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L?-type Lyapunov functions for hyperbolic scalar
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Denis Serre
Ecole Normale Supérieure de Lyon*
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of his 80th birthday, with gratitude and admiration.

Abstract

We prove the decay of the L2-distance from the solution u(t) of a hyperbolic scalar
conservation law, to some convex, flow-invariant target sets.

AMS classification : 35L65, 35B35.
Key words : Conservation laws, Lyapunov functions, shock waves.

Notations. An LP-norm is always denoted || - ||,. The positive part of a real number r is
r* = max{r,0}. The differential of a C*-function n : R® — R, computed at some point a € R",

is dn(a).

1 Introduction

We are interested in decay/contraction properties for the flow defined by a scalar conservation
law

—

(1) O +div,f(u) =0, xe€RLt>0.

The flux f : R — R? is a smooth function. Restricting to the natural notion of entropy weak
solutions, Kruzkov’s theory [8] tells us that the Cauchy problem is well-posed in the class
L>®(R%). We therefore denote (S;);>o the semi-group defined by the flow of (1). In one space
dimension, the equation is written instead

(2) Oyu+ 0y f(u) =0, reR, t>0.
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When b — a € L'(RY), we know that Sib — S;a € L'(RY) as well, and ¢ — ||Sib — Sial|; is
a non-increasing function. This contraction property does not extend to other LP-norms, for
p > 1. We only have that if a € LP(R?), then ¢ — [|S;al|, is non-increasing, as a consequence of
the fact that s — |s|? is a convex function. More generally, for every convex function n : R — R,
the admissible solution u(t) = S;a satisfies a differential “entropy inequality”

O (u) + diveqlu) <0,

where ¢ is the entropy flux, defined by ¢’(s) := n’(s)f’(s). If n(0) = 7'(0) = 0, this implies the
monotonicity of
t— [ n(u(t,x))dz,
Rd
whenever n o a is integrable.

There are several reasons why we do not content ourselves with L!-type results when study-
ing conservation laws. One of them is that the ultimate goal of the theory is to consider systems
of equations, such as the Euler system for inviscid compressible fluids, in several space dimen-
sions. Then it is known (J. Rauch [16]) that functional spaces such as L!'(R?) and its avatar
BV (R%) are not appropriate: the Cauchy problem for linearized first-order hyperbolic systems
is not well-posed in LP(R?) for p # 2 (P. Brenner [3]). This is why the most general existence
and stability theorems have been established in classes build upon L?(R?), typically Sobolev
spaces. For instance, it is known that the Cauchy problem for systems of conservation laws,
endowed with a strongly convex entropy, is locally (in time) well-posed in H*(R%) whenever
s >1+ %l, see [5, 2]. Notice that such solutions are continuously differentiable in space and
time, thus exclude shock waves ; usually, they exist only for a finite time. Local existence and
stability of shock waves, hence of discontinuous solutions, are proved by A. Majda in a space
of piecewise H?®(R?)-functions, where the regularity parameter s is even larger, see [13, 14].

It is thus desirable to establish L2-type results when discontinuous solutions are allowed.
An early, notable step in this direction was done by C. Dafermos [4] and R. J. DiPerna [6],
who introduced the notion of relative entropy to prove weak-strong uniqueness and stability
theorems. Roughly speaking, if a hyperbolic system of conservation laws is endowed with a
strongly convex entropy 7, and if the Cauchy problem admits a Lipschitz local-in-time solution,
then the weak entropy solution is unique, equal to that one. The L2-flavour of such a result is
reminiscent to the fact that the relative entropy

n(ufv) = nu) = n(v) = dn(v) - (u = v)

can be recast as a quadratic form (u — v)TA(u,v)(u — v) where the symmetric matrix A,
which depends continuously upon u and v, is positive definite. We notice that the uniqueness
result is not associated with a contraction property, but follows from a Gronwall inequality. In
particular, the time variable is present through an exponential factor.

When the reference solution v is merely piecewise Lipschitz continuous, the relative entropy
approach fails, because even a small disturbance in the initial data induces a change of the
shock velocity and results in a rather large L2-error. When d = 1, this happens already when



v(t, ) := ¢(x — ot) is a pure shock of (2), defined by

3) o(y) = { u- if y <0,

uy if y>0.

This situation motivated N. Leger and A. Vasseur [10, 11] to enrich the approach by relative
entropy, allowing the reference solution to be translated in space by a time-dependent shift.
For instance Leger proved that if the flux f is convex, then for every initial disturbance a — ¢ €
L?(R), the L*-distance of u(t) = Sya to the set P of all translations of ¢,

o (u(t): P) = inf [[u(t) — &(- — B>
is a non-increasing function of time.

The assumption that the flux be convex cannot be removed in Leger’s theorem. When
we turn towards multi-dimensional scalar conservation laws, this is a weakness, as we face
directional fluxes ¢ - f, for every unit vector £, which govern the propagation of planar waves
u(t,z) = U(t, € - z). Unless the conservation law is essentially one-dimensional — that is f(s) =
fo(s)V for a fixed vector V —, there exist directions in which the flux is neither convex nor
concave. Therefore there is no hope to extend Leger’s result to the multi-D context. If we wish
instead to drop the restriction that the flux be convex, we must pay a price, by changing P
into a larger target set. A key remark is that P, from a geometrical perspective, is not so nice:
the curve h — ¢y, := ¢(- — h) is not differentiable. Instead, it is of Holder class with exponent
1.

5
165 = Gnlla = luy — |- |h— K[

This suggests to replace P by a smoother target set. Of course, we wish to keep its nice

properties, namely the translation invariance — because the semi-group itself is translation

invariant, — and its invariance under the flow. Our choice will be to replace P by its closed

convex hull, which we describe below. It seems to us that L2-stability properties of closed

target set Q@ C L°°(RY) is related to the following properties

e convexity,
e translation invariance : if a € Q and h € R?, then a;, := a(- — h) € Q,

e flow invariance : if a € Q and ¢t > 0, then S;a € Q.

Our main result below is that if a € ¢ + L*(R), where ¢ is as in (3), then the L3-distance
do(Sia; conv(P)) is a non-increasing function of time. We emphasize that we do not assume
the convexity of the flux function f. Remarkably enough, we do not even need that the
pure discontinuity ¢ be an admissible shock. Instead, remarking that the closed convex hull
M := conv(P) coincides with the set of functions a € ¢ + L*(R) that are monotonous from u_
to uy, our result completes the well-known fact that S; preserves the monotonicity.

Theorem 1.1 (d =1.) Let u_,u, € R be given. Let M be the set of monotonous functions b
over R, such that b —uy € L*(R*) (in particular b(+00) = uy ).
Ifa—uy € (L*'NL*)(R*), then the L?-distance t — da(Sia; M) is a non-increasing function.

3



Of course, if the end states uy coincide, then conv(P) is the singleton {a = .} and the
result is nothing but the well-known decay of ¢ — ||u(t) — uy ||o. Likewise, the theorem implies
the invariance of M under the flow, a property which follows immediately from the comparison
principle.

Our second example is multi-dimensional. Given r > 0, our target set Q, is the intersection
of L>*(R?) with the L!-ball of radius r. This too satisfies the three properties listed above. We
notice that @, C L?(R?).

Theorem 1.2 (d > 1.) Let Q, be the L'-ball of radius v > 0 in L>=(R?).
Ifa € (L>N L®)(RY), then t — dy(Sia; Q,) is non-increasing.

Both results are rather non-trivial. Even the projections upon either M or Q, are not ;
we describe them in detail in the next sections. That these theorems hold true reveals that we
do not yet understand completely the nature of the semi-group (S;):>o for an arbitrary scalar
conservation law.

As a remark, let us mention a few other situations that are more or less trivial:

e For r > 0, the intersection B, of L®(R?) with the L%-ball of radius r satisfies the three
properties listed above. Yet the distance ds(a; B,) equals (||l — 7)™, thus the decay of
t — da(u(t); B,) is an obvious consequence of that of ||u(t)||z.

e Let I = [u_,u] be a closed interval. The set K; C L>(R?) of functions which take values
in [ satisfies the three properties listed above. The L2-projection of u over K; is nothing
but 7; o u, where 7y : R — [ is the usual projection. Thus

do(a; k) = ( /R (dist(a(z); 1))%@:)

Since 7 := (dist(-; [))? is a convex function, the integral in the right-hand is non-increasing
in time when applied to u(t) = S;a, as a result of an entropy inequality.

Notice that if the flux displays enough non-linearity, and if a € @ + L?(R?) for some
u € (u_,uy), we expect that S;a enters in K; after some finite time. In the case of
the so-called multi-D Burgers equation, this property follows from the algebraic decay of
||Sta — @/, proven by L. Silvestre and the author [19].

e The replacement of the L2-distance by the L!-distance is just old stuff. If Q is positively
invariant, then the L!'-distance of S,a to Q is non-increasing in time, because S; is L'-
contracting.



Outline of the paper. Section 2 is two-fold. On the one hand, it describes the effect of
the projection over monotone functions. On the other hand, it displays the calculation behind
Theorem 1.1 when the projection of the solution wu(t) behaves in a regular way in terms of
the time variable. Section 3 is the technical part of the proof of Theorem 1.1, where we
succeed to reduce the analysis to the regular situation studied before. Surprisingly enough, a
key argument pertains to Real Algebraic Geometry. The proof of Theorem 1.2 is presented in
Section 4. Because the projection over an L!-ball is somehow a simpler operation, we can use
the full strength of the kinetic formulation.

Acknowledgement. 1 am indebted to Marie-Francoise Roy, who guided me in the realm of
Real Algebraic Geometry.

2 Main results towards Theorem 1.1

Without loss of generality, we shall suppose u_ < uy. The denote ¢ the pure discontinuity
defined by (3), even if it is not an admissible shock wave.

Recall that given a function ¢ : R — R, its lower convexr envelop is the maximal convex
function p < 9. It is also the upper bound of the family of affine functions x < . If there
does not exist such functions y, then we have p = —o0.

2.1 Projection over M

Let us denote m the L?-projection over M, the set of functions a € ¢ + L*(R) that are
monotonous.

Proposition 2.1 Let w € (¢ + L*(R)) N L>=(R) be given. Then mw = p’ where p is the lower
convex envelop of a primitive ¢ of w.

Proof
By construction, p’ belongs to M. Since this set is convex, and the projection is taken with
respect to a Hilbertian norm, it suffices to prove that for every g € M, one has

() [ = - gds=0
R
The open set A = {z;p(z) < ¢(x)} is a union of disjoint intervals (z;,y;). Mind that we do

not exclude the possibility of a semi-infinite interval. Away from A, one has p’ = ¢’ = w. Thus
the left-hand side of (4) equals

/A =)~ 9o =3 [ w00~ ).



In a given integral of the right-hand side above, p' is a constant c;, the slope of the bi-tangent
to the graph of ¥ between z; and y;. Defining h = g — ¢; and 6 = 1) — p, we see that ¢ > 0 in
(x;,y;) is such that 6(y;) = 6(z;) = 0, and h is non-decreasing. Integrating by parts, we have

" @) de = — [ 0@ (@) dz < 0.

Zj Zj

Hence each term of the sum is > 0. This proves (4) and the statement.

Remarks.

e Answering to a question raised on Mathoverflow(c), Willie Wong found the close formula
for our projection

1 z
mw(z) = inf sup / w(s) ds.
Yy

T y<e 2 Y

e Let Z be any of the points x; or y; in the proof above. Because p is convex, p < ¢ and
p(z) = (z), we have ¢'(z — 0) < p/(z — 0) < p'(z +0) < ¢'(Z + 0). In other words the
left and right limits of w at x satisty w, < w,.

2.2 The regular case: heuristic calculation

We now consider an admissible solution of (2), with u(t) € ¢ + L?*(R). At each time, the
primitive of the projection 7u(t) described in the previous paragraph differs from that of w(t)
over an open subset. We speak of the reqular case when this open set depends smoothly upon
t on some time interval (¢1,%2). In particular, the limit points z;(t) and y;(t) are well-defined
continuous and piecewise differentiable functions. In this situation, we prove a slightly more
general result than just the decay of the L2-distance to M :

Proposition 2.2 Let a € M N BV(R) be an initial data and u(t) := Sia. Suppose that
the projection onto M is reqular for t € (t1,t3). Then, for every C*-convex function n, the
ETPTeESSION

A®) = [ tu(®lrut) (@) o,
18 mon-increasing in time.

Proof
Denote (z;(t), y;(t)) the disjoint intervals where the primitives of u(t) and wu(t) differ from

each other. Then
Z/ u(t, x)|c;(t)) de,

where mu(t) = ¢;(t) over (z;(t),y;(t)).



We recall that TV (u(t,-)) < TV(a) and thus left and right traces u(t,x £+ 0) are well-
defined. At every point z;, we denote v,/ the left and right values u(t,z; & 0). Likewise
wj e/ = u(t,y; £0). If there is no ambiguity about the point, then we write instead . By
the remark in the previous paragraph, we always have u, < u,..

Let us differentiate A :

A=) (?Jjﬁ(wj,e\cj') — m(vjrle;) + /yj Oy (n(ulc;)) d9”>

< Z (ym(udcj) — n(urlc;) — /%j(ém"(cj)(u —¢j) + 0:q;(u)) dﬂ?)

where ¢; is the entropy flux associated with the convex entropy 7(:|c;). We notice that the
factor of ¢; cancels' because in the projection we have

vj
/ (u—cj)dx=0.

Since qj(s) = (/(s) —n'(¢;))f"(s), we have

A < Z (?)m(wlcj) — @jm(ur|c;) +/vj’r(n’(8) =1 () f(s) dS)
=D (Aji; + B; + Cyiy + D),

where we denote

Aj=—n(vj,lc;), Bj=

[ o
Cj = n(wjle;), Dy /w 1 (¢;)) [ (s) ds.

Let us look at the factor A;&; + B;. There are two cases, whether v is continuous at z; or
not. If it is not, then u, < ¢; < w, = v;,, but then u(t) displays a shock along = = x;, so that
Rankine-Hugoniot gives

_ /]

T = ]

Because the shock is increasing, we also have the entropy criterion that the graph of f lies

IThis is the reason why we choose a relative entropy, and not an arbitrary integrand G(u(t), wu(t)).



above its chord over (uy,u,), denoted s — Ch(s). Since 7 is convex, we have

B, = (n'(u) —1(c)f(ur) — / () f(s) ds

J

IN

(1 () — () () — / " 1f/(s)Chs) ds

J

= (1 (ur) = 1)) () — Chur)) + [ (01(5) = (e))CH ) ds

=0

= [ e s = ),
Cj

because the slope of the chord is precisely the ratio [f]/[u]. We deduce that A;&; + B; <0 in
this case.

There remains the continuous case, where u, = u, = ¢;. Here A; and B; vanish separately,
so that again A;z; + B; = 0.

The calculation is similar for the contribution Cjy; + D;. We conclude that A < 0. In other
words ¢t — A(t) is non-increasing,.

]

3 Proof of Theorem 1.1

We wish to apply Proposition 2.2 with the convex entropy 7(s) = s*. Because the solution u(t)
depends also of the initial data a € ¢ + L*(R) and upon the flux f, we denote

Aj(tia) = / (mu(t) — u(t)) (2)]2de = (day(u(t); M))>.

Following the notation of Paragraph 2.1, we denote A(t) the open set on which the primitive
of u(t,-) differs from its lower convex envelop.

It is unclear whether the exact calculation of Paragraph 2.2 can be applied directly to an
entropy solution of (2). It might happen that the structure of A(t) varies so much that the
calculation is not justified on any time interval. The combinatorial structure of the set of
intervals could change drastically, infinitely many times.

We shall proceed as follows. By means of continuity arguments, prove that it suffices to
consider BV data and polynomial fluxes f ; see Summary 3.1. An other continuity argument
allows us to limit ourselves to approximate solutions that are exact solutions between times
steps, at which they are L2-projected over piecewise constant functions ; see Claim 3.1. Such
approximations can be obtained by the Godunov or Lax—Friedrichs schemes. We thus turn
towards the case where the data, at some time step, is piecewise constant ; the corresponding
solution concatenates Riemann problems, each one obeying an explicit formula involving an
envelop. In particular A(¢) is always the union of finitely many disjoint intervals. Because the



flux is now a polynomial function, the solution of each Riemann problem can be expressed in
terms of some semialgebraic set. Taking the convex envelop, as mentionned in Proposition 2.1,
preserves this property. Then the Tarski—Seidenberg theorem ensures that the times at which
a recombination occurs in the structure of A(t), are finitely many. This allows us to apply
piecewisely the calculation of Paragraph 2.2.

3.1 First reductions

Dependence upon a. Suppose that two data a;, ay € ¢+ L*(R) take values in some bounded
interval [—M, M|, and are such that as — a; € L*(R). The corresponding solutions satisfy

[uj()lloe <M, uz(t) = ua (@)1 < [laz — aally,
which imply together
lus(t) = wi (B[ < 2M|laz — a1

Since the distance to M is a 1-Lipschitz function, we infer
|da (ua(t); M) — da(us (£); M)| < /2M||ag — aq |y -

The functional a — Ay(t;a) is thus L'-continuous over the set of data a € ¢ + L*(R) with a
prescribed pointwise bound M.

Since the pointwise limit of non-increasing functions is non-increasing, it is enough to prove
Theorem 1.1 for an L'-dense subset of data. We shall therefore restrict our analysis to data
a € BV (R) which coincide with ¢ away from a bounded interval.

Time continuity. When a € BV (R) N (¢ + L*(R)), we know that
lu(t + k) — w(t)lly < hLip (fli-aran) TV (a),

where M = ||al|ls. Again, this gives ||u(t + h) — u(t)||s < Cv/h for some finite constant C,
hence

Lemma 3.1 Ifa € BV(R) N (¢ + L*(R)), then t — dy(u(t); M) is (Holder) continuous.

Dependence upon the flux. We recall Lemma 11.1.1 of [18] : Let u be the entropy solution
of (2) with data a € BV(R), and let v be the entropy solutions of another equation dv +
0,9(v) = 0, corresponding to the same initial data, then we have

lo(T) — (T, < / TV((g — f) o v(t)) dt.

Combined with TV (F o v) < Lip (F|—ma) TV (a), where M = ||a]|«, this yields the Lip-L*
continuity of the map f +— u(t). With the same trick as above, we conclude that f +— Af(¢;a)
is continuous over Lip(—M, M), whenever a € BV (R) N (¢ + L*(R)) with ||a|le < M.

Thanks to this continuity property, we may restrict our study to fluxes that belong to a
dense subspace of C''([—M, M]). Applying the Stone-Weierstrass theorem (to f’ instead of f),
we may restrict to polynomial fluxes.



Summary 3.1 We only need to prove Theorem 1.1 when a € BV (R) is such that a — ¢ is
compactly supported, and the flux f is a polynomial function.

Approximate solutions. Our next remark is that the entropy solution of (2) is the strong
limit of the sequence of approximate solutions v (with h = Az — 0+ being the mesh size),
generated by monotone difference schemes. Herebelow, we consider either the Godunov or the
Lax—Friedrichs schemes, with a fixed CFL ratio

At

1
(5) Lip (f-asam) 5 <35

The convergence follows from Kuznetsov’s estimate [9] :
|u"(t) — u(t)||; < CVht TV (a).
Once again, we infer the L?-convergence, whence

day(u(t); M) = lim dy(u"(t); M),

h—0-+
so that

Claim 3.1 To prove Theorem 1.1, it suffices to verify that for every h > 0, the function
t > do(u(t); M)

18 NON-INCreasing.

Recall that the numerical scheme consists in alternating two operations. At each time step
ty = kAt, u”(tp—,-) is interpolated by a piecewise constant function u”(¢;+,-). This interpola-
tion is nothing but the L2-projection over the affine space of mesh-wise constant functions that
tend to us as & — d0o. When k = 0, u”*(0—) is simply the data a. Within an elementary time
interval (ty,tr41), u" is the (exact !) entropy solution originating from the data u”(t;+). It is
obtained by concatenating solutions of Riemann Problems.

The interpolation step is the easy part of the analysis, as it does not involve the PDE at
all:

Lemma 3.2 Let a € ¢+ L*(R) be given, and a be its L*-projection over the affine subspace of
mesh-wise constant functions. Then

(6) do(a; M) < dy(a; M).

Proof
Let us denote I; = ((j — 3)h, (j + 3)h) the meshes. For definiteness, we consider the case
of the Godunov scheme, where j runs® over Z.

2If we worked with the Lax-Friedrichs scheme, j would run over Z + g , k being the index of the time step.
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The projection, given by
_ 1
W)l = [ wwds,
h Ji,
preserves the monotonicity: if w € M, then w € M. Because this is an orthogonal projection,
it is also a contraction. This implies

VweM, (i M) < a— ol < Ju—wls

Minimizing over w € M, we obtain (6).

3.2 Facts about Riemann problems

The Riemann problem is the Cauchy problem for (2) when the initial data is of the form

v_, if <0,
u(O,x)—{ vy, if x>0,

where vy are two constants. The solution is self-similar, denoted
x
u(t,x) = R (?;U_’UJF) :

Because the initial data is monotonous, the solution is monotonous in the space variable as
well. We may apply Matthias Kunic’s formula [7] (see also [17], Proposition 2.5.1), which is
dual to that of Lax ; it drops the assumption of a convex flux and asks instead for a monotonous
data. We shall be concerned only by the non-decreasing case v_ < vy, where the primitive
p(t,-) of u(t,-) is given by

p(t,x) = sup irylf{S(x —y) —tf(s) +po(y)}.

The primitive of u(0,-) being po(y) = v+y when £y > 0, up to an additive constant, Kunik’s
formula yields

plta)=tP(3).  PO= s {s—f(s)}.

v_<s<vy

Notice that the Legendre transform P* is the lower convex envelop of the restriction f|p,_ ...

3.3 End of the proof

Because of Claim 3.1 and Lemma 3.2, there remains to prove that ¢ — do(u”(t); M) is non-
increasing in each of the time intervals (tx + 0,%;41 — 0). Translating in time, this amounts to
prove Theorem 1.1 over (0, At) whenever the initial data a € BV (R)N(¢+ L*(R)) is mesh-wise
constant. Summary 3.1 tells us that we may also assume on the one hand that only finitely
many values

aj = aly,

11



differ from w4, and on the other hand the flux f is a polynomial. We point out that the former
constraint remains valid as time increases, the number of meshes where a # ¢ increasing only
by 2 at each time step. The main result of this paragraph is

Lemma 3.3 Denote z the corresponding solution of the Cauchy problem associated with a
mesh-wise constant initial data a = (a;)jez. Assume

e the flux f is a polynomial,
o a; =u_ forj << —1, while a; = uy for j > 1,
e the CFL condition (5).

Then the interval (0, At) splits into finitely many sub-intervals, in each of which the projection
of z(t) over M is reqular, in the sense of Paragraph 2.2.

Proposition 2.2, applied with n(s) = s?, tells us that da(u(t); M) is non-increasing within
each of the sub-intervals mentionned in Lemma 3.3. Combining with the continuity stated in
Lemma 3.1, we infer that it is non-increasing on the whole interval (0, At). This ends the proof
of Theorem 1.1, provided we prove Lemma 3.3, which we do now.

]

Proof (of Lemma 3.3.)
The data a is discontinuous at the grid points z; +1 for j € Z, which separate the states a;

and a;11. Its primitive pg is continuous, piecewise linear. We denote c; 1= po(; +%).
For every index j € Z, the solution z in (0, At) x [ L solves a Riemann Problem between
the constant states a; and a;;1. One has

r— T, 1 r— T, 1
z(t,z) =R (%Saﬁ%ﬁrl) = Zj+§ (%) :

Since this is a monotone function, the primitive p(t,-) of z(t,-) is either convex, or concave, on

every mesh [, 4L depending on whether a; < a;41, or the opposite. It is given by

T =T
p(]f, .I) =: pj+%(t? $) =G4l + tPj-l—% (f)
where P, 1 is a primitive of Z,;, 1. Notice that P;, (5) =aqa;{+d;for { < 0and = a;1&+€41
for & >> 0, where the 1ntegrat10n constants satlsfy e;j = dj, because of the continuity of p at
Tj 1.

Taking the lower convex envelop ¢(t, ) of p(t, ) is rather easy. Its graph differs from that of
p(t, ) on bi-tangents, whose extremities belong to meshes where p(t) is convex. Given two such
meshes, there is at most one bi-tangent between them. In addition p(t) needs to be concave
somewhere in between, and thus the meshes may not be contiguous. Notice that a segment
can be semi-infinite, meaning that it is tangent to the graph of p(t) at a finite point and at

12



+o00. Since z(t) = ¢ away from a compact interval, ¢(t,-) differs from p(¢,-) on finitely many
segments only.

Define J C Z the finite set of indices such that a; < a;;1. To determine the bi-tangents, we
begin by selecting 7, j in J such that j —7 > 2. Because p(t) is convex in both I;,1 an Ij+%,
there is at most one bi-tangent whose tangency points belong to both meshes. Its sfope being

0, the tangency in I, +1 tells us that its equation is

q="0r— (Pj-r%)*(e) =0z — $j+%> TS t<Pj+§)*<9)-

Expressing the tangency in I,

i+1, we obtain an alternate equation of the bi-tangent:
2

q=0(r— $z+%) + Citl — t(Pi+l)*(‘9)-

2

Eliminating, we find that the slope 6 is determined by the equation

(7) (7 = 0)h0 + (P 1)"(0) = (P 1)"(0) = ¢ 1 — cip 1

2

Let us recall that (P +%)* is the lower convex envelop of the restriction ot the flux f to

(aj,a;11). It is therefore a C'-function on this interval, whose derivatives are derivatives of
f. The existence of a bi-tangent necessitates that (a;,a;+1) N (aj, aj41) # 0. Because of the
CFL condition, the left-hand side of (7) is a uniformly increasing function of . Thanks to the
Implicit Function Theorem, the slope 6§ = 0(t) of the bi-tangent is a C'* function of time.

Our solution z is thus regular on every time interval on which the bi-tangents depend
continuously upon t. A recombination of A(t) may occur only if two consecutive bi-tangents,
corresponding to pairs (i,7) and (j, k), happen to coincide. Thus we are lead to study the
occurences of tri-tangents to the graph of p(t).

For a tri-tangent to occur at some ¢t € (0, At), one needs a triple ¢ < j < k of elements of
J. Then the slope 6 satisfies

®) (j —i)ho + t(P,,
(9) (k — )b + 1(P,,

J(0) = a1,

)(0) = gl = Cigl.

)" (0) = t(FPy
)7 (0) = t(Pyy

We may express the solutions of (8) (respectively of (9)) by 8 = ©;;(¢) (resp. 8 = ©,;(t)) where
the functions ©.. are C'. Thus A(t) may recombine only at times such that ©;;(t) = O;4(t).
For a general flux, the solution set of this equation can be extremely complicated. But after
our reductions, we need only to consider the case of a polynomial flux.

Recall that (P +%)* is, up to an additive constant (the constants d; above), the lower convex

NI= o=

<

envelop of the restriction f; 1 of f to (aj,aj+1). Its calculation requires the computation of
the bi-tangents to f; 41 This is an elimination in a system of algebraic equations. Selecting
the relevant bi-tangents (those which are below the graph of f; +%) requires adding algebraic

inequalities. The result of such operations is that the graph of (Pj +%)* is a semialgebraic set,
meaning that it is a finite union of real sets defined by polynomial identities and polynomial
inequalities. Since (8,9) is a polynomial system in (6, ¢, (PH%)*(Q), (Pﬁé)*(ﬁ), (PH%)*(Q)), its
solutions (6,t) form a semialgebraic set SA;jp.
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By the Tarski-Seidenberg Principle, the projection ST ;i of SA;j; on the time axis is still a
semialgebraic set, see [1] Chapter 5. It is therefore a finite union of points and intervals®. This
projection is precisely the set of times ¢ € (0, At) at which a tri-tangent occurs, with tangencies
in the meshes of indices i, j, k. If it occurs an isolated point, fine ! If instead it occurs along

a time interval (t_,¢,), then we may ignore the tangency in the intermediate mesh 7,1, and

consider this tri-tangent as a regular bi-tangent between I, +1 and I, 11 Eventually, replacing
each of the segments of ST, by its extremities, this set becomes equivalent, from the point of

view of the regularity of z, to a finite set ST ;.
Since the admissible triples (i, 7, k) are finitely many (because J is finite), the union ST

of the sets ST ;jx is still finite. It splits (0, At) into finitely many sub-intervals, on which our
solution is regular in the sense of Paragraph 2.2.
[

This ends the proof of Theorem 1.1.

4 Proof of Theorem 1.2

The situation is now multi-dimensional. We consider data in (L?>NL*>)(R?), a domain invariant
under the action of the semi-group. The target set is the ball O, defined by

a1 ::/ la(x)|dx < 7.
Rd

4.1 Projection over Q,

If 7 > 0, the intersection D, of the closed ball B(0;r) in L'(R?), with L*(R?) is a closed convex
subset of the latter. Let m, : L?(R%) — D, be the projection according to the natural distance
d(v,w) = |Jw — vl||s. The L*-projection from L? N L> onto Q, is nothing but the restriction of
T

Proposition 4.1 If v € L?(R%), then either v = v (if ||v||y < 7), or mv = (sgnv)(|v] — s)*
where s > 0 s determined by
/ (Jv| = ) dx =,
Rd

if instead ||v||; > 7.

Proof
We may assume the latter situation. If s > 0, then

1
/ (o] — )" dz < / o(z)|de < / o(z)2dz < oo.
R {|v|>s} S JRrd

3These assertions tell us that semialgebraic sets form an o-minimal structure.
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The map I : s — [(|v] — s)"dz is non-increasing, ranging from I(0+) = ||v||; (possibly infinite)
to I(]|v|l) = 0. It is actually Lipschitz continuous away from the origin, because is 0 < s < t,

then

I(s) — I(t) < (t — s)meas{|v| > t} < HIIZ—QH% (t —s).

At last, I is strictly monotonous over (0, ||v]|) because if 0 < s < ¢ < |v|, then (Jv] — )" —
(Jv| = s)* = s —t < 0. There exists therefore a unique s € (0, ||v||s) such that I(s) = r.

Proving that g := (sgnv)(|v| — s) is the projection amounts to verifying (v —g,g —h) >0
for every h € D,. But this quantity equals

/ S(|g|—hsgnv)dx—/ vhdx SHQH1—S/ hsgnvdm—/ vhdx
{lv|>s} {lvl<s} {lv|>s} {lvl<s}

> sr—s||h|ly > 0.

4.2 Proof by the kinetic formulation
We have the slightly more general result:

Theorem 4.1 Let a € L*(R?) be an initial data and u(t) := S;a. Let n be a smooth even
convez function with n(0) = 0. Denote v(t) = mu(t). Then the expression

A(t) == /Rd n(u(t,x) —v(t,z)) dx

s a non-increasing function of time.

We emphasize the fact that the statement is valid only if 7 is even (see the proof below),
and that it does not involve a relative entropy. We notice also that, because ¢ — ||u(t); is
non-increasing, the projection 7, acts non-trivially for ¢ in some time interval (0,7") (with T
possibly infinite or null), and then trivially for ¢ > T, in which case A(t) = 0.

Proof
We use the kinetic formulation of (1). To this end, we recall the definition of the chi-function:

1 if 0<é<u,
x&u)=¢ -1 if u<€<0,
0 otherwise.

The function u(t, z) is an entropy solution of (1) if and only if there exists a non-negative
bounded measure m € C(R¢; M(R, xR?)), such that the kinetic density h(t, z, &) := x (& u(t, z))
satisfies the transport equation (see [12], or Theorem 3.2.1 of [15])

om

(10) Oh+f1(€) Vuh =5
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We may restrict to the time interval (0,7"). We have

+o0 —s
rz/dx(/ /)tx£d§
R4
At) = / n(min(|ul, s dx—/ da:/ h(t,z,§) d¢.

Differentiating, there comes

“+o0o —S

s/ (h(t,x,s) — h(t,z,—s))dx = / dx (/ —/ )@h(t,w,{) dg,
Rd R4 s —o0
v = [ an [ w©anag
R —s
45 [ 0()h(t,z,) +1f (=s)h(t, 5, ~s) d
Rd
Since 7 is even, and thus 7’ is odd, we can eliminate §, to obtain

/Rdda:/ (L, z,€) dé +1(s) /Rddx</+oo /S)at (2, ) de.

Replacing 0;h by 0cm — f'(§) - V,h in the identity above, and then integrating by parts in the
space variable, there remains

:/Rd dx/in'(@agmdun'(s) /Rddx (/:OO—/:) Ogm d.

The last term above is non-positive because on the one hand 7'(s) > 0 and on the other hand
m is a non-negative finite measure in £. hence

At)g/dx/ 0 (§)Ogm d§ = — /d:c/ &)m < 0.
Rd -5 Rd
Remark that, integrating the latter in time, we obtain an estimate

[ rems s

Choosing n(u) = u?, letting r — 0+, which yields s — |[u(t)||oo, We recover the well-known
inequality (see Proposition 3.2.3 of [15]))

+00 +00 1 )
L[ megna
0 R4 JO
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