t increases, the derivative ∂yu

at the inflexion point decreases and tends to −∞ as t → T − 0. At time T , the solution is still

continuous, but experiences a cubic root singularity in the space variable. Reversing time and

space to make it an initial singularity, we are lead to consider the example of a smooth bounded

increasing initial data u0(y) which coincides with y1/3 in some neighbouhood of the origin. Say

that u0 ≡ u± takes constant values away from a compact interval.

The corresponding solution of the Burgers equation is globally shock-free. Thanks to the

finite velocity of waves, it coincides locally with a self-similar solution:

u(t,y) =
√

t U

(

y

t3/2

)

, U(z)3+U(z) = z, say over (0,1)× (−2,2).

Let us split the integral

∫ 1

0

∫
R

|u(t,y+h)−u(t,y)|4dydt =
∫ 1

0

∫ +1

−1
(· · ·)+

∫ 1

0

∫
|y|>1

(· · ·).

Since u is smooth away from (0,0), and is constant ≡ u± for |y|> L for a suitable L <+∞, the

second integral above is an O(h4). As for the first one, it equals

∫ 1

0

∫ +1

−1
|u(t,y+h)−u(t,y)|4dydt =

∫ 1

0

∫ +1

−1
t2

∣

∣

∣

∣

U

(

y+h

t3/2

)

−U

(

y

t3/2

)∣

∣

∣

∣

4

dydt

=
2h3

3

∫ ∫
b−a>hmax{1,|a|}

(

U(b)−U(a)

b−a

)4

dadb

=
2h3

3

∫ ∫
b−a>hmax{1,|a|}

dadb

(1+U(a)2+U(a)U(b)+U(b)2)4
,

where we first made the change of variables (a,b) = (yt−3/2,(y+ h)t−3/2), and then used the

cubic equation that U satisfies. Since

1+U(a)2+U(a)U(b)+U(b)2 ≥ 1+
1

2
(U(a)2+U(b)2)≥C(1+ r2/3), r :=

√

a2 +b2

for some constant C > 0, and because

∫
R2

dx

1+ r8/3
<+∞,
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the quantity (1+U(a)2+U(a)U(b)+U(b)2)−4 is integrable over R2. Thus

∫ 1

0

∫ +1

−1
|u(t,y+h)−u(t,y)|4dydt ∼ κh3,

where (mind that U is odd)

κ :=
1

3

∫ ∫
R2

dadb

(1+U(a)2+U(a)U(b)+U(b)2)4
< ∞.

Summing up the calculations above, we deduce that

∫ 1

0

∫
R

|u(t,y+h)−u(t,y)|4dydt ∼ κh3, as h → 0.

Conclusion. Theorem 3.2 is sharp in space dimension 1, but only for non-generic initial data.

For the Burgers equation and generic data, there is a gap between the order h2 of our upper

bound, and the equivalent cst · h3 of the left-hand side of (14). We leave open the question

whether (14) is sharp in higher dimension, or not. That is, whether there exist shock-free

solutions for which the left-hand side is bounded below by a constant times |h|n/d as h →
0, at least in some directions. An answer seems to need a good understanding of the worst

singularities that are consistent with the conservation law.

4 Proof of Theorem 3.1

4.1 A positive Div-BV tensor

From the solutions u and v, we build the symmetric tensor

A := (sgn(v−u))(A◦ v−A◦u).

Thanks to formula (7), A is positive semi-definite. We have by definition

detA(t,y)≥ KI(|v(t,y)−u(t,y)|).

Since u and v are shock-free over (0,T )×R
d , Proposition 2.1 tells us that A is Divergence-free.

Finally we define a tensor B over R1+d by extension:

B(t,y) =

{

A(t,y) if t ∈ (0,T ),
0n if not.
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Let us recall that the Divergence of a symmetric tensor x 7→ S is defined row-wise:

(DivS)i := ∑
j

∂si j

∂s j

,

where the derivatives are understood in the distributional sense. The tensor S is said Div-BV

over U if its entries and the coordinates of DivS are bounded measures over U . It is Div-free if

DivS ≡ 0.

Taking x = (t,y), we have

DivB =

( |v0 −u0|
(sgn(v0 −u0))(~f (v0)−~f (u0))

)

L
d|t=0

−
( |v(T )−u(T )|
(sgn(v(T )−u(T )))(~f (v(T ))−~f (u(T )))

)

L
d|t=T

where Ld denotes the d-dimensional Lebesgue measure. Therefore B is Div-BV and we have

‖(DivB)0‖M = ‖v0 −u0‖1 +‖v(T )−u(T )‖1 ≤ 2‖v0 −u0‖1.

Likewise, for 1 ≤ j ≤ d,

‖(DivB) j‖M = ‖ f j ◦ v0 − f j ◦u0‖1 +‖ f j ◦ v(T )− f j ◦u(T )‖1

≤ | f j|Lip(I)(‖v0 −u0‖1 +‖v(T )−u(T )‖1)≤ 2| f j|Lip(I)‖v0 −u0‖1.

4.2 Applying Compensated Integrabilty

Let us recall a version of CI, taken from [16] (Theorem 2.1):

Theorem 4.1 Let S be a symmetric positive semi-definite, Div-BV tensor over Rn. Then

(16)

∫
Rn
(detS)

1
n−1 dx ≤ cn

(

n

∏
i=1

‖(DivS)i‖M

) 1
n−1

.

Applying (16) to our tensor B, and using the estimates established in the previous paragraph,

we infer

∫ T

0

∫
Rd

K(|v(t,y)−u(t,y)|) 1
d dydt ≤ 2cn

(

2
d

∏
i=1

| f j|Lip(I)

)
1
d

‖v0 −u0‖
n
d

1 ,

which is (12). This ends the proof.
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[10] S. Kružkov. First order quasilinear equations with several independent variables (in Rus-

sian). Mat. Sbornik (N.S.), 81 (123) (1970), pp 228–255.

[11] N. Leger. L2-stability estimates for shock solutions of scalar conservation laws using the

relative entropy method. Arch Rat. Mech. & Anal., 199 (2011), pp 761–778.

[12] P.-L. Lions, B. Perthame, E. Tadmor. A kinetic formulation of multidimensional scalar

conservation laws and related equations. J. Amer. Math. Soc., 7 (1994), pp 169–191.

14



[13] B. Perthame. Kinetic formulation of conservation laws, Oxford lecture series in Math. &

its Appl. 21. Oxford (2002).

[14] D. Serre. Divergence-free positive symmetric tensors and fluid dynamics. Annales de
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