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Force microscopy cantilevers locally heated in a fluid: temperature fields
and effects on the dynamics

Basile Pottier and Ludovic Bellona)
Univ Lyon, Ens de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France

(Dated: 6 October 2021)

Atomic force microscopy cantilevers are often, intentionally or not, heated at their extremity. We describe
a model to compute the resulting temperature field in the cantilever and in the surrounding fluid on a wide
temperature range. In air and for common geometries, the heat fluxes in the cantilever and to the environment
are of comparable magnitude. We then infer how the fluid-structure interaction is modified due to heating,
and predict the induced changes in the dynamics of the system. In particular, we describe how the resonance
frequencies of the cantilever shift with a temperature increase due to two competing processes: softening of
the cantilever, and decrease of the fluid inertial effects. Our models are illustrated by experiments on a set
of cantilevers spanning the relevant geometries to explore the relative importance of both effects.

I. INTRODUCTION

In atomic force microscopy (AFM)1, a sharp tip in
interaction with the sample is used to characterise the
surface topography or its physical properties2. The tip-
sample force transducer is a micro-mechanical device,
commonly a cantilever, converting the force signal into
a deflection that can be measured by high precision
readouts1,3–6. The understanding of the mechanical re-
sponse of the transducer is thus crucial to fully interpret
the final measurement. One distinctive feature of AFMs
is the versatility of environments where they can oper-
ate, from vacuum to liquids, allowing many samples to
be probed in their native state. In return, it compli-
cates the characterisation of the force probe, since its
response unavoidably implies its interaction with the en-
vironment. For cantilevers in fluids, for instance, the
surroundings are paramount in the damping of the probe
motion, but also have inertial effects visible on the me-
chanical resonances7–9.

A complex situation is when the environment is not
homogeneous: the fluid-structure coupling must in such
a case take into account the variation of the fluid prop-
erties around the micro-mechanical sensor. In this arti-
cle, we address the case of a non-uniform temperature
for a cantilever in air. This scenario is naturally en-
countered in various situations, such as scanning thermal
microscopy10, where the AFM tip is heated to probe the
local thermal conductivity or temperature of the sam-
ple, or as a consequence of photo-thermal excitation of
a cantilever11–15 to drive it at its resonance frequency.
Whereas the temperature field is a feature in these oper-
ation modes, in other cases it is an artifact of the detec-
tion methods. This is for example common for an optical
readout since part of the light used to measure the de-
flection is absorbed by the cantilever and heats it. This
effect is usually small but can get noticeable if strong
light powers are needed (Raman measurements on the
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cantilever or sample16–19, local infrared spectroscopy of
the sample20, high thermal resistivity cantilevers21. . . )
In all cases, a precise knowledge of the temperature field
in the cantilever and its surroundings is desirable, as well
as understanding its effect on the mechanical response of
the sensor.

In this article, we study the thermal and mechanical
consequences of heating an AFM cantilever close to its
free end in air. In previous works21,22, we tackled the
problem in vacuum, which lifts two key difficulties: no
heat flow to the environment, no hydrodynamic coupling.
In air, the first point makes it harder to describe the tem-
perature field in the cantilever and surroundings, as heat
conduction/convection from a solid surface to a fluid is
tricky to describe quantitatively. The second point has
been solved by Sader and coworkers9,23 for a uniform
fluid, but the variation of density and viscosity around
a heated cantilever adds an extra layer of complexity
to the problem at stake. To address those difficulties,
we present in this article a thorough study including a
complete theoretical description and experimental results
corroborating our main claims. We reach a precise un-
derstanding of the temperature field, a provide a quan-
titative picture of the fluids-structure effects on the me-
chanical response of the cantilever.

The article is organised as follows: in section II, we
first present a model of the thermal problem and its res-
olution, leading to the knowledge of the temperature field
everywhere. We successfully compare our model with a
3D simulation. In section III, we describe the effect of a
temperature field on the cantilever itself (in vacuum), and
then how Sader’s approach can be adapted to the varying
properties of air heated in the vicinity of the cantilever.
We end up with a model describing the inertial effects due
to the fluid. In section IV, we finally present an experi-
ment to test our prediction, showing that measurements
on a set of three cantilevers of different geometries in air
and vacuum match nicely the proposed framework. The
last section concludes this article with a discussion of the
results and the perspectives opened by this work.
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II. THERMAL PROBLEM: CANTILEVER HEATED BY
LASER IRRADIATION

A. In vacuum

Let us first consider the case when the cantilever
heated by a laser beam is placed in vacuum. In this
case, the only possible heat transfer mechanisms to dissi-
pate the absorbed heat are thermal conduction through
the cantilever and thermal radiation. For a rectangu-
lar cantilever whose cross section dimensions (width b,
thickness h) are small compared to its length L (figure 1-
a), the temperature can be assumed uniform across the
cantilever cross section, the steady cantilever tempera-
ture profile T (x) is thus solution of the one-dimensional
equation

S
d

dx

(
λ(T (x))

dT

dx

)
+ q′laser(x)− q′rad(x) = 0, (1)

where S = bh is the cross section area, λ is the can-
tilever thermal conductivity, q′laser(x) and q′rad(x) de-
note respectively the input and output lineic power (in
W/m) owing to laser and cantilever radiation. For a laser
beam whose beam size is small compared to the cantilever
length, we can write q′laser(x) = PaδD(x− x0) where Pa
is the absorbed power, δD is Dirac’s distribution and x0

is the laser position along cantilever length. For a can-
tilever such that b� h, the lineic radiated power by the
cantilever reads as q′rad(x) = 2εσb(T (x)4 − T 4

0 ) with ε
the material emissivity, σ the Stefan-Boltzmann constant
and T0 the temperature of the environment. Note that
for moderate temperature elevation, the radiative effects
are small compared to thermal conduction22 and can be
neglected. The temperature profile may be obtained by
integrating twice Eq. (1) and imposing adequate bound-
ary conditions. As discussed in Ref. 22, the dissipated
power inside the chip supporting the cantilever inevitably
results in a rise of the cantilever temperature at the clamp
x = 0. This effect on the cantilever temperature can be
characterized by the distance lth from the clamp where
the cantilever temperature would extrapolate to T0. The
boundary condition at the clamped edge can thus be writ-
ten as

T (x = 0) = lth
dT

dx

∣∣∣∣
x=0

+ T0. (2)

In practice, lth/L is only about a few percent, the chip
heating has thus a small effect on the behavior of the
system but it has to be taken into account if one wants
to accurately describe the temperature profile close to
the clamp. At the opposite extremity, the free end for a
cantilever in vacuum is thermally insulated and reads as

dT

dx

∣∣∣∣
x=L

= 0. (3)
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FIG. 1. a) Schematic representation of the rectangular can-
tilever with a clamped end to the chip at x = 0 and a free end
at x = L. b) Decomposition of the fluid volume surrounding
the cantilever into two distinct regions.

B. In a fluid

When the cantilever is in contact with a gas or a liquid,
heat will be transferred from the cantilever to its sur-
rounding. Usually, the heat flux q′′ transferred through
a surface at temperature T from a solid to the surround-
ing fluid at temperature T0 is evaluated from Newton’s
law of cooling q′′ = hN(T − T0), where hN is the effec-
tive heat transfer coefficient (in W/m2/K). The coeffi-
cient hN takes into account both heat transfer by conduc-
tion and convection through the fluid, it depends on the
fluid properties and the specific geometry of the problem.
For ideal configurations or geometries (as plane, cylin-
der or sphere) hN can be calculated from formulas given
in the literature24. For micron-scale devices, like AFM
cantilevers, the buoyancy forces are not sufficiently large
to overcome viscous forces25,26. Thus, conduction dom-
inates over convection for heat flow from the cantilever
to the surrounding fluid. In that case, where natural
convection can be neglected, the heat transfer coefficient
scales as

hN ∼
λfluid

l
, (4)

where λfluid is the thermal conductivity of the surround-
ing fluid and l is the characteristic length of the tem-
perature field. For a cantilever such that b � L, the
fluid temperature will vary slowly along the length of
the cantilever in comparison to transverse variations (in
the plane y − z), the dominant length scale l is thus the
cantilever width b. Using Eq. (4) with l = b, we can
roughly evaluate the effect of the heat transfer through



3

the fluid relatively to the ones through the cantilever
computing the dimensionless numberN = 2λfluidL

2/λbh.
For a silicon cantilever with L = 300µm, b = 30µm,
h = 1µm immersed in air, we get N ≈ 1. Despite
the low air conductivity relatively to silicon conductiv-
ity (λSi/λair = 6× 103), the very high aspect ratio of the
cantilever geometry (L2/bh = 3× 103) makes the con-
duction effects in air be of the same order as those of
conduction through the cantilever. It shows the impor-
tance to properly take into account the exchanged heat
with air to accurately predict the cantilever temperature
profile.

In the following, we present a model for the fluid tem-
perature surrounding the cantilever that will allow de-
riving the corresponding local heat flux. Owing to the
geometry of the problem, it makes sense to split the fluid
surrounding the cantilever into two distinct sub-regions
as illustrated in figure 1-b: one region corresponds to
the fluid between the chip (x = 0) and the cantilever
extremity (x = L), the second region corresponds to the
remaining fluid x > L. In the following, we will treat sep-
arately the conduction problem in each region choosing
appropriate boundary conditions. In a first step, we will
address the problem in the particular case the cantilever
is circular in cross section, allowing us derive analytical
expressions for the heat exchanged. Then, we will give
approximate expressions in our case of interest namely
for a rectangular cross section.

1. Heat loss in the region x < L

For a cantilever having a circular cross section with a
radius R much smaller than its length L, the fluid tem-
perature will vary slowly along the length of the beam in
comparison to the transverse variations. It then follows
that the temperature of the fluid locally surrounding the
cantilever at any position x along the cantilever length
can be well approximated by that of an infinitely long
cantilever of temperature T (x), reducing the problem to
two dimensions. The thermal flux q′′ (in W/m2) in the
fluid is thus inversely proportional to the distance r (with
r in cylindrical coordinates) and reads for a small can-
tilever element dx as

q′′ =
Q̇x<Lfluid

2πrdx
= −λfluid

∂T x<Lfluid

∂r
, (5)

where Q̇x<Lfluid is the heat power (in W) transferred from
the cantilever element to the surrounding fluid. Impos-
ing the boundary conditions that (i) the fluid temper-
ature equals the cantilever temperature at the contact
(r = R), (ii) the fluid temperature at some distance R∞
is assumed to be equal to the reference temperature T0,
the integration of the Fourier law Eq. (5) gives the tem-

perature of the fluid

T x<Lfluid (x, r) =
θ(x)

ln
(
R∞
R

) ln

(
R∞
r

)
+ T0, 0 < x < L,

(6)

where θ(x) is the temperature elevation profile of the
cantilever. Though we consider the 2D thermal prob-
lem perpendicular to the cantilever, a reasonable choice
for R∞ is R∞ = R + x, since x is the distance of the
cantilever element dx from the chip acting as a thermo-
stat at T0. The power exchanged at position x is thus
Q̇x<Lfluid = 2πdxλfluid/ ln(1 + x/R)θ(x). The effect of heat
conduction through the fluid in the region 0 < x < L
can thus be taken into account in the determination of
the cantilever temperature by adding in Eq. (1) the local
heat loss per unit of length term

q′
x<L
fluid (x) =

2π

ln(1 + x/R)
λfluidθ(x). (7)

Note that this expression correspond to Newton’s law
of cooling with hN = λfluid/[R ln(1 + x/R)], close to the
scaling expected from Eq. 4.

2. Heat loss in the region x > L

In the previous paragraph, we only took into account
the dissipation through the fluid located between the ex-
tremity of the cantilever and the chip (0 < x < L). Here
we will estimate the fluid temperature in half-space x > L
and give the associated heat flux. The problem can be
reduced to a point source (the cantilever extremity) dis-
sipating in the semi-infinite domain x > L, the thermal
flux q′′ is thus inversely proportional to r2 (with r in
spherical coordinates) and reads as

q′′ =
Q̇x>Lfluid

2πr2
= −λfluid

∂T x>Lfluid

∂r
, (8)

where Q̇x>Lfluid is the power dissipated to be determined.
Imposing the boundary conditions that (i) at sufficiently
far distances from the cantilever extremity the fluid is
being cooled at the reference temperature (Tfluid(r →
∞) = T0), (ii) the fluid temperature at r = R equals
the temperature of the cantilever at its extremity, the
integration of Eq. (8) gives

T x>Lfluid (r) = θ(L)
R

r
+ T0, x > L, (9)

with θ(L) the temperature elevation of the cantilever at
the cantilever extremity x = L. The power exchanged
between the cantilever and the fluid in the region x > L
is thus Q̇x>Lfluid = 2πRλfluidθ(L). The effect of heat con-
duction through the fluid in the region x > L can thus
be taken into account in the determination of the can-
tilever temperature by imposing that the heat flux at the
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cantilever extremity is equal to

q′′
x>L
fluid =

Q̇x>Lfluid

S
=

2πR

S
λfluidθ(L), (10)

where S denotes the cross section area of the cantilever.
Again, this expression correspond to Newton’s law of
cooling with hN = 2λfluid/R, close to the scaling expected
from Eq. 4.

3. Temperature elevation of a cantilever in air

Finally, the effect of heat loss through conduction
within the fluid can be taken into account in the deter-
mination of the cantilever temperature T (x) = θ(x) +T0

by solving the modified heat equation

S
d

dx

(
λ(θ)

dθ

dx

)
+ q′laser(x)− q′rad(x)− q′ x<Lfluid (x) = 0,

(11)

with the boundary conditions

θ(x = 0) = lth
dθ

dx

∣∣∣∣
x=0

, (12a)

λ(θ(L))
dθ

dx

∣∣∣∣
x=L

= q′′
x>L
fluid , (12b)

where q′ x<Lfluid (x) and q′′
x>L
fluid are given in the case of a

cantilever having a circular cross-section respectively by
Eq. (7) and Eq. (10). It should be noted that the de-
termination of the fluid temperature in each region that
led up to these expressions implicitly assumed adiabatic
the plane x = L, neglecting the temperature variation
along x in comparison to its transverse variations. This
assumption and the resulting heat equation Eq. (11) are
thus valid in our limit where the cantilever transverse
dimensions are small compared to its length.

For a cantilever having a rectangular cross section such
that b� h, the width b is the dominant length scale for
the fluid temperature (instead of R for a cylinder). The
expressions for q′ x<Lfluid (x) and q′′ x>Lfluid should take a form
similar to Eq. (7) and Eq. (10) where the radius R has
been substituted by the half-width b/2, up to numeri-
cal factors of order one. We set those factors using 3D
numerical simulations (presented in section IIC):

q′
x<L
fluid,rect(x) ≈ 2π

ln(1 + 4x/b)
λfluidθ(x), (13a)

q′′
x>L
fluid,rect ≈

b

S
λfluidθ(L). (13b)

The ratio of these two contributions to the thermal flux
in air is of order b/L. For the typical geometries we
consider, this ratio is around 0.1, so that the tip effect,
though small, is usually noticeable and should be taken
into account.

0 100 200 300 400 500
0

50

100

150

200

0 100 200 300 400 500
0

200

400

600

800

a)

b)

0 5 10 15 20 25
0

200

400

600

800

1000

1200
c)

FIG. 2. Comparison of the temperature elevation profiles θ(x)
computed for a silicon cantilever (bh = 50µm2) placed in
vacuum or in air for a given maximum temperature eleva-
tion θ(L) of 200 K (a) and 800 K (b). The heat exchanged
with air enhances the non-linearity of the temperature profile.
(c) Temperature elevation at the tip of the cantilever θ(L) as
a function of the absorbed power Pa when the cantilever is
placed in vacuum or air.

So far, the thermal conductivity for the fluid λfluid was
implicitly assumed to be independent of the temperature.
For a strong heating, this assumption may not be longer
valid. At the first order, one can take into account the
temperature dependence of the fluid conductivity with
λfluid(θ) = λ0

fluid (1 + βθ), with β = 1/410 K−1 for air.
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Recasting this expression of λfluid in the computations
leading to Eqs. (13), the resulting expressions for q′fluid

and q′′fluid are unchanged, simply substituting the con-
stant thermal conductivity by λ0

fluid (1 + βθ(x)/2).
In the following, we compare the temperature eleva-

tion profiles θ(x) of a silicon cantilever placed in vacuum
or in air predicted by our model solving Eq. (11) when
the laser is focused at its free end (x0 = L). We take
into account the temperature dependence of the thermal
conductivities λ of silicon27 and λfluid of air conductiv-
ity at first order. The profiles are computed neglecting
both the effect of radiation (q′rad = 0) and chip heating
(lth = 0). In figure 2, we display the profiles θ(x) com-
puted for a maximum temperature elevation of 200 K and
800 K. In vacuum, the non-linearity of the profile comes
from the temperature dependence of the silicon conduc-
tivity. Due to the heat exchanged with its surrounding,
the profiles in air deviate from the ones in vacuum, with
a more pronounced non-linearity. The absorbed power
Pa needed to get a temperature rise at the extremity of
200 K and 800 K is respectively 1.7 and 2.3 times larger
in air than in vacuum. In figure 2-c, we display the max-
imum temperature elevation θ(L) in air and in vacuum
as a function of the absorbed power Pa. For comparison
we display the temperature rise assuming constant the
thermal conductivity of air.

C. Validation with 3D simulation

Side view

air

T0

L

Rf

L

h

b

Rf

x

y

z

y

x T0

Pa

silicon

FIG. 3. Schematic of the 3D thermal simulation of the can-
tilever and its surrounding, not to scale. The silicon cantilever
is a prismatic volume (h× b×L) while the surrounding air is
within the hemisphere of radius Rf . All exterior surfaces of
the simulated volume are maintained at a constant tempera-
ture T0. The power Pa is introduced within the cantilever at
its free end x = L.

To check the validity of our thermal model, we perform
a 3D numerical simulation of the conduction problem of
a silicon cantilever surrounded by air. In the simula-

tion presented, the only thermal transfer process is con-
duction. Figure 3 shows the geometry of the simulated
problem. The cantilever consists of a rectangular paral-
lelepiped (L × b × h) and its surrounding environment
consists of the remaining volume within the hemisphere
of radius Rf centered at the clamped end. The heat
equation solved in the two volumes is performed using the
thermal conductivity data of silicon for the cantilever and
air for the surrounding, taking into account their temper-
ature dependence. We impose the boundary condition of
an isothermally surface (at the reference temperature T0)
at all exterior surfaces of the simulated volume. The ab-
sorbed power Pa is poured within the cantilever at its free
end x = L. The simulation is performed using COMSOL
Multiphysics.

We present the result for a cantilever such that h =
1µm, b = 50µm, L = 500µm with Rf = 5L. We ver-
ified that the obtained cantilever temperature profile is
not affected by simulating a larger air domain (such that
Rf > 5L). In figure 2, we display the cantilever temper-
ature profiles θ(x) and the variation of the temperature
at its free end θ(L) as a function of the absorbed power
Pa both taking into account the heat transfer with air or
not. The temperatures obtained from the simulation are
in excellent agreement with the predictions made by our
model presented above. We find such agreement between
3D simulation and our model using different cantilever
dimensions b, h and L as long as b� L and b� h.

In conclusion, our model can be used to quantitatively
determine the temperature distribution along the can-
tilever when it is placed either in vacuum or in air.

III. MECHANICAL PROBLEM: FREQUENCY RESPONSE
OF A CANTILEVER SUBMITTED TO A TEMPERATURE
PROFILE

We now present a general theoretical model to deter-
mine the resonance frequency and quality factor of a can-
tilever beam immersed in a viscous fluid submitted to a
one-dimensional temperature profile. For a rectangular
cantilever such that its length L greatly exceeds its trans-
verse dimensions (see figure 1-a), the dynamic motion
of the cantilever undergoing small flexural deformation
can be described in the Euler-Bernoulli framework. The
equation governing the deflection w(x, t) reads28

µc
∂2w

∂t2
+

∂2

∂x2

[
EI

∂2w

∂x2

]
= ffluid(x, t) + fext(x, t), (14)

where µc = ρcbh is the mass per unit length of the can-
tilever of density ρc, E is the Young’s modulus, I is the
moment of inertia of the beam, ffluid is the hydrodynamic
force per unit length (in N/m) due to the surrounding
fluid (if any) acting on the cantilever, and fext is the ex-
ternal force per unit length. All quantities µc, E and
I in Eq. (14) may depend on the position x along can-
tilever length. The boundary conditions are the usual
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clamped-free conditions:

w(x = 0, t) = 0,
∂w(x, t)

∂x

∣∣∣∣
x=0

= 0, (15a)

∂2w(x, t)

∂x2

∣∣∣∣
x=L

= 0,
∂3w(x, t)

∂x3

∣∣∣∣
x=L

= 0. (15b)

To solve Eq. (14), it is convenient to expand the de-
flection w(x, t) in terms of the eigenmodes φn of the bare
cantilever (without fluid and external forces) having uni-
form properties. We therefore write in Fourier space

ŵ(x, ω) =

∞∑
n=1

Wn(ω)φn(X), X = x/L, (16)

where n is the mode order. Similar expression holds for
the external force fext(x, ω). The eigenmodes φn(X) sat-
isfy the following conditions

φ′′′′n (X)− α4
nφn(X) = 0, (17a)

φn(0) = φ′n(0) = φ′′n(1) = φ′′′n (1) = 0, (17b)

where αn are the successive positive roots of

1 + cosαn coshαn = 0. (18)

For small deflection, the hydrodynamic force per unit
length ffluid is proportional to the local displacement of
the cantilever w(x, t)9. We therefore write in Fourier
space

f̂fluid(x, ω) = µω2Γ(ω)ŵ(x, ω), (19)

where µ = πρb2/4 is the mass per unit length of a cylin-
der of diameter b of fluid with density ρ. Γ is the dimen-
sionless complex hydrodynamic function. The real part
Γr accounts for the inertial effects, while the imaginary
part Γi accounts for the viscous damping. Substitut-
ing Eq. (19) into Eq. (14) and rearranging we obtain in
Fourier space

d2

dx2

[
EI

d2ŵ

dx2

]
− (µc + µΓ(ω))ω2ŵ = f̂ext(x, ω). (20)

For relatively low mode number n, the hydrodynamic
flow can be assumed two dimensional in nature23. The
hydrodynamic function Γ is then obtained from the solu-
tion of the linearized Navier-Stokes equations for a rigid
beam with identical cross section to that of the cantilever
beam undergoing transverse oscillatory motion9. For a
rectangular cross section such that b � h, Γ depends
on the radial frequency ω through the Reynolds number
Re = ρωb2/4η where η is the fluid viscosity and the can-
tilever width b corresponds to the dominant length scale
in the hydrodynamic flow30 (figure 4). For relatively high
mode number, the flow in the fluid surrounding the can-
tilever can no longer be assumed two-dimensional. Sader
and coworkers showed23 that the hydrodynamic function
thus depends on the angular frequency ω and the mode

10-2 100 10210-1

100

101

102

10-2 100 10210-1

100

101

102

FIG. 4. Hydrodynamic function Γ = Γr +iΓr for a rectangu-
lar cross section (b� h) as a function of the Reynolds number
Re = ρωb2/4η for varying wave number κ = αnb/L = 0, 1, 2, 3
computed from the analytical solution of Ref. 29. The dashed
line corresponds to the two-dimensional rigid cantilever case
(κ = 0).

number n through Re and the normalized mode number
κ = αnb/L where αn is defined in Eq. 18 (see figure 4).

We now consider the effect of the temperature profile
T (x) = T0 + θ(x) on the physical properties of the can-
tilever and the surrounding fluid (if not in vacuum). In
the general case, all parameters E, I, µc, µ and Γ(ω)
in Euler-Bernoulli equation Eq. (20) depend on the vari-
able x through their temperature dependency and may
be expressed in the following form

g(x) = g0 + ∆g(x), (21)

where g0 corresponds to the parameter value at the ref-
erence temperature T0 and ∆g(x) corresponds the pa-
rameter variation at the position x induced by the tem-
perature profile θ(x). When the variations are relatively
small, i.e. ∆g(x)� g0, the normal modes are unchanged
at the first order21,22. In this limit, the evolution of the
amplitude of each mode can be obtained by projecting
Eq. (20) on the known normal mode basis φn(X):[

−mn
effω

2 + kneff + iγneffω
]
Wn(ω) = LF ext

n (ω), (22)

with

mn
eff = L

∫ 1

0

(µc + µΓr(ω))φn(X)2dX, (23a)

kneff =
1

L3

∫ 1

0

EI φ′′n(X)
2

dX, (23b)

γneff = ωL

∫ 1

0

µΓi(ω)φn(X)2dX. (23c)

For the large quality factors typical in air and vacuum,
the modes can be considered uncoupled to leading or-
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der. We therefore have a collection of independent quasi-
harmonic oscillators of effective mass mn

eff , stiffness k
n
eff

and damping coefficient γneff . From Eqs. (23), both dis-
sipative and inertial effects are weighted by the square
amplitude of the normal mode, while the elastic effect
is weighted by the square of the local curvature. We
immediately identify from Eq. (22), the eigenfrequency
associated with each mode as

ω2
n =

keff

meff
=

∫ 1

0

EI φ′′n(X)
2

dX

L4

∫ 1

0

(µc + µΓr(ωn)) φn(X)
2

dX

, (24)

and the quality factor as Qn = meffω/γeff .
In the particular case both the cantilever and fluid

properties are uniform, the resonance frequency of the
cantilever immersed the fluid ωfluid

n given by Eq. (24) be-
comes

ωfluid
n =

ωvac
n√

1 + ζ
, (25)

where

ωvac
n =

α2
n

L2

√
EI

µc
, (26)

is the resonance frequency in vacuum, and

ζ =
πρb

4ρch
Γr(ω

fluid
n ) (27)

is a dimensionless number representing the inertial effects
of the fluid on the resonance frequency. This effect is
more pronounced on larger cantilevers (i.e. large aspect
ratio b/h) since the volume of fluid implied is higher.
For typical cantilever geometries (10 < b/h < 100) the
relative frequency shift from vacuum to air is in the few
percent range. The quality factor becomes

Qfluid
n =

4ρch
πρb + Γr(ω

fluid
n )

Γi(ωfluid
n )

. (28)

For illustration, we display in figure 5 this shift and
the quality factor in air measured at room temperature
with two cantilevers having different aspect ratios b/h.
As expected, because of the frequency dependence of the
hydrodynamic load described through Γr (displayed in
figure 4), the shift slightly decreases with the consid-
ered mode number n. For high mode numbers, the fluid
can be considered as inviscid, Γr(Re → ∞) = 1, the
frequency shift thus becomes independent of the mode
number. We compare in figure 5 the measured rela-
tive shift and the quality factor to the theoretical values
given respectively by Eq. (25) and Eq. (28) where Γ is
computed either considering the flow two dimensional or
three dimensional23). As expected, for high mode num-
ber, the flow can no longer be assumed two dimensional,

1 2 3 4 5 6
-6

-4

-2

0

1 2 3 4 5 6
101

102

a)

b)

FIG. 5. Relative frequency shift from vacuum to air
(ωair

n −ωvac
n )/ωvac

n (a) and quality factor31 Qair
n (b) in air mea-

sured at room temperature from a thermal noise spectrum
for two silicon cantilevers having respectively the aspect ratio
b/h = 28 and b/h = 81. Both the shift and the quality factor
are well described with no adjustable parameters by Eq. (25)
and Eq. (28) with the hydrodynamic function Γ computed
from Ref. 23. For high mode number, the air flow around the
cantilever can no longer be assumed two dimensional.

both the frequency shift and the quality factor slightly
deviate from the 2D model and are better described by
the 3D model.

In the following, we determine the sensitivity of the
frequency resonance as the cantilever is submitted to a
one-dimensional temperature profile T0 + θ(x).

A. Sensitivity to a uniform temperature θ(x) = ∆T

To forge our intuition, we first consider a small uniform
temperature rise θ(x) = ∆T . When placed in vacuum,
the cantilever temperature rise will induce a shit of the
resonance frequency owing to the material softening (de-
crease of E) and an increase of the cantilever dimensions
due to thermal dilatation. Differentiating Eq. (26) with
respect to the temperature around T0, the relative fre-
quency shift in vacuum is

∆Ωvac
n ≡ ωvac

n − ωvac,0
n

ωvac,0
n

=
1

2
(aE + al) ∆T, (29)
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where the coefficient aE and al denotes respectively the
temperature coefficient of the Young’s modulus and the
coefficient of linear thermal expansion. Since aE =
−64× 10−6 K−1 and al = 2.5× 10−6 K−1 for silicon32–35,
the softening effect is dominant: a rise of temperature
tends to decrease the resonant frequency.

When placed in a fluid, the temperature rise of the
cantilever will heat the surrounding fluid, modifying both
its viscosity and its density thus altering the inertial effect
of the fluid on the resonance frequency. In air, the added
mass effect is small since ζ � 1. To simplify, let us
consider the inertial regime Re � 1, i.e., Γr ≈ 1. From
Eq. (25), the relative frequency shift is then at first order

∆Ωfluid
n =

1

2

[
aE + al − ζ(aρ + 3al)

]
∆T, (30)

where aρ denotes the volumetric coefficient of thermal
expansion of the fluid. For air at room temperature,
aρ = −3.4× 10−3 K−1 � al, so that for a silicon can-
tilever with b/h = 30, we have ζaρ/aE = 0.64. The
softening of the cantilever and the dilatation of the sur-
rounding air are expected to have opposite effects of simi-
lar magnitude on the resonance frequency. We emphasize
here that even if the presence of air changes only the res-
onant frequency by a few percent, it can dramatically
change its sensitivity to a temperature change.

B. Sensitivity to an arbitrary temperature profile

In the general case where the temperature rise is not
uniform, the Young’s modulus E as well as the cross-
section dimensions, thus its second moment of inertial
I and lineic density µc, are a function of x through the
temperature profile. Substituting the x dependent pa-
rameters into Eq. (24), the relative frequency shift in
vacuum due to the temperature profile θ(x) = Θ(x)∆T
reads as

∆Ωvac
n = gn(∆T )

=
1

2

∫ 1

0

[
(AE(θ(X)) + 4Al(θ(X)))

φ′′n(X)
2

α2
n

+Al(θ(X)) φn(X)
2 − 4Al(θ(X))

]
dX,

(31)

with

AE(θ) =

∫ T0+θ

T0

aE(T )dT =
E(T0 + θ)

E0
− 1, (32a)

Al(θ) =

∫ T0+θ

T0

al(T )dT. (32b)

The usefulness of Eq. (31) has already been demonstrated
and quantitatively compared to experiments in a previous
work22: knowing the mechanical properties (aE , al) and
the temperature distribution along the cantilever Θ(x),

the function gn(∆T ) in Eq. (31) can be computed numer-
ically for any mode number n to predict the associated
relative frequency shift ∆Ωvac

n . Conversely, it is possible
to deduce the temperature increase ∆T from the relative
frequency shift using ∆T = g−1

n (∆Ωvac
n ) where the g−1

n

are the inverse functions of gn.
In air, an additional term should be summed to

Eq. (31):

∆Ωfluid
n = ∆Ωvac

n − 1

2

ζ0
1 + ζ0

∫ 1

0

Aζ(θ(X)) φn(X)
2

dX,

(33)

where ζ0 is the inertial parameter due to the fluid at the
reference temperature T0, and Aζ = (ζ − ζ0)/ζ0 its rel-
ative change due cantilever temperature increase θ(X).
Note that this θ(X) dependency is complex: it includes
the modifications of the fluid density ρ by the temper-
ature in the fluid, but also of the Reynolds number Re
through ρ and η, all depending on the distance to the
cantilever in the fluid. This addition term is an iner-
tial effect: the changes of the fluid properties influence
the resonance frequency through modifications of mn

eff .
Heating has thus potentially a greater influence on the
first mode: the larger changes in the fluid properties oc-
cur where the cantilever is the hotter, hence where the
weighting by the square amplitude of mode one is the
largest in Eq. (23a).

IV. EXPERIMENTAL RESULTS

A. Experimental setup

To study experimentally the influence of air on the
resonance frequency, we present in this section measure-
ments on a heated silicon cantilever either placed in vac-
uum or air at ambient pressure (figure 6). We drive the
resonances applying an electrostatic force, and read the
corresponding deflection using an optical beam deflec-
tion scheme, with a low intensity He-Ne laser (< 1 mW).
The resonance frequency is tracked with a phase locked
loop (PLL). Heating is induced by partial absorption of
a second laser beam (0 to 50 mW at 532 nm), focused
close to the free end of the cantilever. After proper cal-
ibration, a set of 5 photodiodes (A to E, including the
2-quadrants photodiode C used to measure deflection) al-
lows the measurement of the incident light power of each
beams P green

0 , P red
0 , of the reflected one P green

r and P red
r ,

and of the light transmitted through the cantilever P green
t

and P red
t . Indeed, a few micrometers thick silicon can-

tilever is semi-transparent for those wavelengths, its ab-
sorption coefficient results from the interferences within
the cantilever and is expected to vary during the experi-
ment through the temperature22,36. Since light diffusion
is negligible in this experiment, those measurements al-
low deducing the total absorbed power Pa by the can-
tilever during the whole measurement. The cantilever
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FIG. 6. Experimental setup to heat the cantilever and track
its resonance frequencies. The cantilever either in vacuum or
air is illuminated by two laser beams focused at its extremity
(focal length 30 mm, spot size 5 to 7µm). By varying the
incident power of the 532 nm laser beam, the cantilever can
be heated from room temperature up to several hundred de-
grees. The reflected beam of the 633 nm laser is sent in a
two-quadrant photodiode allowing to detect cantilever deflec-
tion and to track its resonance frequencies. The cantilever
is electrostatically actuated applying a voltage controlled by
the phase locked loop (Nanonis OC4). Both laser beams are
actually perpendicular to the cantilever and superposed, they
have been separated in this sketch for illustration purposes.
Separation before the photodiodes are performed thanks to
dichroic filters.

is placed in a chamber filled with air either at atmo-
spheric pressure or at 1× 10−4 mBar. At the latter pres-
sure level, the contribution of convective heat transfer is
negligible compared to thermal conduction25.

As the width to thickness b/h is the relevant aspect
ratio to study the influence of the surrounding fluid on
the resonance frequency, we measure three cantilevers
(see table I): Cant-A (BudgetSensors AIO-CM), Cant-B
(Mikromasch CSC38-B) and Cant-C (Micromotive octo-
500) having a width to thickness ratio b/h respectively of
11, 28, and 83. All are uncoated tipless atomic force mi-
croscope silicon cantilevers. For each tracked resonance,
the incident power of the 532 nm beam is continuously
increased up to a maximal value then symmetrically de-
creased. The duration of one measurement is approx-
imately 20 seconds and allows to consider the temper-
ature field in the steady-state regime during the whole
experiment: the longest time constant is due to thermal
diffusion in air, only 50 ms on a conservative 1 mm scale.

TABLE I. Cantilever geometries and resonant frequencies
(in vacuum) for the three tested cantilevers. The geometrical
dimensions were measured using a scanning electron micro-
scope. The Reynolds number Re = ρωb2/4η associated with
each resonance is computed using the properties of air at room
temperature.

Cant-A Cant-B Cant-C
L (µm) 505 354 508
b (µm) 30 (14)a 38 (31)a 90
h (µm) 2.6 1.34 1.1
L/b 17 9 6
b/h 11 28 83

f1 (kHz) 15.2 15.1 6.06
Re 1.4 2.3 5.1

f2 (kHz) 95.6 95.2 37.9
Re 9 14 32

f3 (kHz) 266.4 266.4 105.9
Re 25 40 88

f4 (kHz) 521.6 521.7 207.2
Re 48 78 170

f5 (kHz) 860.6 860.9 342.1
Re 80 130 280

f6 (kHz) - - 510.1
Re - - 420

a This cantilever has a trapezoidal cross section defined by two
widths. Because the relevant length for the hydrodynamic
problem is the maximum transverse dimension, the aspect
ratios and the Reynolds number are computed using the
maximum width.

B. Measurements in vacuum

In figure 7 (top graphs), we display the relative fre-
quency shift measured when the cantilever is placed in
vacuum as a function of the absorbed power Pa. We were
able to track the resonances up to the fifth mode for Cant-
A and Cant-B and up to the sixth mode for Cant-C. As
expected, the temperature increase induces a red-shift of
its resonance frequencies. The shifts clearly depend on
the mode being tracked. This mode dependence demon-
strates that the induced cantilever temperature rise θ(x)
is not uniform.

Knowing the temperature profile θ(x) = Θ(x)∆T
and the mechanical properties variation with tempera-
ture E(T ), al(T ), the relative frequency shift in vacuum
∆Ωvac

n can be computed using equation Eq. (31). Con-
versely, as demonstrated in Ref. 22, knowing the nor-
malized temperature profile Θ(x) and mechanical prop-
erties, the maximum temperature elevation ∆T can be
extracted from the frequency shift ∆Ωvac

n of any mode n

∆T = g−1
n (∆Ωvac

n ). (34)

The g−1
n functions are the inverse functions of gn which

are defined according to Eq. (31). The normalized tem-
perature profiles Θ(x) used to compute g−1

n can be ob-
tained solving Eq. (1) using the silicon conductivity
from Ref. 27 and imposing the boundary conditions of
Eqs. (2)37 and (3). ∆T deduced for all tracked reso-



10

0 2 4
-1

-0.8

-0.6

-0.4

-0.2

0

0 2 4 6 8
-2

-1.5

-1

-0.5

0

0 5 10
-2

-1.5

-1

-0.5

0

0 5
0

200

400

600

0 5
0

500

1000

0 5 10
0

500

1000

0 5 10
-0.8

-0.6

-0.4

-0.2

0

0 5 10 15
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0 5 10 15 20
-0.6

-0.4

-0.2

0

0.2

0.4

FIG. 7. Measured relative frequency shifts in vacuum ∆Ωvac
n (top) and in air at ambient pressure ∆Ωair

n (bottom) as a function
of the absorbed power Pa. The cantilevers dimensions and resonant frequencies in vacuum at room temperature are listed in
table I. While in vacuum the frequency shift for all modes is a monotonic function of absorbed power, in air the shift for lower
modes can increase with Pa. Inset: temperatures rise ∆T deduced from the frequency shift for each mode measured in vacuum.

nances is displayed in the insets of figure 7. All deduced
temperatures for the three cantilevers are well superposed
on the full range of absorbed power explored. They are
also compared to the values predicted from Eq. (1), with
again an excellent agreement38.

As silicon is semi-transparent for visible light, the can-
tilever reflectivity results from the interferences between
the multiple reflections within its thickness36. The refrac-
tive index of silicon is changing significantly with temper-
ature, thus the interference state and the resulting reflec-
tion coefficient R vary with ∆T . Using the temperature
deduced from the frequency shift, we plot the reflectivity
of all three cantilevers in Fig. 8: R vary in an oscillatory
fashion with a significant amplitude on the full tempera-
ture range. This signature is strongly dependent on the
cantilever thickness, but once calibrated for a given sam-
ple, it can be used to retrieve the temperature at the laser
spot position from the reflectivity measurement. As long
as ∆T is varied in a continuous way in a single direction,
the non-monotonicity of R is not an issue in retrieving
∆T . Thanks to this approach, we now have a thermome-
ter for the cantilever tip not relying on the mechanical

measurement.

C. Measurements in air

Similarly to the experiments in vacuum, the reflected
intensities are measured as the cantilever is illuminated
in air. Since variation in refractive index between air
and vacuum is negligible, the reflectivity variations with
temperature measured in air are identical to the ones
recorded in vacuum. We can therefore use the vacuum
measurement, reported in Fig.8 as a calibration, and de-
termine the ∆T in the experiment performed in air from
the measured reflectivity. The resulting temperature rise
is plotted in Fig. 9 as a function of the absorbed power
Pa.

As expected, the presence of air, allowing an additional
way to dissipate the absorbed heat, reduces the temper-
ature rise (compared to the vacuum case): for the three
cantilevers tested, the needed absorbed power to reach a
temperature elevation is typically twice larger in air as
the one needed in vacuum. The temperature rise mea-
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FIG. 8. Reflectivity R of the three cantilevers measured
in vacuum as a function of the temperature rise ∆T at the
laser spot position. R results from multiple interferences in
the cantilever thickness, and depends on temperature through
the refractive index of silicon36.

sured in air from the reflectivity can be compared to the
theoretical predictions made by our thermal model pre-
sented in section II. The nice agreement obtained for all
cantilevers validates our thermal model and confirms that
the thermal dissipation in air is dominated by conduc-
tion.

In figure 7 (bottom graphs), we display the frequency
shift measured when the cantilever is placed in air. While
in vacuum it is always decreasing with the absorbed
power Pa, it increases in air for the first mode for can-
tilevers B and C (having larger aspect ratio b/h). As dis-
cussed in the previous paragraph, the temperature eleva-
tion induced for a given absorbed power is very different
depending on the medium (air or vacuum) the cantilever
is placed in. To compare more easily the frequency shift
measured in both media, we display in figure 10 the fre-
quency shift (for the first three modes) as a function of
the temperature rise ∆T of the tip. As predicted in sec-
tion III, it is clear that the effect of the presence of air on
the frequency shift increases with the aspect ratio b/h,
and is much more pronounced for mode one.

We now compute the theoretical frequency shift in air
using Eq. (33). In a first approach, we can suppose that
the penetration depth of the air flow around the can-
tilever is very small, so that the fluid in the vicinity of
the cantilever at the position x can be supposed uniform
at temperature T0+θ(x). Under such hypothesis, the rel-
ative change of the dimensionless number ζ in Eq. (33)
can be estimated as

Aζ(θ) =
ζ(θ + T0)

ζ(T0)
− 1. (35)

The prediction of this approach is displayed in Fig. 10:
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Cant-A
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Cant-C

FIG. 9. Cantilever temperature rise measured in air from
the reflectivity (symbols) and predicted in vacuum by Eq. (1)
(blue line) and in air by Eq. (11) (red line). The temperature
rise for the three cantilevers is well described by the presented
model which takes into account the conduction through air.
The theoretical blue lines correspond to the curve displayed
in the insets of figure 7.

they describe qualitatively the experimental data al-
though they overestimate systematically the effect of air.

From the analysis of thermal conduction in air of sec-
tion II, we know that the fluid temperature actually de-
creases with the distance from the cantilever with a dom-
inant length scale fixed by the width b. It is thus evident
that the uniform model leading to Eq. (35) overestimates
the effect of the heated air surrounding the cantilever. A
more realistic estimation consists in determining the force
exerted by the fluid on the cantilever using a nonuniform
fluid temperature profile Tfluid(x,~r) = T0+θfluid(~r) where
~r is the position in the transverse plane (y-z). In sec-
tion II, we analytically determine the temperature rise
θfluid for a circular cross section cantilever. For simplic-
ity, we use this cylindrical geometry to evaluate the effect
of the non-uniformity of the fluid temperature. At the
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FIG. 10. Comparison of the relative frequency shift for the
first three modes measured (lines) and theoretically predicted
(symbols) for both vacuum (blue) and air (red). The effect
of air decreases with the mode number (top to bottom) and
increases with aspect ratio b/h (left to right). The model
predicting the frequency shift in air neglects the transverse
temperature field in air, it only describes qualitatively the
frequency shift.

first order, the fluid properties are expressed as

ρ(x, r) = ρ0(1 + aρθfluid(x, r)), (36a)
η(x, r) = η0(1 + aηθfluid(x, r)), (36b)

with θfluid(x, r) given by Eq. 6. In the spirit of the 2-
D Sader model9, we then solve numerically the Navier-
Stokes equations of a rigid cylinder oscillating at angular
frequency ω in a nonuniform fluid. The computed force
exerted by the fluid on the cylinder can be expressed by
the same expression as for a uniform fluid Eq. (19) in
which ρ and Γ are computed at an effective temperature
T eff

fluid given by

T eff
fluid = K(ω)θ(x) + T0, (37)

100 101 102 103
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1

FIG. 11. Coefficient Kr to compute the equivalent uniform
temperature of air when evaluating the real part of the hydro-
dynamic force exerted on a rigid cylinder oscillating perpen-
dicularly to its axis. Kr is obtained by solving the linearized
Navier-Stokes equations with the temperature, density, and
viscosity of air described by Eqs. (6) and (36). Owing to the
larger volume involved in the flow in the viscous regime (lower
Re values), the force is less sensitive to the temperature rise.

where the factor K is a function of ω, or equivalently the
Reynolds number Re = ρ0ωR

2/η0, and allows to takes
into account the non-uniformity of the fluid temperature.
Note that depending on which part of the force (real or
imaginary) one wants to evaluate, there are two distinct
factors to Kr and Ki.

In Fig. 11, we display the factor Kr to use for
the real part of the force using air properties (aρ =
−3.1× 10−3 K−1, aη = 2.5× 10−3 K−1) for various fac-
tors R∞/R. The factor Kr depends on the Reynolds
number Re. As the Reynolds number decreases, the fluid
volume involved in the flow (owing to the viscous effect)
increases. Thus, the force is more sensitive to the fluid
properties in further regions where the temperature is
lower, which translates into a lower effective temperature
T eff

fluid (i.e. lower factor Kr).
The effect of the non-uniform air surrounding the can-

tilever can now be taken into account in the determina-
tion of the frequency shift using Eq. (33), using

Aζ(θ) =
ζ(Kr(ω)θ + T0)

ζ(T0)
− 1. (38)

where Kr is evaluated from the temperature field in air
of Eq.(6) with R∞ = R+ x. In contrast, the predictions
presented in Fig. 10 assumed a fluid temperature equal
to the one of the cantilever, thus Kr = 1. In Fig. 12, we
display the frequency shift for the first three modes for
a temperature elevation up to 300 K. The comparison
displayed on the full range of temperature explored is
shown in appendix A, Fig. 13. All frequency shifts are
better described taking into account the air temperature
variation. The correction is the most important for the
first mode for which the factor Kr is the most different
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from 1: relative errors decrease from the 100% range to a
few percent for ∆T < 150 K. The remaining error, more
pronounced for higher b/h ratios, may be attributed to
the oversimplification of the temperature field in air with
the cylindrical cantilever boundary conditions.
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FIG. 12. Comparison of the frequency shift in air measured
(line) and predicted from Eq. (33) (symbols), neglecting the
effect of the transverse temperature variation of air (Eq. 35)
or not (Eq. 38). This effect is significant (especially for the
first mode) and has to be taken into account to describe the
frequency shift.

V. CONCLUSION

Let us summarise here the main conclusions of our
work. First, we propose a model to describe the heat flow
from a hot AFM cantilever to the surrounding medium
and show that convective heat transfer is negligible at
those scales. The heat transfer coefficient from the rigid
surface to air is analytically computed in a cylindrical ge-
ometry, and extended to a rectangular cross-section can-
tilever. Corroborated by 3D numerical simulations and

experiments on a wide temperature range, the model is
quantitative in predicting the temperature profile as a
function of heating power, with only slight deviations
at high temperature for cantilevers with large width-to-
thickness ratio b/h. As a rule of thumb for common AFM
probe geometries, the heat flow in the environment is
equal to the one through the cantilever: one needs to
double the heating power to reach the same temperature
when passing from vacuum to air.

We then study the interplay of the temperature field
in air around the cantilever and the dynamics of the lat-
ter. To this aim, we track the effects on Sader’s model
induced by the reduced density and increased viscosity
upon heating. We show that inertial effects decrease,
tending to raise the resonance frequencies of the can-
tilever. The amplitude of this effect is of the same order
of magnitude as the softening of the cantilever at high
temperatures. The overall behavior is then geometry and
mode dependant: for high width-to-thickness ratios b/h
and low mode number, the resonance frequency tends to
increase, and conversely in the other directions. Those
predictions match the experimental observations, with
a quantitative agreement at moderate temperature rises.
We demonstrate in the process that the temperature pro-
file inside the fluid matters, since assuming uniform prop-
erties fails either way when considering the cantilever or
the ambient temperature only.

We believe this work could have several applications
when dealing with sensitive AFM measurements in the
presence of temperature gradients. For example, the
quantitative description of the heat flow in the environ-
ment can be useful to reach strong conclusions in thermal
microscopy measurements, when performed in air. Our
work for now only applies to the description of the probe
far from a sample, and further work would be necessary
to accommodate practical experimental configurations.
Another important point is the influence of the tempera-
ture field when using dynamic modes, which are based on
tracking resonance frequency: one should be aware that
changes of the fluid properties have a noticeable (and
traceable) influence. The fact that this effect is sensi-
tive to boundary conditions, which change with respect
to the present work in the vicinity of a sample, makes it
harder to give general recipes, but at least some precau-
tions should be taken in the result interpretations under
this lighting.

Lastly, one could take advantage of the opposite effects
of silicon softening and reduce gas inertial effects to tai-
lor temperature sensitivity. If one wants for example to
design fluid sensors, a high width-to-thickness ratio b/h
and low mode number are indicated to be sensitive to the
gas temperature. On the contrary, using the right geom-
etry for a target temperature range, one can compensate
one effect with the other to reach temperature-insensitive
probes as Cant. B for ∆T > 200 K for mode 1, or Cant.
C for 0 K < ∆T < 50 K for mode 3.
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Appendix A: Comparison of the frequency shift in air
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FIG. 13. Comparison of the frequency shift in air measured (line) and predicted from Eq. (33) (symbols), neglecting the effect
of the transverse temperature variation of air (Eq. 35) or not (Eq. 38).
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