Higher systolic inequalities for 3-dimensional contact manifolds - Archive ouverte HAL Access content directly
Journal Articles Journal de l'École polytechnique — Mathématiques Year : 2022

Higher systolic inequalities for 3-dimensional contact manifolds

(1) , ,
1
Alberto Abbondandolo
  • Function : Author
Christian Lange
  • Function : Author

Abstract

We prove that Besse contact forms on closed connected 3-manifolds, that is, contact forms with a periodic Reeb flow, are the local maximizers of suitable higher systolic ratios. Our result extends earlier ones for Zoll contact forms, that is, contact forms whose Reeb flow defines a free circle action.

Dates and versions

ensl-03357629 , version 1 (28-09-2021)

Identifiers

Cite

Marco Mazzucchelli, Alberto Abbondandolo, Christian Lange. Higher systolic inequalities for 3-dimensional contact manifolds. Journal de l'École polytechnique — Mathématiques, In press, ⟨10.5802/jep.195⟩. ⟨ensl-03357629⟩
13 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More