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Abstract

Let XN = (XN

1 , . . . , XN

d ) be a d-tuple of N×N independent GUE random matrices and ZNM be

any family of deterministic matrices in MN (C)⊗MM (C). Let P be a self-adjoint non-commutative

polynomial. A seminal work of Voiculescu shows that the empirical measure of the eigenvalues of

P (XN) converges towards a deterministic measure defined thanks to free probability theory. Let now

f be a smooth function, the main technical result of this paper is a precise bound of the difference

between the expectation of

1

MN
TrMN (C) ⊗TrMM (C)

(

f(P (XN ⊗ IM , Z
NM ))

)

,

and its limit when N goes to infinity. If f is six times differentiable, we show that it is bounded by

M2 ‖f‖
C6 N

−2. As a corollary we obtain a new proof and slightly improve a result of Haagerup and

Thorbjørnsen, later developed by Male, which gives sufficient conditions for the operator norm of a

polynomial evaluated in (XN , ZNM , ZNM ∗
) to converge almost surely towards its free limit.

1 Introduction

Given several deterministic matrices whose spectra are known, the spectra of a non-commutative
polynomial evaluated in these matrices is not well defined since it depends as well on the eigenvectors
of these matrices. If one takes these vectors at random, it is possible to get some surprisingly good
results, in particular when the dimension of these matrices goes to infinity. Indeed, the limit can then be
computed thanks to free probability. This theory was introduced by Voiculescu in the early nineties as
a non-commutative probability theory equipped with a notion of freeness analogous to independence in
classical probability theory. Voiculescu showed that this theory was closely related with Random Matrix
Theory in a seminal paper [30]. He considered independent matrices taken from the Gaussian Unitary
Ensemble (GUE), which are random matrix is an N ×N self-adjoint random matrix whose distribution
is proportional to the measure exp

(
−N/2TrN (A2)

)
dA, where dA denotes the Lebesgue measure on the

set of N × N Hermitian matrices. We refer to Definition 2.8 for a more precise statement. Voiculescu
proved that given XN

1 , . . . , XN
d independent GUE matrices, the renormalized trace of a polynomial P

evaluated in these matrices converges towards a deterministic limit α(P ). Specifically, the following holds
true almost surely:

lim
N→∞

1

N
TrN

(
P (XN

1 , . . . , XN
d )
)
= α(P ) . (1)

Voiculescu computed the limit α(P ) with the help of free probability. If AN is a self-adjoint matrix of
size N , then one can define the empirical measure of its (real) eigenvalues by

µAN
=

1

N

N∑

i=1

δλi
,
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where δλ is the Dirac mass in λ and λ1, . . . , λN are the eingenvalue of AN . In particular, if P is a
self-adjoint polynomial, that is such that for any self adjoint matrices A1, . . . , Ad, P (A1, . . . , Ad) is a self-
adjoint matrix, then one can define the random measure µP (XN

1 ,...,XN
d
). In this case, Voiculescu’s result

(1) implies that there exists a measure µP with compact support such that almost surely µP (XN
1 ,...,XN

d
)

converges weakly towards µP : it is given by µP (x
k) = α(P k) for all integer numbers k.

However, the convergence of the empirical measure of the eigenvalues of a matrix does not say
anything about the local properties of its spectrum, in particular about the convergence of the norm
of this matrix, or the local fluctuations of its spectrum. When dealing with a single matrix, incredibly
precise results are known. For exemple it is well-known that the largest eigenvalue of a GUE random
matrix converges almost surely towards 2. More precisely, if XN is a GUE random matrix of size N ,
then almost surely

lim
N→∞

‖XN‖ = 2 .

The proof, for the more general case of a Wigner matrix with entries with finite moments, was given
in [13]. This result was later obtained under the optimal assumption that their fourth moment is finite
[3]. Concerning the GUE, much more precise results were obtained by Tracy and Widom in the early
nineties in [29]. The main result of their paper is the existence of a continuous decreasing function F2

from R to [0, 1] such that if λ1(X
N) denotes the largest eigenvalue of XN ,

lim
N→∞

P
(
N2/3(λ1(X

N)− 2) ≥ s
)
= F2(s) .

This was recently generalized to Wigner matrices [27, 11, 28, 18] up to optimal hypotheses. One can as
well study the localization of the eigenvalues in the bulk as well as their fluctuations [10, 11].

On the other hand, there are much less results available when one deals with a polynomial in several
random matrices. In fact, up to today, the only local fluctuations results concern perturbative polynomi-
als [12] or local laws [9] under some assumptions which are shown to hold for homogeneous polynomials
of degree two. However, a beautiful breakthrough was made in 2005 by Haagerup and Thorbjørnsen [17]:
they proved the almost sure convergence of the norm of a polynomial evaluated in independent GUE
matrices. For P a self-adjoint polynomial, they proved that almost surely, for N large enough,

σ
(
P (XN

1 , . . . , XN
d )
)
⊂ SuppµP + (−ε, ε) , (2)

where σ(H) is the spectrum of H and SuppµP the support of the measure µP . This is equivalent to saying
that for any polynomial P ,

∥∥P (XN
1 , . . . , XN

d )
∥∥ converges almost surely towards sup {|x| |x ∈ SuppµP }

(see proposition 2.2). The result (2) was a major progress in free probability. It was was refined in multiple
ways. In [25], Schultz used the method of [17] to prove the same result with Gaussian orthogonal or
symplectic matrices instead of Gaussian unitary matrices. In [6], Capitaine and Donati-Martin proved
it for Wigner matrices under some technical hypothesis on the law of the entries. This result itself was
then extended by Anderson in [1] to remove most of the technical assumptions. In [19], Male made a
conceptual improvement to the result of Haagerup and Thorbjørnsen, by allowing to work both with
GUE and deterministic matrices. Finally, Belinschi and Capitaine proved in [7] that one could even work
with Wigner and determinisic matrices, while keeping the same assumptions on the Wigner matrices as
Anderson. It is also worth noting that Collins and Male proved in [8] the same result with unitary Haar
matrices instead of GUE matrices by using Male’s former paper.

With the exception of [8], all of these results are essentially based on the method introduced by
Haagerup and Thorbjørnsen. Their first tool is called the linearization trick: it allows to relate the
spectrum of a polynomial of degree d with coefficients in C by a polynomial of degree 1 with coefficients
in Mk(d)(C). The second idea to understand the spectrum of the spectral measure of this larger matrix
is to study its Stieltjes transform close to the real axis by using the Dyson-Schwinger equations. An
issue of this method is that it does not give easily good quantitative estimates. One aim of this paper
is to remedy to this problem. We develop a new method that allows us to give a new proof of the main
theorem of Male in [19], and thus a new proof of the result of Haagerup and Thorbjørnsen. Our approach
requires neither the linearization trick, nor the study of the Stieljes transform and attacks the problem
directly. In this sense the proof is more direct and less algebraic. We will apply it to a generalization of
GUE matrices by tackling the case of GUE random matrices tensorized with deterministic matrices.
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A usual strategy to study outliers, that are the eigenvalues going away from the spectrum, is to study
the non-renormalized trace of smooth non-polynomial functions evaluated in independent GUE matrices
i.e. if P is self-adjoint:

TrN
(
f(P (XN

1 , . . . , XN
d ))

)
.

This strategy was also used by Haagerup, Thorbjørnsen and Male. Indeed it is easy to see that if f is a
function which takes value 0 on (−∞, C − ε], 1 on [C,∞) and in [0, 1] elsewhere, then

P
(
λ1(P (XN

1 , . . . , XN
d )) ≥ C

)
≤ P

(
TrN

(
f(P (XN

1 , . . . , XN
d ))

)
≥ 1
)

Hence, if we can prove that TrN
(
f(P (XN

1 , . . . , XN
d ))

)
converges towards 0 in probability, this would

already yield expected results. The case where f is a polynomial function has already been studied a
long time ago, starting with the pioneering works [5, 16], and later formalized by the concept of second
order freeness [20]. However here we have to deal with a function f which is at best C∞. This makes
things considerably more difficult and forces us to adopt a completely different approach. The main
result is the following Theorem. For the notations, we refer to Section 2 – for now, let us specify that
1
N TrN denotes the usual renormalized trace on N ×N matrices whereas τ denotes its free limit.

Theorem 1.1. Let the following objects be given,

• XN = (XN
1 , . . . , XN

d ) independent GUE matrices in MN (C),

• x = (x1, . . . , xd) a system of free semicircular variables,

• ZNM = (ZNM
1 , . . . , ZNM

q ) deterministic matrices in MN (C)⊗MM (C),

• P ∈ C〈X1, . . . , Xd+2q〉sa a self-adjoint polynomial,

• f ∈ C6(R).

Then there exists a polynomial LP which only depends on P such that for any N,M ,

∣∣∣∣∣E
[

1

MN
TrMN

(
f
(
P
(
XN ⊗ IM , ZNM , ZNM∗)))]− τN ⊗ τM

(
f
(
P
(
x⊗ IM , ZNM , ZNM∗)))

∣∣∣∣∣

≤ M2

N2
‖f‖C6 LP

(∥∥ZNM
∥∥) ,

where ‖f‖C6 is the sum of the supremum on R of the first six derivatives. Besides if ZNM = (IN ⊗
Y M
1 , . . . , IN ⊗ Y M

q ) and that these matrices commute, then we have the same inequality without the M2.

This theorem is a consequence of the slightly sharper, but less explicit, Theorem 3.1. It is essentially
the same statement, but instead of having the norm C6 of f , we have the fourth moment of the Fourier
transform of f . The above Theorem calls for a few remarks.

• We assumed that the matrices ZNM were deterministic, but thanks to Fubini’s Theorem we can
assume that they are random matrices as long as they are independent from XN . In this situation
though, LP

(∥∥ZNM
∥∥) in the right side of the inequality is a random variable (and thus we need

some additional assumptions if we want its expectation to be finite for instance).

• In Theorems 1.1 and 3.1 we have XN ⊗ IM and x⊗ IM , however it is very easy to replace them by
XN ⊗ Y M and x ⊗ Y M for some matrices Y M

i ∈ MM (C). Indeed we just need to apply Theorem
1.1 or 3.1 with ZNM = IN ⊗ Y M . Besides, in this situation, LP

(∥∥ZNM
∥∥) = LP

(∥∥Y M
∥∥) does

not depend on N . What this means is that if we have a matrix whose coefficients are polynomial
in XN , and that we replace XN by x, we only change the spectra of this matrix by M2N−2 in
average.

• Unfortunately we cannot get rid of the M2 in all generality. The specific case where we can is
when ZNM = (IN ⊗Y M

1 , . . . , IN ⊗Y M
q ), where the Y M

i commute: this indicates that the M2 term
is really a non-commutative feature.
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A detailed overview of the proof is given in Subsection 3.1. The main idea of the proof is to use a free
version of Stein’s method by interpolating GUE matrices with a free semicircular system with the help
of a free Ornstein-Uhlenbeck process. For a reference, see [4]. When using this process, the Schwinger-
Dyson equations, which can be seen as an integration by part formula, appear in the computation. We
we refer to Proposition 2.10 for more information which will play a major role in this paper. Theorem
1.1 is the crux of the paper and allows us to deduce many corollaries. Firstly we rederive a new proof
of the following theorem. The first statement is basically Theorem 1.6 from [19]. The second one is
an improvement of Theorem 7.8 from [23] on the size of the tensor from N1/4 to N1/3. This theorem
is about strong convergence of random matrices, that is the convergence of the norm of polynomials in
these matrices, see definition 2.1.

Theorem 1.2. Let the following objects be given:

• XN = (XN
1 , . . . , XN

d ) independent GUE matrices of size N ,

• x = (x1, . . . , xd) a system of free semicircular variable,

• Y M = (Y M
1 , . . . , Y M

p ) random matrices of size M , which almost surely, as M goes to infinity,
converge strongly in distribution towards a p-tuple y of non-commutative random variables in a C∗-
probability space B with a faithful trace τB,

• ZN = (ZN
1 , . . . , ZN

q ) random matrices of size N , which almost surely, as N goes to infinity, con-
verges strongly in distribution towards a q-tuple z of non-commutative random variables in a C∗-
probability space with a faithful trace.

Then, the following holds true:

• If XN and ZN are independent, almost surely, (XN , ZN) converges strongly in distribution towards
F = (x, z), where F belongs to a C∗- probability space (A, ∗, τA, ‖.‖) in which x and z are free.

• If XN and Y MN are independent and MN = o(N1/3), almost surely, (XN ⊗ IMN
, IN ⊗ Y MN )

converges strongly in distribution towards F = (x⊗1, 1⊗y). The family F thus belongs to A⊗minB
(see definition 4.1). Besides if the matrices Y MN commute, then we can weaken the assumption
on MN by only assuming that MN = o(N).

As we mentioned earlier, understanding the Stieljes transform of a matrix gives a lot of information
about its spectrum. This was actually a very important point in the proof of Haagerup and Thorb-
jørnsen’s Theorem. Our proof does not use this tool, however our final result, Theorem 3.1, allows us to
deduce the following estimate with sharper constant than what has previously been done. Being given a
self- adjoint NM ×NM matrix, we denote by GA its Stieltjes transform:

GA(z) =
1

NM
TrNM

(
1

z −A

)
.

This definition extends to the tensor product of free semi-circular variables by replacing TrNM by τN⊗τM .

Corollary 1.3. Given

• XN = (XN
1 , . . . , XN

d ) independent GUE matrices of size N ,

• x = (x1, . . . , xd) a system of free semicircular variable,

• Y M = (Y M
1 , . . . , Y M

p , Y M
1

∗
, . . . , Y M

p
∗
) deterministic matrices of size M a fixed integer and their

adjoints,

• P ∈ C〈X1, . . . , Xd, Y1, . . . , Y2p〉sa a self-adjoint polynomial,

there exists a polynomial LP such that for every Y M , z ∈ C\R, N ∈ N,

∣∣E
[
GP (XN⊗IM ,IN⊗Y M )(z)

]
−GP (x⊗IM ,IN⊗Y M )(z)

∣∣ ≤ LP

(∥∥Y M
∥∥)M

2

N2

(
1

|ℑ(z)|5
+

1

|ℑ(z)|2

)
.
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One of the limitation of Theorem 1.1 is that we need to pick f regular enough. Actually by approx-
imating f , we can afford to take f less regular at the cost of a slower speed of convergence. In other
words, we trade some degree of regularity on f for a smaller exponent in N . The best that we can achieve
is to take f Lipschitz. Thus it makes sense to introduce the Lipschitz-bounded metric. This metric is
compatible with the topology of the convergence in law of measure. Let FLU be the set of Lipschitz
functions from R to R, uniformly bounded by 1 and with Lipschitz constant at most 1, then

dLU (µ, ν) = sup
f∈FLU

∣∣∣∣
∫

R

fdµ−
∫

R

fdν

∣∣∣∣ .

For more information about this metric we refer to Annex C.2 of [2]. In this paper, we get the following
result:

Corollary 1.4. Under the same notations as in Corollary 1.3, there exists a polynomial LP such that
for every matrices Y M and M,N ∈ N,

dLU

(
E[µP (XN⊗IM ,IN⊗YM )], µP (x⊗IM ,IN⊗YM )

)
≤ LP

(∥∥Y M
∥∥) M2

N1/3
.

One of the advantage of Theorem 1.1 over the original proof of Haagerup and Thorbjørnsen is that
if we take f which depends on N , we get sharper estimates in N . For exemple if we assume that
g is a C∞ function with bounded support, as we will see later in this paper we like to work with
f : x 7→ g(Nαx) for some constant α. Then its n-th derivative will be of order Nnα. In the original
work of Haagerup, Thorbjørnsen (see [17], Theorem 6.2) the eighth derivative appears for the easiest
case where our polynomial P is of degree 1, and the order is even higher in the general case. But
in Theorem 1.1 the sixth derivative appears in the general case. Actually if we look at the sharper
Theorem 3.1, the fourth moment of the Fourier transform appears, which is roughly equivalent to the
fourth derivative for our computations. This allows us to compute an estimate of the difference between
E
[∥∥P (XN ⊗ IM , IN ⊗ Y M )

∥∥] and its limit. To do that, we use Proposition 4.8 from [26, Theorem 1.1]
which implies that if we denote by µP (x⊗IM ,1⊗Y M ) the spectral measure of P (x ⊗ IM , 1 ⊗ Y M ), then
there exists β ∈ R+ such that

limsup
ε→0

ε−βµP (x⊗IM ,1⊗Y M )

([∥∥P (x⊗ IM , 1⊗ Y M )
∥∥− ε,

∥∥P (x⊗ IM , 1⊗ Y M )
∥∥]) > 0 . (3)

With the help of standard measure concentration estimates, we then get the following Theorem:

Theorem 1.5. We consider

• XN = (XN
1 , . . . , XN

d ) independent GUE matrices of size N ,

• x = (x1, . . . , xd) a system of free semicircular variable,

• Y M = (Y M
1 , . . . , Y M

p ) deterministic matrices of size M a fixed integer and their adjoints.

Almost surely, for any polynomial P ∈ C〈X1, . . . , Xd, Y1, . . . , Yp〉, there exists constants K and C
such that for any δ > 0,

P
(
N1/4

(∥∥P (XN ⊗ IM , IN ⊗ Y M )
∥∥−

∥∥P (x⊗ IM , 1⊗ Y M )
∥∥) ≥ δ + C

)
≤ e−Kδ2

√
N + de−N , (4)

P
(
N1/(3+β)

(∥∥P (XN ⊗ IM , IN ⊗ Y M )
∥∥−

∥∥P (x⊗ IM , 1⊗ Y M )
∥∥) ≤ −δ − C

)
≤ e−Kδ2N

1+β
3+β

+ de−N .

(5)

This theorem is interesting because of its similarity with Tracy and Widom’s result about the tail of
the law of the largest eingenvalue of a GUE matrix. We have smaller exponent in N , and thus we can only
show the convergence towards 0 with exponential speed, however we are not restricted to a single GUE
matrix, we can chose any polynomial evaluated in GUE matrices. Besides by applying Borel-Cantelli’s
Lemma, we immediately get:
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Theorem 1.6. We consider

• XN = (XN
1 , . . . , XN

d ) independent GUE matrices of size N ,

• x = (x1, . . . , xd) a system of free semicircular variable,

• Y M = (Y M
1 , . . . , Y M

p ) deterministic matrices of size M a fixed integer and their adjoints.

Then almost surely, for any polynomial P ∈ C〈X1, . . . , Xd, Y1, . . . , Yp〉, there exists a constant c(P ) > 0
such that for any c(P ) > α > 0,

lim
N→∞

Nα
∣∣∣
∥∥P (XN ⊗ IM , IN ⊗ Y M )

∥∥−
∥∥P (x⊗ IM , 1⊗ Y M )

∥∥
∣∣∣ = 0 .

Moreover, if β satisfies (3), then almost surely for any α < (3 + β)−1 and ε < 1/4, for N large enough,

−N−α ≤
∥∥P (XN ⊗ IM , IN ⊗ Y M )

∥∥−
∥∥P (x⊗ IM , 1⊗ Y M )

∥∥ ≤ N−ε .

In order to conclude this introduction, we would like to say that while it is not always easy to compute
the constant β in all generality, it is possible for some polynomials. In particular, if our polynomial is
evaluated in a single GUE matrix, then the computation is heavily simplified by the fact that we know
the distribution of a single semicircular variable. Finally, the constant (3 + β)−1 is clearly a worst case
scenario and can be easily improved if β is explicit.

This paper is organised as follows. In Section 2, we recall the definitions and properties of free
probability, non-commutative calculus and Random Matrix Theory needed for this paper. Section 3
contains the proof of Theorem 1.1. And finally in Section 4 we give the proof of the remaining Theorem
and Corollaries.

2 Framework and standard properties

2.1 Usual definitions in free probability

In order to be self-contained, we begin by reminding the following definitions from free probability.

Definition 2.1. • A C∗-probability space (A, ∗, τ, ‖.‖) is a unital C∗-algebra (A, ∗, ‖.‖) endowed with
a state τ , i.e. a linear map τ : A → C satisfying τ(1A) = 1 and τ(a∗a) ≥ 0 for all a ∈ A. In this
paper we always assume that τ is a trace, i.e. that it satisfies τ(ab) = τ(ba) for any a, b ∈ A. An
element of A is called a (non commutative) random variable. We will always work with a faithful
trace, namely, for a ∈ A, τ(a∗a) = 0 if and only if a = 0. In this case the norm is determined by
τ thanks to the formula:

‖a‖ = lim
k→∞

(
τ
(
(a∗a)2k

))1/2k
.

• Let A1, . . . ,An be ∗-subalgebras of A, having the same unit as A. They are said to be free if for
all k, for all ai ∈ Aji such that j1 6= j2, j2 6= j3, . . . , jk−1 6= jk:

τ
(
(a1 − τ(a1))(a2 − τ(a2)) . . . (ak − τ(ak))

)
= 0.

Families of non-commutative random variables are said to be free if the ∗-subalgebras they generate
are free.

• Let A = (a1, . . . , ak) be a k-tuple of random variables. The joint distribution of the family A is the
linear form µA : P 7→ τ

[
P (A,A∗)

]
on the set of polynomials in 2k non commutative indeterminates.

By convergence in distribution, for a sequence of families of variables (AN )N≥1 = (aN1 , . . . , aNk )N≥1

in C∗-algebras
(
AN ,∗ , τN , ‖.‖

)
, we mean the pointwise convergence of the map

µAN
: P 7→ τN

[
P (AN , A∗

N )
]
,

and by strong convergence in distribution, we mean convergence in distribution, and pointwise
convergence of the map

P 7→
∥∥P (AN , A∗

N )
∥∥.
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• A family of non commutative random variables x = (x1, . . . , xp) is called a free semicircular system
when the non commutative random variables are free, selfadjoint (xi = x∗

i , i = 1 . . . p), and for all
k in N and i = 1, . . . , p, one has

τ(xk
i ) =

∫
tkdσ(t),

with dσ(t) = 1
2π

√
4− t2 1|t|≤2 dt the semicircle distribution.

The strong convergence of non-commutative random variables is actually equivalent to the conver-
gence of the spectrum of their polynomials for the Hausdorff distance. More precisely we have the
following proposition whose proof can be found in [8, Proposition 2.1] :

Proposition 2.2. Let xN = (xN
1 , . . . , xN

p ) and x = (x1, . . . , xp) be p-tuples of variables in C∗-probability
spaces, (AN , .∗, τN , ‖ · ‖) and (A, .∗, τ, ‖ · ‖), with faithful states. Then, the following assertions are
equivalent.

• xN converges strongly in distribution to x.

• For any self-adjoint variable hN = P (xN ), where P is a fixed polynomial, µhN
converges in weak-∗

topology to µh where h = P (x). Weak-∗ topology means relatively to continuous functions on C.
Moreover, the spectrum of hN converges in Hausdorff distance to the spectrum of h, that is, for
any ε > 0, there exists N0 such that for any N ≥ N0,

σ(hN ) ⊂ σ(h) + (−ε, ε). (6)

In particular, the strong convergence in distribution of a single self-adjoint variable is equivalent to its
convergence in distribution together with the Hausdorff convergence of its spectrum.

It is important to note that thanks to [22, Theorem 7.9], that we recall below, one can consider free
version of any random variable.

Theorem 2.3. Let (Ai, φi)i∈I be a family of C∗-probability spaces such that the functionals φi : Ai → C,
i ∈ I, are faithful traces. Then there exist a C∗-probability space (A, φ) with φ a faithful trace, and a
family of norm- preserving unital ∗-homomorphism Wi : Ai → A, i ∈ I, such that:

• φ ◦Wi = φi, ∀i ∈ I.

• The unital C∗-subalgebras form a free family in (A, φ).

Let us finally fix a few notations concerning the spaces and traces that we use in this paper.

Definition 2.4. • (AN , τN ) is the free sum of MN (C) with a system of d free semicircular variable,
this is the C∗- probability space built in Theorem 2.3. Note that when restricted to MN (C), τN is
just the regular renormalized trace on matrices. The restriction of τN to the C∗-algebra generated
by the free semicircular system x is denoted as τ .

• TrN is the non-renormalized trace on MN (C).

• MN (C)sa is the set of self adjoint matrix of MN (C). We denote Er,s the matrix with coefficients
equal to 0 except in (r, s) where it is equal to one.

• We regularly identify MN (C) ⊗ Mk(C) with MkN (C) through the isomorphism Ei,j ⊗ Er,s 7→
Ei+rN,j+sN , similarly we identify TrN ⊗Trk with TrkN .

• If AN = (AN
1 , . . . , AN

d ) and BM = (BM
1 , . . . , BM

d ) are two vectors of random matrices, then we
denote AN ⊗ BM = (AN

1 ⊗ BM
1 , . . . , AN

d ⊗ BM
d ). We typically use the notation XN ⊗ IM for the

vector (XN
1 ⊗ IM , . . . , XN

1 ⊗ IM ).
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2.2 Non-commutative polynomials and derivatives

We set Ad,q = C〈X1, . . . , Xd, Y1, . . . , Yq, Y
∗
1 , . . . , Y

∗
q 〉 the set of non-commutative polynomial in d+2q

indeterminates. We endow this vector space with the norm

‖P‖A =
∑

Mmonomial

|cM (P )|AdegM , (7)

where cM (P ) is the coefficient of P for the monomial M and degM the total degree of M (that is the
sum of its degree in each letter X1, . . . , Xd, Y1, . . . , Yq, Y

∗
1 , . . . , Y

∗
q ). Let us define several maps which we

use frequently in the sequel First, for A,B,C ∈ Ad,q, let

A⊗B#C = ACB ,

A⊗B#̃C = BCA ,

m(A⊗B) = BA .

Definition 2.5. If 1 ≤ i ≤ d, one defines the non-commutative derivative ∂i : Ad,q −→ Ad,q ⊗ Ad,q by
its value on a monomial M ∈ Ad,q given by

∂iM =
∑

M=AXiB

A⊗B ,

and then extend it by linearity to all polynomials. Similarly one defines the cyclic derivative Di : Ad,q −→
Ad,q for P ∈ Ad,q by

DiP = m ◦ ∂iP .

The map ∂i is called the non-commutative derivative. It is related to Schwinger-Dyson equation on
semicircular variable thanks to the following property 2.6. One can find a proof of the first part in [2],
Lemma 5.4.7. As for the second part it is a direct consequence of the first one which can easily be verified
by taking P monomial and then concluding by linearity.

Proposition 2.6. Let x = (x1, . . . , xp) be a free semicircular system, y = (y1, . . . , yq) be non-commutative
random variables free from x, if the family (x, y) belongs to the C∗-probability space (A, ∗, τ, ‖.‖), then
for any P ∈ Ad,q,

τ(P (x, y, y∗) xi) = τ ⊗ τ(∂iP (x, y, y∗)) .

Moreover, one can deduce that if ZNM are matrices in MN (C)⊗MM (C) that we view as a subspace of
AN ⊗MM (C), then for any P ∈ Ad,q,

τN⊗τM

(
P (x⊗IM , ZNM , ZNM∗

) xi⊗IM

)
= τM

(
(τN⊗IM )

⊗
(τN⊗IM )

(
∂iP (x⊗IM , ZNM , ZNM∗

)
))

.

We define an involution ∗ on Ad,q such that

(Xi)
∗ = Xi , (Yi)

∗ = Y ∗
i , (Y ∗

i )
∗ = Yi

and then we extend it to Ad,q by the formula (αPQ)∗ = αQ∗P ∗. P ∈ Ad,q is said to be self- adjoint if
P ∗ = P . Self-adjoint polynomials have the property that if x1, . . . , xd, z1, . . . , zq are elements of a C∗-
algebra such as x1, . . . , xd are self-adjoint, then so is P (x1, . . . , xd, z1, . . . , zq, z

∗
1 , . . . , z

∗
q ). Now that we

have defined the notion of self-adjoint polynomial we remark for later use that

Proposition 2.7. Let the following objects be given,

• x = (x1, . . . , xp) a free semicircular system ,

• XN = (XN
1 , . . . , XN

d ) self-ajoint matrices of size N ,

• XN
t = e−t/2XN + (1− e−t)1/2x elements of AN ,
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• ZNM matrices in MN (C)⊗MM (C),

• f ∈ C0(R),

• P a self-adjoint polynomial.

Then the following map is measurable:

(XN , ZNM ) 7→ τN ⊗ τM

(
f
(
P (XN

t ⊗ IM , ZNM , ZNM∗
)
))

.

Proof. This is obvious if f is a polynomial and the general case is obtained by approximation.

Actually we could easily prove that this map is continuous, however we do not need it. The only
reason we need this property is to justify that if XN is a vector of d independent GUE matrices, then

the random variable τN ⊗ τM

(
f
(
P (XN

t ⊗ IM , ZNM , ZNM∗
)
))

is well-defined and measurable.

2.3 GUE random matrices

We conclude this section by reminding the definition of Gaussian random matrices and stating a few
useful properties about them.

Definition 2.8. A GUE random matrix XN of size N is a self adjoint matrix whose coefficients are
random variables with the following laws:

• For 1 ≤ i ≤ N , the random variables
√
NXN

i,i are independent centered Gaussian random variables
of variance 1.

• For 1 ≤ i < j ≤ N , the random variables
√
2N ℜXN

i,j and
√
2N ℑXN

i,j are independent centered
Gaussian random variables of variance 1, independent of

(
XN

i,i

)
i
.

We now present two of the most useful tools when it comes to computation with Gaussian variable,
the Poincaré inequality and Gaussian integration by part. Firstly, the Poincaré inequality:

Proposition 2.9. Let (x1, . . . , xn) be i.i.d. centered Gaussian random variable with variance 1, let
f : Rn → R be C1, then

Var
(
f(x1, . . . , xn)

)
≤ E

[
‖∇f(x1, . . . , xn)‖22

]
.

For more details about the Poincaré inequality, we refer to Definition 4.4.2 in [2]. As for Gaussian
integration by part, it comes from the following formula, if Z is a centered Gaussian variable with variance
1 and f a C1 function, then

E[Zf(Z)] = E[∂Zf(Z)] . (8)

A direct consequence of this, is that if x and y are centered Gaussian variable with variance 1, and
Z = x+iy√

2
, then

E[Zf(x, y)] = E[∂Zf(x, y)] and E[Zf(x, y)] = E[∂Zf(x, y)] , (9)

where ∂Z = 1
2 (∂x + i∂y) and ∂Z = 1

2 (∂x − i∂y). When working with GUE matrices, an important
consequence of this are the so-called Schwinger-Dyson equation, which we summarize in the following
proposition. For more information about these equations and their applications, we refer to [2], Lemma
5.4.7.

Proposition 2.10. Let XN be GUE matrices of size N , Q ∈ Ad,q, then for any i,

E

[
1

N
TrN (XN

i Q(XN))

]
= E

[(
1

N
TrN

)⊗2

(∂iQ(XN))

]
.

9



Proof. One can write XN
i = 1√

N
(xi

r,s)1≤r,s≤N and thus

E

[
1

N
TrN (XN

i Q(XN ))

]
=

1

N3/2

∑

r,s

E
[
xi
r,s TrN (Er,s Q(XN ))

]

=
1

N3/2

∑

r,s

E
[
TrN (Er,s ∂xi

r,s
Q(XN))

]

=
1

N2

∑

r,s

E
[
TrN (Er,s ∂iQ(XN)#Es,r)

]

= E

[(
1

N
TrN

)⊗2

(∂iQ(XN))

]
.

Now to finish this section we state a property that we use several times in this paper:

Proposition 2.11. There exist constants C,D and α such that for any N ∈ N, if XN is a GUE random
matrix of size N , then for any u ≥ 0,

P
(∥∥XN

∥∥ ≥ u+D
)
≤ e−αuN .

Consequently, for any k ≤ αN/2,

E
[∥∥XN

∥∥k
]
≤ Ck.

Proof. The first part is a direct consequence of Lemma 2.2 from [15] in the specific case of the GUE. As
for the second part, if k ≤ αN/2, then we have,

E
[∥∥XN

∥∥k
]
= k

∫ ∞

0

P
(∥∥XN

∥∥ ≥ u
)
uk−1du

≤ kDk + k

∫ ∞

D

e−Nα(u−D)uk−1du

≤ kDk + keDNα

∫ ∞

D

e(k−Nα)udu

≤ kDk +
2k

αN
ekD ≤ Ck

for some C independent of N and k. In the third line we used that ln |u| ≤ u for all positive real numbers,

3 Proof of Theorem 1.1

3.1 Overview of the proof

Given two families of non-commutative random variables, (XN ⊗ IM , ZNM ) and (x⊗ IM , ZNM ), and
we want to study the difference between their distributions. As mentioned in the introduction, the main
idea of the proof is to interpolate these two families with the help of a free Ornstein-Uhlenbeck process
Xt,N = (Xt,N

i )i started in deterministic matrices (XN,0
i )i of size N . However, as we shall explain in this

subsection, we are only interested into the law of the marginals at time t of this process, hence we do not
need to define it globally. We refer to [4] for more information about it. Some properties of this process
are well understood. For example, like in the classical case, we know its distribution at time t. In the
classical case, if (St)t was an Ornstein-Uhlenbeck process, then it is well-known that for any function f
and t ≥ 0,

E[f(St)] = E[f(e−t/2S0 + (1− e−t)1/2X)]

10



where X is a centered Gaussian random variable of variance 1 independent of S0. Likewise, if µ is the
trace on the C∗-algebra which contains (XN

t )t≥0, we have for any function f such that this is well-defined
and t ≥ 0,

µ(f(XN
t )) = τN

(
f(e−t/2XN

0 + (1 − e−t)1/2x)
)

(10)

where x is a system of free semicircular variables, free from MN (C). Thus a free Ornstein-Uhlenbeck
process started at time t has the same distribution in the sense of Definition 2.1 as the family

e−t/2XN
0 + (1− e−t)1/2x .

Consequently, from now on, we write XN
t = e−t/2XN

0 + (1 − e−t)1/2x. Since our aim in this subsection
is not to give a rigorous proof but to outline the strategy used in subsection 3.2, we also assume that
we have no matrix ZNM and that M = 1. Now under the assumption that this is well-defined, if
Q ∈ Ad,0 = C〈X1, . . . , Xd〉,

E

[
1

N
TrN

(
Q
(
XN

) )]
− τ
(
Q (x)

)
= −

∫ ∞

0

E

[
d

dt

(
τN
(
Q(XN

t )
) )]

dt .

On the other hand, using the free Markov property of the free Brownian motion, we have for Q ∈ Ad,0

d

dt
τN (Q(XN

t )) = −1

2

∑

i

{
τN
(
(XN

t )i(DiQ)(XN
t )
)
− τN ⊗ τN

(
(∂iDiQ)(XN

t )
)}

.

One can already recognize the Schwinger-Dyson equation. Indeed thanks to Proposition 2.10, one can
see that

E

[
d

dt
τN (Q(XN

t ))

] ∣∣∣∣
t=0

= −1

2

∑

i

E
[
τN
(
XN

i (DiQ)(XN )
)
− τN ⊗ τN

(
(∂iDiQ)(XN)

)]
= 0 .

And then, thanks to Proposition 2.6,

E

[
d

dt
τN (Q(XN

t ))

] ∣∣∣∣
t=∞

= −1

2

∑

i

{τ (xi (DiQ)(x)) − τ ⊗ τ ((∂iDiQ)(x))} = 0 .

However what happens at time t is much harder to estimate and is the core of the proof. The main idea
to deal with this issue is to view the family (XN , x) as the asymptotic limit when k goes to infinity of
the family (XN ⊗ Ik, R

kN ) where RkN are independent GUE matrices of size kN and independent of
XN .

Another issue is that to prove Theorem 1.1, we would like to set Q = f(P ) but since f is not
polynomial this means that we need to extend the definition of operators such as ∂i. In order to do so
we assume that there exist µ a measure on R such that,

∀x ∈ R, f(x) =

∫

R

eixy dµ(y) .

While we have to assume that the support of µ is indeed on the real line, µ can be a complex measure.
However we will usually work with measure such that |µ|(R) is finite. Indeed under this assumption we
can use Fubini’s Theorem, and we get

E

[
1

M
TrN

(
f
(
P (XN)

) )]
− τ
(
f (P (x))

)
=

∫

R

{
E

[
1

N
TrN

(
eiyP(X

N)
)]

− τ
(
eiyP (x)

)}
dµ(y) .

We can then set Q = eiyP . And even though this is not a polynomial function, since it is a power series,
most of the properties associated to polynomials remain true with some assumption on the convergence.
The main difficulty with this method is that we need to find a bound which does not depend on too high
moments of y. Indeed terms of the form ∫

R

|y|l d|µ|(y)

appear in our estimates. Thanks to Fourier integration we can relate the exponent l to the regularity
of the function f , thus we want to find a bound with l as small as possible. It turns out that with our
proof l = 4.
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3.2 Proof of Theorem 1.1

In this section we focus on proving Theorem 1.1 from which we deduce all of the important corollaries.
It will be a consequence of the following Theorem :

Theorem 3.1. Let the following objects be given,

• XN = (XN
1 , . . . , XN

d ) independent GUE matrices of size N ,

• x = (x1, . . . , xd) a system of free semicircular variables,

• ZNM = (ZNM
1 , . . . , ZNM

q ) deterministic matrices,

• P ∈ Ad,q a polynomial that we assume to be self-adjoint,

• f : R 7→ R such that there exists a measure on the real line µ with
∫
(1 + y4) d|µ|(y) < +∞ and

for any x ∈ R,

f(x) =

∫

R

eixy dµ(y) .

Then, there exists a polynomial LP which only depends on P such that for any N,M ,

∣∣∣∣∣E
[

1

MN
TrMN

(
f
(
P
(
XN ⊗ IM , ZNM , ZNM∗)))]− τN ⊗ τM

(
f
(
P
(
x⊗ IM , ZNM , ZNM∗)))

∣∣∣∣∣

≤ M2

N2
LP

(∥∥ZNM
∥∥)
∫

R

(|y|+ y4) d|µ|(y) .

The proof is a direct corollary of Lemmas 3.3 and 3.4 below. The first one shows that the crux of the
proof lies in understanding the following quantity:

Definition 3.2. Let the following objects be given,

• α, β ∈ [0, 1],

• A,B,C,D ∈ Ad,q monomials,

• XN
t = e−t/2XN + (1− e−t)1/2x

• ZN
t = (XN

t ⊗ IM , ZNM , ZNM∗
),

• St = (AeiβyPB)(ZN
t ),

• Vt = (CeiαyPD)(ZN
t ).

Then we define:

Sα,β
N,t

(
A,B,C,D

)
= E


 1

N

∑

1≤s,r≤N

τN ⊗ τM

(
Es,r ⊗ IM × St × Er,s ⊗ IM × Vt

)



− E
[
τM

(
(τN ⊗ IM )(St) (τN ⊗ IM )(Vt)

)]
.

We can now state the next lemma which explains why this object appears:

Lemma 3.3. Let f be a function such that there exists a measure µ such that for any x ∈ R,

f(x) =

∫

R

eixydµ(y)

We also assume that
∫
R
(1 + y4)d|µ|(y) < ∞. Then one can write
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E

[
1

MN
Tr
(
f
(
P
(
XN ⊗ IM , ZNM , ZNM∗)))]− τN ⊗ τM

(
f
(
P
(
x⊗ IM , ZNM , ZNM∗)))

as a finite linear combination of terms of the following kinds :

∫ ∞

0

e−t

∫
y2
∫ 1

0

Sα,1−α
N,t (A,B,C,D)dα dµ(y) dt , (11)

and
∫ ∞

0

e−t

∫
y S1,0

N,t(A,B,C,D)dµ(y) dt (12)

where the monomials A,B,C,D ∈ Ad,q and the coefficients of the linear combination are uniquely deter-
mined by P .

Proof. First, we define the natural interpolation between the trace of matrices at size N and the trace
of semicircular variables,

s(t, y) = E
[
τN ⊗ τM

(
eiyP (ZN

t )
)]

.

By definition of f we have

∫

R

s(0, y) dµ(y) = E

[
1

MN
TrMN

(
f(P (XN ⊗ IM , ZNM , ZNM∗

))
)]

,

∫

R

s(∞, y) dµ(y) = τN ⊗ τM

(
f(P (x⊗ IM , ZNM , ZNM ∗

))
)
.

Thus under the assumption that this is well-defined, we have

E

[
1

MN
TrMN

(
f
(
P
(
XN ⊗ IM , ZNM , ZNM∗)))]− τN ⊗ τM

(
f
(
P
(
x⊗ IM , ZNM , ZNM∗)))

= −
∫ ∞

0

∫

R

∂ts(t, y) dµ(y) dt . (13)

We compute

∂ts(t, y) = iy
e−t

2
E

[
τN ⊗ τM

(
eiyP (ZN

t )
∑

i

∂iP (ZN
t )#

((
xi

(1− e−t)1/2
− et/2XN

i

)
⊗ IM

))]
.

Since we assumed that µ is such that
∫
(1+ y4)dµ(y) < +∞ and that since XN

i and xi have all moments
uniformly bounded by Lemma 2.11, we can find a constant C independent from y and t such that

|∂ts(t, y)| ≤ C ye−t/2 ,

we can deduce that (13) is well-defined. Besides, writing P =
∑

cQ(P )Q with monomials Q ∈ Ad,q, we
get

∂ts(t, y) = iy
e−t

2

∑
cQ(P )

∑

Q=BXiA

E

[
τN ⊗ τM

(
eiyP (ZN

t ) B(ZN
t )

(
xi

(1− e−t)1/2
− et/2XN

i

)
⊗ IMA(ZN

t )

)]
.

(14)
Hence, ∂ts is a finite linear combination of terms of the form

ye−tSt(A,B) = ye−tS1
t (A,B) − ye−tS2

t (A,B) (15)
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with
S1
t (A,B) = St(A,B, (1 − e−t)−1/2xi) and S2

t (A,B) = St(A,B, et/2XN
i )

where
St(A,B,G) = E

[
τN ⊗ τM

(
A(ZN

t ) eiyP (ZN
t )B(ZN

t )G⊗ IM

)]
. (16)

We first study S2
t (A,B). We denote by Q = AeiyPB. We want to use Gaussian integration by part: if

we set
√
NXN

i = (xi
s,r)1≤s,r≤N , then with ∂xi

s,r
as in equations (8) and (9), thanks to Duhamel formula

√
Net/2 ∂xi

s,r
Q(ZN

t ) = ∂iA(Z
N
t )#(Er,s ⊗ IM ) eiyP (ZN

t )B(ZN
t )

+ iy

∫ 1

0

A(ZN
t )ei(1−α)yP (ZN

t ) ∂iP (ZN
t )#(Er,s ⊗ IM ) eiαyP (ZN

t )B(ZN
t ) dα (17)

+A(ZN
t )eiyP (ZN

t ) ∂iB(ZN
t )#(Er,s ⊗ IM ) .

Consequently, expanding in S2
t (A,B) the product by XN

i in terms of its entries, we have

S2
t (A,B) =et/2E

[
τN ⊗ τM

(
(AeiyPB)(ZN

t ) XN
i ⊗ IM

)]

= N−1/2et/2
∑

1≤s,r≤N

E
[
xi
s,r τN ⊗ τM

(
Es,r ⊗ IM (AeiyPB)(ZN

t )
)]

=
1

N

∑

1≤s,r≤N

E
[
τN ⊗ τM

(
Es,r ⊗ IM et/2∂xi

s,r
Q(ZN

t )
)]

= E


 1

N

∑

1≤s,r≤N

τN ⊗ τM

(
Es,r ⊗ IM ∂iA#(Er,s ⊗ IM ) eiyPB

)



+ iy

∫ 1

0

E


 1

N

∑

1≤s,r≤N

τN ⊗ τM

(
Es,r ⊗ IM Aei(1−α)yP ∂iP#(Er,s ⊗ IM ) eiαyPB

)

 dα

+ E


 1

N

∑

1≤s,r≤N

τN ⊗ τM

(
Es,r ⊗ IM AeiyP ∂iB#(Er,s ⊗ IM )

)

 (18)

where A,B, P are evaluated at ZN
t . To deal with S1

t (A,B), since a priori we defined free integration by
parts only for polynomials, we expand the exponential as a power series,

τN ⊗ τM

(
A(ZN

t ) eiyP (ZN
t ) B(ZN

t )
xi ⊗ IM

(1− e−t)1/2

)

=
∑

k≥0

1

k!
τN ⊗ τM

(
A(ZN

t ) (iyP (ZN
t ))k B(ZN

t )
xi ⊗ IM

(1 − e−t)1/2

)
.

We define (τN ⊗ IM )
⊗

(τN ⊗ IM ) : (AN ⊗MM (C))⊗2 → MM (C) the linear application which is defined
on simple tensor by (τN ⊗ IM )

⊗
(τN ⊗ IM )(A⊗B) = (τN ⊗ IM )(A)× (τN ⊗ IM )(B). Hence, thanks to

Proposition 2.6, with the convention that A× (B ⊗ C)×D = (AB)⊗ (CD), we have
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τN ⊗ τM

(
A(ZN

t ) (iyP (ZN
t ))k B(ZN

t )
xi ⊗ IM

(1 − e−t)1/2

)

= τM

(
(τN ⊗ IM )

⊗
(τN ⊗ IM )

(
∂iA(Z

N
t ) (iyP (ZN

t ))k B(ZN
t )
))

+ iyτM


(τN ⊗ IM )

⊗
(τN ⊗ IM )

(
A(ZN

t ) (iy)k−1
∑

1≤l≤k

P (ZN
t )l−1∂iP (ZN

t ) P (ZN
t )k−l B(ZN

t )
)



+ τM

(
(τN ⊗ IM )

⊗
(τN ⊗ IM )

(
A(ZN

t ) (iyP (ZN
t ))k ∂iB(ZN

t )
))

.

Now we can use the fact that

1

k!
=

∫ 1

0

αl−1(1− α)k−l

(l − 1)!(k − l)!
dα ,

to deduce that

τM


(τN ⊗ IM )

⊗
(τN ⊗ IM )

(
A(ZN

t )
∑

k≥1

(iy)k−1

k!

k∑

l=1

P (ZN
t )l−1∂iP (ZN

t ) P (ZN
t )k−lB(ZN

t )
)



=

∫ 1

0

∑

k≥1

k∑

l=1

τM

(
(τN ⊗ IM )

⊗
(τN ⊗ IM )

(
A(ZN

t )
(iyαP (ZN

t ))l−1

(l − 1)!
∂iP (ZN

t )

(iy(1− α)P (ZN
t ))k−l

(k − l)!
B(ZN

t )

))
dα

=

∫ 1

0

τM

(
(τN ⊗ IM )

⊗
(τN ⊗ IM )

(
A(ZN

t ) ei(1−α)yP (ZN
t ) ∂iP (ZN

t ) eiαyP (ZN
t ) B(ZN

t )
))

dα .

And thus, after summation, we obtain

S1
t (A,B) = τM

(
(τN ⊗ IM )

⊗
(τN ⊗ IM )

(
∂iA eiyPB

))

+ iy

∫ 1

0

τM

(
(τN ⊗ IM )

⊗
(τN ⊗ IM )

(
Aei(1−α)yP ∂iP eiαyPB

))
dα

+ τM

(
(τN ⊗ IM )

⊗
(τN ⊗ IM )

(
A eiyP ∂iB

))
.

Therefore, after making the difference (15) to compute St(A,B), we conclude that the difference we wish
to estimate in (13) is a linear combination of terms, whose coefficients only depend on P , of the form
(11) and (12).

We need to study the quantity Sα,β
N,t (A,B,C,D). Let us first explain why one can expect it to be

small. Let (gi)1≤i≤N be the canonical basis of CN so that Er,s = grg
∗
s . We observe that Sα,β

N,0(A,B,C,D)
vanishes since
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1

N

∑

1≤s,r≤N

τN ⊗ τM

(
Es,r ⊗ IM S0 Er,s ⊗ IM V0

)

=
1

N2

∑

1≤s,r≤N

τM

(
g∗r ⊗ IM S0 gr ⊗ IM g∗s ⊗ IM V0 gs ⊗ IM

)

= τM

(
(τN ⊗ IM )(S0) (τN ⊗ IM )(V0)

)
.

Let us now estimate Sα,β
N,∞(A,B,C,D). We first notice that if X,Y ∈ AN are free from MN (C) then

(with constants being identified with constants times identity):

• If r 6= s: τN

(
Er,s(X − τN (X))Es,r(Y − τ(Y ))

)
= 0 .

• If r = s: τN

( (
Er,r − 1

N

)
(X − τN (X))

(
Er,r − 1

N

)
(Y − τN (Y ))

)
= 0.

Consequently, since τN (Er,sEs,r) = 1/N for all r, s, we get:

• If r 6= s: τN

(
Er,sXEs,rY

)
= 1

N τN (X)τN (Y ).

• If r = s: τN

(
Er,sXEs,rY

)
= 1

N τN (X)τN (Y ) + 1
N2

(
τN (XY )− τN (X)τN (Y )

)
.

Hence
1

N

∑

1≤s,r≤N

τN

(
Er,sXEs,rY

)
= τN (X)τN (Y ) +

1

N2

(
τN (XY )− τN (X)τN (Y )

)
.

This implies that N2Sα,β
N,∞(A,B,C,D) is bounded by a constant independent of N or y since

1

N

∑

1≤s,r≤N

τN ⊗ τM

(
Es,r ⊗ IM S∞ Er,s ⊗ IM V∞

)

= τM

(
(τN ⊗ IM )(S∞) (τN ⊗ IM )(V∞)

)
+

1

N2

(
τN ⊗ τM (S∞V∞)− τM (τN ⊗ IM (S∞)τN ⊗ IM (V∞))

)
.

With this in mind, we now study what happens at time t. More precisely we show:

Lemma 3.4. There is a polynomial L which only depends on A,B,C,D and P such that for any
α, β ∈ [0, 1], N ∈ N, t ∈ R+ and y ∈ R,

∣∣∣Sα,β
N,t

(
A,B,C,D

)∣∣∣ ≤ (1 + y2)M2

N2
L(
∥∥ZNM

∥∥) .

This lemma is a direct consequence of Lemmas 3.6 and 3.7. We first show that the family (XN ⊗
IM , x ⊗ IM , ZNM ) is actually the asymptotic distribution (in the sense of Definition 2.1) as k goes to
infinity of the family (XN ⊗ IkM , RkN ⊗ IM , ZNM ⊗ Ik) where RkN are independent GUE random
matrices of size kN . The advantage of this representation is that it allows us to use classical analysis,
and to treat the GUE variables and the semi-circle variables in a more symmetric way. A direct proof
using semi-circular variables should however be possible.

Proposition 3.5. If RkN are independent GUE random matrices of size kN , independent of XN , we
set

Uk
t =

((
e−t/2XN ⊗ Ik + (1− e−t)1/2RkN

)
⊗ IM , ZNM ⊗ Ik, Z

NM∗ ⊗ Ik

)
.

Then if q = AeiβyPB, we have that PXN -almost surely for any t,

16



(τN ⊗ IM )
(
q(ZN

t )
)
= lim

k→∞
ER

[
(τkN ⊗ IM )

(
q(Uk

t )
)]

,

where ER is the expectation with respect to RkN . Here M,N are kept fixed.

Proof. This proposition is mostly a corollary of Theorem 5.4.5 of [2]. Indeed this theorem states that if
RkN are GUE matrices and DkN are deterministic matrices such that

sup
l∈N

max
i

sup
k∈N

(
1

N
Tr(|DkN

i |l)
)1/l

< ∞ ,

and if DkN converges in distribution towards a family of non-commutative random variables d, then
the family (RkN , DkN ) in the non-commutative probability space (MkN (C), ∗,E[ 1

kN Tr]) converges in
distribution towards the family (x, d) where x is a system of free semicircular variables free from d. In
our situation we can write for every i,

ZNM
i =

∑

1≤r,s≤N

Er,s ⊗AM
r,s,i .

Thus, if EN = (Er,s)1≤r,s≤N , we fix Dk,N = (XN ⊗ Ik, E
N ⊗ Ik), and we can apply Theorem 5.4.5 from

[2] to get that for any non-commutative polynomial P ,

lim
k→∞

ER

[
τkN (P (RkN , Dk,N ))

]
= τN

(
P (x,Dk,1)

)
.

Consequently, for any non-commutative polynomial P , we also have

lim
k→∞

ER

[
τkN ⊗ IM (P (RkN , Dk,N , AM , AM ∗

))
]
= τN ⊗ IM

(
P (x,XN , EN , AM , AM ∗

)
)
.

Hence, for any P ∈ Ad,q,

lim
k→∞

ER

[
τkN ⊗ IM (P (Uk

t ))
]
= τN ⊗ IM

(
P (ZN

t )
)
. (19)

Thanks to Property 2.11, we know that there exist α > 0 and D < ∞ such that for all u ≥ D, for N
large enough,

P
(∥∥RkN

1

∥∥ ≥ u
)
≤ e−α u kN . (20)

Since if cM (P ) is the coefficient of P associated with the monomial M , one has

∥∥P (Uk
t )
∥∥ ≤

∑

M monomials

|cM (P )|
∥∥M(Uk

t )
∥∥ ,

there exist constants L and C which do depend on
∥∥ZNM

j

∥∥ and
∥∥XN

i

∥∥ such that for N large enough

P
(∥∥P (Uk

t )
∥∥ ≥ C

)
≤ e−LkN . (21)

Knowing this, let fε ∈ C[X ] be a polynomial which is ε-close from x 7→ eiβyx on the interval [−1−C,C+1].
Since one can always assume that C >

∥∥P (ZN
t )
∥∥, we have, with q = AeiβyPB :

‖(τN ⊗ IM )
(
q(ZN

t )
)
− (τN ⊗ IM )

(
(Afε(P )B)(ZN

t )
)
‖ ≤ Dε ,

where D is some constant which can depend on the dimensions N,M but not on k.
Thus

‖(τN ⊗ IM )
(
q(ZN

t )
)
− ER

[
(τkN ⊗ IM )

(
q(Uk

t )
)]

‖ ≤ Dε+DER

[∥∥(q −Afε(P )B)(Uk
t )
∥∥1‖P (Uk

t )‖≥C+1

]

+ ‖(τN ⊗ IM )
(
(Afε(P )B)(ZN

t )
)
− ER

[
(τkN ⊗ IM )

(
(Afε(P )B)(Uk

t )
)]

‖

The last term goes to zero as k goes to infinity by (19). Besides
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ER

[∥∥(q −Afε(P )B)(Uk
t )
∥∥1‖P (Uk

t )‖≥C+1

]

≤ ER

[(∥∥A(Uk
t )
∥∥ ∥∥B(Uk

t )
∥∥+

∥∥(Afε(P )B)(Uk
t )
∥∥)2
]1/2

P(
∥∥P (Uk

t )
∥∥ ≥ C + 1)1/2 .

The first term is bounded independently of k thanks to (20) and the second converges exponentially fast
towards 0 thanks to (21). Consequently

limsup
k→∞

‖(τN ⊗ IM )
(
q(ZN

t )
)
− ER

[
(τkN ⊗ IM )

(
q(Uk

t )
)]

‖ ≤ Dε .

Hence the conclusion follows since the left hand side does not depend on ε.

Recall that by definition

Sα,β
N,t

(
A,B,C,D

)
:= E[Λα,β

N,t

(
A,B,C,D

)
] (22)

with, following the notations of Definition 3.2 :

Λα,β
N,t

(
A,B,C,D

)
=

1

N

∑

1≤s,r≤N

τN ⊗ τM

(
Es,r ⊗ IM × St × Er,s ⊗ IM × Vt

)

− τM

(
(τN ⊗ IM )(St) (τN ⊗ IM )(Vt)

)
.

By Proposition 3.5, we deduce that

Λα,β
N,t

(
A,B,C,D

)
= lim

k→∞
Λα,β
k,N,t

(
A,B,C,D

)
(23)

where Λα,β
k,N,t

(
A,B,C,D

)
equals

ER

[ 1
N

∑

1≤s,r≤N

τkN ⊗ τM

(
Es,r ⊗ Ik ⊗ IM (AeiβyPB)(Uk

t ) Er,s ⊗ Ik ⊗ IM (CeiαyPD)(Uk
t )
)]

−τM
(
ER

[
τkN ⊗ IM (AeiβyPB)(Uk

t )
]
ER

[
τkN ⊗ IM (CeiαyPD)(Uk

t ))
] )

(24)

We can now prove the following intermediary lemma in view of deriving Lemma 3.4.

Lemma 3.6. Define Uk
t as in Proposition 3.5, and let

• P1,2 = IN ⊗ E1,2 ⊗ IM ,

• Q = (AeiβyPB)(Uk
t ),

• T = (CeiαyPD)(Uk
t ).

Then there is a constant C and a polynomial L which only depend on A,B,C,D and P such that for
any α, β ∈ [0, 1], M,N ∈ N, t ∈ R+ and y ∈ R,

|Λα,β
k,N,t

(
A,B,C,D

)
| ≤ (1 + y2)M2

N2
L
(∥∥ZNM

∥∥ ,
∥∥XN

∥∥) (25)

+ k3 |τM (ER [(τkN ⊗ IM )(QP1,2)]ER [(τkN ⊗ IM )(TP1,2)])| .

Proof. We denote in short Λα,β
k,N,t

(
A,B,C,D

)
= Λk,N,M = ER[Λ

1
k,N,M ]− Λ2

k,N,M with

Λ1
k,N,M =

1

N

∑

1≤s,r≤N

τkN ⊗ IM (Es,r ⊗ Ik ⊗ IM Q Er,s ⊗ Ik ⊗ IM T )

Λ2
k,N,M = τM

(
ER [τkN ⊗ IMQ]ER [τkN ⊗ IM (T ))]

)
(26)

18



Let (gi)i∈[1,N ] and (fi)i∈[1,k] be the canonical basis of CN and Ck, Ei,j is the matrix whose only non-zero
coefficient is (i, j) and this coefficient has value 1, the size of the matrix Ei,j will depend on the context.
We use the fact that Er,s = grg

∗
s and Ik =

∑
l El,l with El,l = f∗

l fl to deduce that

Λ1
k,N,M =

1

N

∑

1≤s,r≤N

∑

1≤l,l′≤k

τkN ⊗ IM (Es,r ⊗ El,l ⊗ IM Q Er,s ⊗ El′,l′ ⊗ IM T )

=
1

N2k

∑

1≤l,l′≤k

∑

1≤r≤N

g∗r ⊗ f∗
l ⊗ IM Q gr ⊗ fl′ ⊗ IM

∑

1≤s≤N

g∗s ⊗ f∗
l′ ⊗ IM T gs ⊗ fl ⊗ IM

=
1

k

∑

1≤l,l′≤k

(τN ⊗ IM ) (IN ⊗ f∗
l ⊗ IM Q IN ⊗ fl′ ⊗ IM ) (τN ⊗ IM ) (IN ⊗ f∗

l′ ⊗ IM T IN ⊗ fl ⊗ IM )

= k
∑

1≤l,l′≤k

(τkN ⊗ IM )
(
Q IN ⊗ El′,l ⊗ IM

)
(τkN ⊗ IM )

(
T IN ⊗ El,l′ ⊗ IM

)
. (27)

The last line of the above equation prompts us to set Pl′,l = IN ⊗El′,l⊗IM . If (ei)i∈[1,M ] is the canonical
basis of CM , we set

F q
l,l′,u,v(R

kN ) = e∗u (τkN ⊗ IM )
(
q
(
(e−t/2XN ⊗ Ik + (

1− e−t

Nk
)1/2RkN )⊗ IM , ZNM , ZNM∗)

Pl′,l

)
ev

with q = Q = AeiβyPB or q = T = CeiαyPD. We thus have with (27)

ER

[
Λ1
k,N,M

]
= k

∑

1≤l,l′≤k

τM
(
ER

[
(τkN ⊗ IM )

(
Q Pl′,l

)
(τkN ⊗ IM )

(
T Pl,l′

)])
(28)

=
k

M

∑

1≤l,l′≤k
1≤u,v≤M

CovR

(
FQ
l,l′,u,v(R

kN ), FT
l′,l,u,v(R

kN )
)

+k
∑

1≤l,l′≤k

τM
(
ER

[
(τkN ⊗ IM )

(
Q Pl′,l

)]
ER

[
(τkN ⊗ IM )

(
T Pl,l′

)])
.

However, the law of Uk
t is invariant under conjugation by IN⊗U⊗IM , where U ∈ Mk(C) is a permutation

matrix. Therefore, if l = l′, ER[τkN (Q Pl′,l)] = ER[τkN (Q P1,1)], and if l 6= l′, ER[τkN (Q Pl′,l)] =
ER[τkN (Q P1,2)]. We get the same equation when replacing Q by T . Consequently, we get

k
∑

1≤l,l′≤k

ER

[
(τkN ⊗ IM )

(
Q Pl′,l

)]
ER

[
(τkN ⊗ IM )

(
T Pl,l′

)]

= k2 ER[(τkN ⊗ IM )(QP1,1)] ER[(τkN ⊗ IM )(TP1,1)]

+(k − 1)k2 ER[(τkN ⊗ IM )(QP1,2)] ER[(τkN ⊗ IM )(TP1,2)] .

where the first term in the right hand side equals Λ2
k,N,M = ER[(τkN ⊗ IM )(Q)] ER[(τkN ⊗ IM )(T )]

because IM =
∑

l Pl,l. Thus equation (28) yields

|Λk,N,M | ≤ k

M

∑

1≤l,l′≤k
1≤u,v≤M

∣∣∣CovR
(
FQ
l,l′,u,v(R

kN ), FT
l′,l,u,v(R

kN )
)∣∣∣ (29)

+
∣∣∣k3τM

(
ER[(τkN ⊗ IM )(QP1,2)] ER[(τkN ⊗ IM )(TP1,2)]

)∣∣∣ .

Hence, we only need to bound the first term to complete the proof of the lemma. Thanks to Cauchy-
Schwartz’s inequality, it is enough to bound the covariance of F q

l,l′,u,v(R
kN ), for q = Q and T . To

study these variances, we shall use the Poincaré inequality, see Proposition 2.9. If we set xi
r,s and yir,s

the real and imaginary part of
√
2kN(RkN

i )r,s for r < s and xi
r,r =

√
kN(RkN

i )r,r, then these are real
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centered Gaussian random variables of variance 1 and one can view F q
l,l′,u,v as a function on (xi

r,s)r≤s,i

and (yir,s)r<s,i. By a computation similar to (17), we find

kN

1− e−t

∥∥∥∇F q
l,l′,u,v

∥∥∥
2

2
=
∑

i

∑

1≤r,s≤kN

e∗u (τkN⊗IM )
(
∂iq#Er,s⊗IM Pl′,l

)
eve

∗
v (τkN⊗IM )

(
∂iq#Er,s⊗IM Pl′,l

)∗
eu.

It is worth noting that here the matrices Er,s have size kN in this formula. Thanks to Poincaré inequality
(see Proposition 2.9), we deduce

k

M

∑

1≤u,v≤M

VarR(F
q
l,l′,u,v(RkN )) ≤ k

M

∑

1≤u,v≤M

E

[∥∥∥∇F q
l,l′,u,v

∥∥∥
2

2

]

≤ 1

N

∑

i

∑

1≤r,s≤kN

ER

[
1

M

∑

1≤u,v≤M

e∗u (τkN ⊗ IM )
(
∂iq#Er,s ⊗ IM Pl′,l

)
eve

∗
v (30)

×(τkN ⊗ IM )
(
∂iq#Er,s ⊗ IM Pl′,l

)∗
eu

]

≤ 1

N

∑

i

∑

1≤r,s≤kN

ER

[
τM

(
(τkN ⊗ IM )

(
∂iq#Er,s ⊗ IM Pl′,l

)
(τkN ⊗ IM )

(
∂iq#Er,s ⊗ IM Pl′,l

)∗)]
.

Moreover we have, if el is an orthornormal basis of Ck,

∑

1≤l,l′≤k

τM

(
(τkN ⊗ IM )

(
∂iq#Er,s ⊗ IM Pl′,l

)
(τkN ⊗ IM )

(
∂iq#Er,s ⊗ IM Pl′,l

)∗)

=
1

k2

∑

1≤l,l′≤k

τM

(
e∗l ⊗ IM (τN ⊗ Ik ⊗ IM )

(
∂iq#Er,s ⊗ IM

)
el′e

∗
l′ ⊗ IM (31)

(τN ⊗ Ik ⊗ IM )
(
∂iq#Er,s ⊗ IM

)∗
el ⊗ IM

)

=
1

k
τk ⊗ τM

(
(τN ⊗ Ik ⊗ IM )

(
∂iq#Er,s ⊗ IM

)
(τN ⊗ Ik ⊗ IM )

(
∂iq#Er,s ⊗ IM

)∗)
.

Hence by combining equations (30) and (31) we have proved that

k

M

∑

1≤l,l′≤k
1≤u,v≤M

VarR

(
F q
l,l′,v,u(R

kN )
)

≤ 1

kN

∑

i

∑

1≤r,s≤kN

ER

[
τk ⊗ τM

(
(τN ⊗ IkM )

(
∂iq#Er,s ⊗ IM

)
(τN ⊗ IkM )

(
∂iq#Er,s ⊗ IM

)∗)]
(32)

Moreover, let us remind that, with the convention A × (B ⊗ C) × D = (AB) ⊗ (CD), we have (for
q = Q = AeiβyPB but with obvious changes for q = T )

∂iq = ∂iA eiβyP B + iβyA

∫ 1

0

ei(1−u)βyP ∂iP eiuβyP Bdu+A eiβyP ∂iB .

Consequently, (32) is a finite linear combination of terms of the three following types Qi
N = ER[q

i
N ],

1 ≤ i ≤ 3, with

q1N =
1

kN

∑

1≤r,s≤kN

τk ⊗ τM

(
(τN ⊗ IkM )

(
A1Er,s ⊗ IM A2e

iβyP A3

)

(τN ⊗ IkM )
(
B3Es,r ⊗ IM B2e

−iβyP B1

))
,
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q2N =
βy

kN

∫ 1

0

∑

1≤r,s≤kN

τk ⊗ τM

(
(τN ⊗ IkM )

(
A1e

i(1−u)βyP A2Er,s ⊗ IM A3e
iuβyP A4

)

(τN ⊗ IkM )
(
B3 Es,r ⊗ IM B2e

−iβyP B1

))
du ,

q3N =
(βy)2

kN

∫ 1

0

∫ 1

0

∑

1≤r,s≤kN

τk⊗τM

(
(τN ⊗ IkM )

(
A1e

i(1−u)βyP A2Er,s ⊗ IM A3e
iuβyP A4

)
(33)

(τN ⊗ IkM )
(
B4e

−ivβyP B3Es,r ⊗ IM B2e
−i(1−v)βyP B1

))
du dv,

where the Ai and Bi are monomials in Uk
t . Besides the coefficients of this linear combination only depend

on A,B and P .
We first show how to estimate q3N . Let us recall that we set (ei)1≤i≤N , (fi)1≤i≤k and (gi)1≤i≤M as the
canonical basis of CM , Ck and CN . Then, for any matrices A,B,C,D ∈ MN (C)⊗Mk(C)⊗MM (C), we
have

∑

1≤r,s≤kN

TrkM

(
TrN ⊗IkM

(
A Er,s ⊗ IM B

)
× TrN ⊗IkM

(
C Es,r ⊗ IM D

))
(34)

=
∑

1≤a,b,r1,s1≤N

∑

1≤c,d,r2,s2≤k

∑

1≤e,f,g,h≤M

g∗a ⊗ f∗
c ⊗ e∗e A gr1 ⊗ fr2 ⊗ ef × g∗s1 ⊗ f∗

s2 ⊗ e∗f B ga ⊗ fd ⊗ eg

× g∗b ⊗ f∗
d ⊗ e∗g C gs1 ⊗ fs2 ⊗ eh × g∗r1 ⊗ f∗

r2 ⊗ e∗h D gb ⊗ fc ⊗ ee

=
∑

1≤a≤N
1≤c,d≤k

1≤e,f,g,h≤M

g∗a ⊗ f∗
c ⊗ e∗e A IN ⊗ Ik ⊗ (efe

∗
h) D IN ⊗ (fcf

∗
d )⊗ (eee

∗
g) C IN ⊗ Ik ⊗ (ehe

∗
f) B ga ⊗ fd ⊗ eg

=
∑

1≤u,v≤M

TrN

(
IN ⊗ TrkM (A IkN ⊗ eue

∗
v D) IN ⊗ TrkM (C IkN ⊗ eve

∗
u B)

)
.

Let KM be a GUE matrix of size M , independent of everything else. Performing a Gaussian integration
by part, we get

1

M

∑

1≤u,v≤M

TrN

(
IN ⊗ TrkM (A IkN ⊗ eue

∗
v D) IN ⊗ TrkM (C IkN ⊗ eve

∗
u B)

)
(35)

= EK

[
TrN

(
IN ⊗ TrkM

(
A IkN ⊗KM D

)
IN ⊗ TrkM

(
C IkN ⊗KM B

))]
.

Consequently by combining equations (34) and (35), we have

q3N =

(
βyM

N

)2 ∫ 1

0

∫ 1

0

EK

[
τN

(
(IN ⊗ τkM )

(
A1e

i(1−u)βyPA2 IkN ⊗KM B2e
−i(1−v)βyPB1

)

× (IN ⊗ τkM )
(
B4e

−ivβyPB3 IkN ⊗KM A3e
iuβyPA4

))]
du dv .

Since P is self-adjoint, we know that for any real r,
∥∥∥ei rP (Uk

t )
∥∥∥ = 1. Besides ‖IN ⊗ τkM (A)‖ ≤ ‖A‖,

thus we can bound q3N in (33) by
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|q3N | ≤
(
yM

N

)2

‖A1‖ ‖A2‖ ‖A3‖ ‖A4‖ ‖B1‖ ‖B2‖ ‖B3‖ ‖B4‖ EK

[
‖KM‖2

]
. (36)

Finally, by [13], EK

[
‖KM‖2

]
is bounded by 3. One can bound similarly q1N and q2N , the only difference

on the final result is that we would have 1 or y instead of y2. Finally after taking the expectation with
respect to RkN in equation (36) and using Proposition 2.11, we deduce that there exists S which only
depends on A,B and P , hence is independent of N,M, y, t, α or β, such that the covariance in (32) is
bounded by

k

M

∑

1≤l,l′≤k
1≤u,v≤M

VarR

(
F q
l,l′,v,u(R

kN )
)
≤ (1 + y2)M2

N2
S
(∥∥XN

∥∥ ,
∥∥ZNM

∥∥) .

Thus, we deduce that there exists a polynomial H which only depends on A,B,C,D and P such that
the first term in the right hand side of (29) is bounded by

k

M

∑

1≤l,l′≤k
1≤u,v≤M

∣∣∣CovR
(
FQ
l,l′,u,v(R

kN ), FT
l′,l,u,v(R

kN )
)∣∣∣ ≤ (1 + y2)M2

N2
H
(∥∥XN

∥∥ ,
∥∥ZNM

∥∥) . (37)

This completes the proof of the Lemma in the general case. For the specific case where ZNM = (IN ⊗
Y M
1 , . . . , IN ⊗Y M

q ) and that these matrices commute, we can get better estimate in equation (36) thanks

to a refinement of equation (35). Indeed if A,B,C,D are monomials in Uk
t , then we can write A = A1⊗A2

in MkN (C)⊗MM (C) and likewise for B,C,D such that A2, B2, C2, D2 commute. Thus,

1

M

∑

1≤u,v≤M

TrN

(
IN ⊗ TrkM (A IkN ⊗ eue

∗
v D) IN ⊗ TrkM (C IkN ⊗ eve

∗
u B)

)

=
1

M
TrN

(
IN ⊗ Trk(A1D1) IN ⊗ Trk(C1B1)

) ∑

1≤u,v≤M

TrM (A2 eue
∗
v D2)TrM (C2 eue

∗
v B2)

=
1

M
TrN

(
IN ⊗ Trk(A1D1) IN ⊗ Trk(C1B1)

)
TrM (D2A2B2C2)

=
1

M
TrN

(
IN ⊗ Trk(A1D1) IN ⊗ Trk(C1B1)

)
TrM (A2D2C2B2)

=
1

M
TrNM

(
INM ⊗ Trk(AD) INM ⊗ Trk(CB)

)
.

By linearity and density this equality is true if we assume that A,B,C,D are power series in Uk
t . Thus

combining this equality with equation (34), we get that in this case

|q3N | ≤
( y

N

)2
‖A1‖ ‖A2‖ ‖A3‖ ‖A4‖ ‖B1‖ ‖B2‖ ‖B3‖ ‖B4‖ .

The same argument as in the general case applies and the proof follows.

In order to prove Lemma 3.4, we show in the following lemma that the term appearing in the second
line of equation (25) vanishes.

Lemma 3.7. Let Uk
t , P1,2, Q and T be defined as in Lemma 3.6, then PXN -almost surely,

lim
k→∞

k3τM (ER [(τkN ⊗ IM )(QP1,2)]ER [(τkN ⊗ IM )(TP1,2)]) = 0 .

Proof. It is enough to show that given y ∈ R and monomial A and B, we have

lim
k→∞

k3/2ER

[
(τkN ⊗ IM )((A eiyP B)(Uk

t ) P1,2)
]
= 0 .
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For this purpose, let us define for monomials A,B and y ≥ 0

fA,B(y) = ER

[
(TrkN ⊗IM )((A eiyP B)(Uk

t ) P1,2)
]
.

We want to show that fA,B goes to zero faster than k−1/2. We first show that we can reduce the problem
to the case y = 0. To this end, we also define

dn(y) = sup
deg(A)+deg(B)≤n

‖fA,B(y)‖ .

We know thanks to Proposition 2.11 that there exist constants α and C such that for any i and n ≤
αkN/2,

E
[∥∥RkN

i

∥∥n
]
≤ Cn .

Consequently, PXN -almost surely, there exist constants γ and D (which do depend on, N ,
∥∥XN

∥∥ and∥∥ZNM
∥∥) such that for any n ≤ γk,

dn(y) ≤ Dn . (38)

It is important to point out that this constant D can be very large when N is, it does not matter since,
in the end, we will show that this quantity will go towards 0 when k goes to infinity and the other
parameters such as N,M or y are fixed. Next, we define

gk,a(y) =
∑

0≤n≤γk

dn(y)a
n .

But we have
dfA,B(y)

dy
= iER

[
(TrkN ⊗IM )((A PeiyP B)(Uk

t ) P1,2)
]

so that if we set cL(P ) to be the coefficient associated to the monomial L in P , P =
∑

cL(P )L,

∣∣∣∣
dfA,B(y)

dy

∣∣∣∣ ≤
∑

L monomials

|cL(P )| ddeg(A)+deg(B)+deg(L)(y) .

Thus, for any y ≥ 0, any monomials A,B with deg(A) + deg(B) = n,

fA,B(y) ≤ fA,B(0) +
∑

L monomials

|cL(P )|
∫ y

0

dn+deg(L)(u) du .

Therefore, we have for y ≥ 0 and any n ≥ 0,

andn(y) ≤ andn(0) +
∑

L monomials

|cL(P )|a− deg(L)

∫ y

0

dn+deg(L)(u)a
n+deg(L) du .

And with ‖.‖a−1 defined as in (7), thanks to (38), we find a finite constant ca independent of k such that

gk,a(y) ≤ gk,a(0) + ca(aD)γk + ‖P‖a−1

∫ y

0

gk,a(u)du ,

where we used (38). As a consequence of Gronwall’s inequality, we deduce that for y ≥ 0,

gk,a(y) ≤
(
gk,a(0) + ca(aD)γk

)
ey‖P‖

a−1 . (39)

Hence, it is enough to find an estimate on gk,a(0). First for any j, one can write ZNM
j =

∑
1≤u,v≤N Eu,v⊗

Ik ⊗Aj
u,v for some matrices Aj

u,v, then we define

UN,k =
(
RkN , XN ⊗ Ik, (Eu,v ⊗ Ik)u,v

)
, cn = sup

deg(L)≤n, L monomial

|ER [TrkN (L(UN,k) P1,2)]| .
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Note that since we are taking the trace of L(UN,k)P1,2 with P1,2 = IN ⊗ f1f
∗
2 ⊗ IM , we have c0 = c1 = 0.

We consider K the supremum over u, v, j of
∥∥Aj

u,v

∥∥, we also assume without loss of generality that
K ≥ 1. Thus, since

ZNM
j =

∑

1≤u,v≤N

Eu,v ⊗ Ik ⊗Aj
u,v , XN

t = e−t/2XN ⊗ Ik + (1− e−t)1/2RkN ,

if L is a monomial in Uk
t = (XN

t ⊗ IM , ZNM ⊗ Ik, Z
NM ∗ ⊗ Ik) of degree n, then we can view L(Uk

t ) as a
sum of at most 2nN2n monomials in e−t/2XN ⊗ Ik, (1− e−t)1/2RkN , Eu,v ⊗ Ik ⊗Aj

u,v, Ev,u⊗ Ik ⊗Aj
u,v

∗
.

Consequently, since supu,v,j
∥∥Aj

u,v

∥∥ ≤ K, we have

∥∥ER

[
TrkN ⊗IM (L(Uk

t )P1,2)
]∥∥ ≤ 2nN2nKncn .

Thus, if we set

fp(a) =
∑

0≤n≤p

cna
n ,

we have
gk,a(0) ≤ fγk(2N

2Ka) . (40)

Now we need to study the behaviour of fk(a) when k goes to infinity for a small enough. In order
to do so, let us consider a monomial L in UN,k. Since XN ⊗ Ik and Eu,v ⊗ Ik commute with P1,2, one
can assume that L = RkN

i S for some i (unless L is a monomial in XN ⊗ Ik and Eu,v ⊗ Ik in which case
TrkN (LP1,2) = 0), thus thanks to Schwinger-Dyson equation (see Proposition 2.10),

ER [TrkN (LP1,2)] =
1

Nk
ER [TrkN ⊗TrkN (∂i(SP1,2))] =

1

Nk

∑

S=URiV

E[TrNk(U)TrNk(V P1,2)]. (41)

To use this Schwinger-Dyson equation as an inductive bound we shall use Poincaré inequality to bound
the covariance in the above right hand side.We hence compute for any monomial V ,

‖∇TrkN (V P1,2)‖22 =
1

Nk

∑

i

∑

r,s

TrkN (∂sV#Er,sP1,2)TrkN (∂sV#Es,rP1,2)
∗

=
∑

i

∑

V=ARiB,V=CRiD

1

Nk
TrkN (BP1,2AC

∗P ∗
1,2D

∗) (42)

Thus with Θ = max
{
C,
∥∥XN

∥∥ , 1
}
, since P1,2 is of rank N , we get

VarR(TrkN (V P1,2)) ≤
1

k
(deg V )2Θ2 deg V .

Likewise, for any monomial U , we find

VarR(TrkN (U)) ≤ (degU)2Θ2 degU .

Therefore, if n is the degree of L, we deduce from (42), (41) and Poincaré inequality that

|ER [TrkN (LP1,2)]| ≤
1

k3/2N

n−2∑

i=0

i(n− 2− i)Θn +
∑

S=URiV

∣∣∣∣
1

Nk
ER[TrkN (U)]ER[TrkN (V P1,2)]

∣∣∣∣

≤ n3Θn

k3/2N
+

∑

S=URiV

|ER[TrkN (V P1,2)]|ΘdegU .

By replacing D by max{D,Θ}, we can always assume that Θ < D. We also bound N−1 by 1, thus for
n ≥ 2,
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cn ≤ n3Dn

k3/2
+

n−2∑

i=0

ciD
n−2−i .

We use this estimate to bound fg(a) with g such that g3Dg ≤
√
k. Since c0 = c1 = 0 and for any n ≤ g,

n3Dnk−3/2 ≤ k−1, we have for aD < 1

fg(a) =

g∑

n=2

cna
n ≤ 1

k
× a2 − ag+1

1− a
+ a2

g−2∑

m=0

m∑

n=0

ciD
n−ian ≤ 1

k
× a2

1− a
+ a2

fg(a)

1−Da
.

Thus, for a small enough,

fg(a) ≤
(1−Da)a2

(1 − a)(1−Da− a2)
× 1

k
.

Besides, we want g such that g3Dg ≤
√
k, hence we can take g the integer part of ln k

2(lnD+3) . Since by

definition we have cn ≤ Θn, this also means that cn ≤ Dn, thus

∑

g<n≤γk

cna
n ≤

∑

n>g

(Da)n ≤ (Da)g+1

1−Da
≤ k

ln(Da)
2(lnD+3) × 1

1−Da
.

Thus, if we fix a small enough, fγk(a) = O(1/k). Hence, we deduce from (40) that for a small enough
(depending on N,K but not k) there exists a finite constant C independent ofk such that

gk,a(0) ≤ fk(2N
2Ka) ≤ C

k
.

Therefore, by plugging this inequality in (39), we obtain for a small enough and y ≥ 0, gk,a(y) = O(1/k).
By replacing P by −P , we have for a small enough and any y ∈ R, gk,a(y) = O(1/k). This completes
the proof by teh definitions of gk,a and dn.

We can now prove Theorem 1.1.

Proof of Theorem 1.1. It is based on Theorem 3.1. To use it, we would like to take the Fourier transform
of f and use Fourier inversion formula. However we did not assume that f is integrable. Thus the first
step of the proof is to show that up to a term of order e−N , we can assume that f has compact support.
Thanks to Proposition 2.11, there exist constants D and α such that for any N and i, for any u ≥ 0,

P
(∥∥XN

i

∥∥ ≥ u+D
)
≤ e−αuN .

Thus, there exist constants C and K, independent of M,N,P and f , such that

∣∣∣∣E
[

1

MN
Tr
(
f
(
P
(
XN ⊗ IM , ZNM , ZNM∗)))

1{∃i,‖XN
i ‖>D+1}

]∣∣∣∣

≤ E
[∥∥∥f

(
P
(
XN ⊗ IM , ZNM , ZNM∗))∥∥∥1{∃i,‖XN

i ‖>D+1}
]

≤ ‖f‖∞ P
(
∃i,
∥∥XN

i

∥∥ > D + 1
)

≤ C ‖f‖∞ e−KN .

There exists a polynomial H which only depends on P such that
∥∥∥P
(
XN ⊗ IM , ZNM , ZNM∗)∥∥∥1{∀i,‖XN

i ‖≤D+1} ≤ H
(∥∥ZNM

∥∥) .
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We can also assume that
∥∥∥P (x⊗ IM , ZNM , ZNM∗

)
∥∥∥ ≤ H

(∥∥ZNM
∥∥). We take g a C∞-function which

takes value 1 on [−H
(∥∥ZNM

∥∥) , H
(∥∥ZNM

∥∥)], 0 on [−H
(∥∥ZNM

∥∥)− 1, H
(∥∥ZNM

∥∥)+ 1]c and belongs
to [0, 1] elsewhere. From the bound above, we deduce

∣∣∣∣E
[

1

MN
Tr
(
f
(
P
(
XN ⊗ IM , ZNM , ZNM∗)))]− τ

(
f
(
P
(
x⊗ IM , ZNM , ZNM∗)))

∣∣∣∣

≤
∣∣∣∣∣E
[

1

MN
Tr
(
f
(
P
(
XN ⊗ IM , ZNM , ZNM∗)))

1{∀i,‖XN
i ‖≤D+1}

]

− τ
(
f
(
P
(
x⊗ IM , ZNM , ZNM∗)))

∣∣∣∣∣+ C ‖f‖∞ e−KN (43)

≤
∣∣∣∣∣E
[

1

MN
Tr
(
(fg)

(
P
(
XN ⊗ IM , ZNM , ZNM∗)))]

− τ
(
(fg)

(
P
(
x⊗ IM , ZNM , ZNM∗)))

∣∣∣∣∣+ 2C ‖f‖∞ e−KN .

Since fg has compact support and can be differentiated six times, we can take its Fourier transform and
then invert it so that with the convention ĥ(y) = 1

2π

∫
R
h(x)e−ixydx, we have

∀x ∈ R, (fg)(x) =

∫

R

eixyf̂ g(y) dy .

Besides, since if h has compact support bounded by K then
∥∥∥ĥ
∥∥∥
∞

≤ 2K ‖h‖∞, we have

∫

R

(|y|+ y4)
∣∣∣f̂ g(y)

∣∣∣ dy ≤
∫

R

|y|+ |y|3 + y4 + y6

1 + y2

∣∣∣f̂ g(y)
∣∣∣ dy

≤

∫

R

∣∣∣(̂fg)(1)(y)
∣∣∣+
∣∣∣(̂fg)(3)(y)

∣∣∣+
∣∣∣(̂fg)(4)(y)

∣∣∣+
∣∣∣(̂fg)(6)(y)

∣∣∣
1 + y2

dy

≤ 2
(
H
(∥∥ZNM

∥∥)+ 1
)
‖fg‖C6

∫

R

1

1 + y2
dy

≤ C
(
H
(∥∥ZNM

∥∥)+ 1
)
‖f‖C6 ,

for some absolute constant C. Hence fg satisfies the hypothesis of Theorem 3.1 with µ(dy) = f̂ g(y)dy.
Therefore, combining with equation (43), we conclude that

∣∣∣∣E
[

1

MN
Tr
(
f
(
P
(
XN ⊗ IM , ZNM , ZNM∗)))]− τ

(
f
(
P
(
x⊗ IM , ZNM , ZNM∗)))

∣∣∣∣

≤ ‖f‖∞ e−KN +
M2

N2
LP

(∥∥ZNM
∥∥)
∫

R

(|y|+ y4)
∣∣∣f̂ g(y)

∣∣∣ dy

≤ M2

N2

(
CLP

(∥∥ZNM
∥∥) (H

(∥∥ZNM
∥∥)+ 1

)
+ e−KN

)
‖f‖C6 .

4 Consequences of the main result

In this section, we deduce Corollaries 1.3 and 1.4, as well as Theorems 1.2 and 1.5.
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4.1 Proof of Corollary 1.3

We could directly apply Theorem 1.1 to fz : x → (z − x)−1, however we have ‖f‖
C6 = O

(
(ℑz)7

)

when we want an exponent 5. Since GP (x)(z) = GP (x)(z) we can assume that ℑz < 0, but then

fz(x) =

∫ ∞

0

eixy (ie−iyz) dy .

Consequently, with µz(dy) = ie−iyz dy, we have

∫ ∞

0

(y + y4) d|µz |(y) =
1

|ℑz|2 +
24

|ℑz|5 .

Thus, by applying Theorem 3.1 with ZNM =
(
IN ⊗ Y M

1 , . . . , IN ⊗ Y M
p

)
, P and fz, we have

∣∣E
[
GP (XN⊗IM ,IN⊗Y M )(z)

]
−GP (x⊗IM ,IN⊗Y M )(z)

∣∣ ≤ M2

N2
LP

(∥∥ZNM
∥∥)
∫

R

(1 + y4) d|µz |(y) .

Now since
∥∥ZNM

∥∥ =
(∥∥Y M

1

∥∥ , . . . ,
∥∥Y M

p

∥∥) which does not depend on N , we get the desired estimate

∣∣E
[
GP (XN )(z)

]
−GP (x)(z)

∣∣ ≤ M2

N2
LP

(∥∥Y M
1

∥∥ , . . . ,
∥∥Y M

p

∥∥)
(

1

|ℑz|2 +
24

|ℑz|5
)

.

4.2 Proof of Corollary 1.4

Let f : R → R be a Lipschitz function uniformly bounded by 1 and with Lipschitz constant at most
1. We want to bound from above the quantity

∆N,M(f) =

∣∣∣∣∣E
[

1

MN
TrNM

(
f
(
P
(
XN ⊗ IM , IN ⊗ YM

)) )]
−τ⊗τM

(
f (P (x⊗ IM , IN ⊗ YM ))

)∣∣∣∣∣ (44)

Firstly, one can see that with the same argument as in the proof of Theorem 1.1 (in particular equation
(43)), we can assume that the support of f is bounded by a constant S = H(

∥∥Y M
∥∥) for some polynomial

H independent of everything. However, we cannot apply directly Theorem 1.1 since f is not regular
enough. In order to deal with this issue we use the convolution with Gaussian random variable, thus let
G be a centered Gaussian random variable, we set

fε : x → E[f(x+ εG)] .

Since f has Lipschitz constant 1, we have for any x ∈ R,

|E[f(x + εG)]− f(x)| ≤ ε .

Since fε is regular enough we could now apply Theorem 1.1, however we a get better result by using
Theorem 3.1. Indeed we have

fε(x) =
1√
2π

∫

R

f(x+ εy)e−y2/2 dy

=
1√
2π

∫

R

f(y)
e−

(x−y)2

2ε2

ε
dy

=
1

2π

∫

R

f(y)

∫

R

ei(x−y)ue−(uε)2/2 du dy .

Since the support of f is bounded, we can apply Fubini’s Theorem:
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fε(x) =
1

2π

∫

R

eiux
∫

R

f(y)e−iyu dy e−(uε)2/2 du .

And so with the convention ĥ(u) = 1
2π

∫
R
h(y)e−iuydy, we have

fε(x) =

∫

R

eiuxf̂(u)e−(uε)2/2 du .

Thus, if we set µε(dy) = f̂(y)e−(yε)2/2 dy, then, since ‖f‖∞ ≤ 1,

∫

R

(1 + y4)d|µε|(y) ≤ 2S

∫

R

(1 + y4)e−y2/2 dy ε−5 .

Consequently, we can apply Theorem 3.1 with fε and since ‖f − fε‖∞ ≤ ε, there exists a polynomial
RP such that the difference in (44) can be bounded by:

∆N,M (f) ≤ 2ε+RP

(∥∥Y M
∥∥) M2

N2ε5
.

We finally choose ε = N−1/3 to get the desired bound

∆N,M (f) ≤ 2RP

(∥∥Y M
∥∥) M2

N1/3
.

4.3 Proof of Theorem 1.2

Firstly, we need to define properly the operator norm of tensor of C∗-algebras. When writing the
proof it appears that we should work with the minimal tensor product.

Definition 4.1. Let A and B be C∗-algebras with faithful representations (HA, φA) and (HB, φB), then
if ⊗2 is the tensor product of Hilbert spaces, A ⊗min B is the completion of the image of φA ⊗ φB in
B(HA ⊗2 HB) for the operator norm in this space. This definition is independent of the representations
that we fixed.

The following two lemmas are well known facts in operator algebra. The first one is Lemma 4.1.8
from [31]:

Lemma 4.2. Let (A, τA) and (B, τB) be C∗-algebra with faithful traces, then τA ⊗ τB extends uniquely
to a faithful trace τA ⊗min τB on A⊗min B.

We did not find a reference with an explicit proof for the following Lemma, so we give our own. In
order to learn more about this second lemma, especially how to weaken the hypothesis, we refer to [23].

Lemma 4.3. Let C be an exact C∗-algebra endowed with a faithful state τC, let Y N ∈ AN be a sequence
of families of noncommutative random variables in a C∗-algebra AN which converges strongly towards a
family Y in a C∗-algebra A endowed with a faithful state τA. Let S ∈ C be a family of noncommutative
random variables, then the family (S ⊗ 1, 1⊗ Y N ) converges strongly in distribution towards the family
(S ⊗ 1, 1⊗ Y ).

Proof. The following sets

M =

{
(xN )N∈N

∣∣∣∣ xN ∈ AN , sup
N≥0

‖xN‖ < ∞
}

,

I =
{
(xN )N∈N ∈ M

∣∣∣ lim
N→∞

‖xN‖ = 0
}

,

are C∗-algebras for the norm ‖x‖ = supN≥0 ‖xN‖. We also define

B = C∗ ((YN )N∈N , I) ,
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the C∗-algebra generated by I and the family (YN )N∈N. Since I is a closed ideal of B, by Theorem 3.1.4
of [21], B/I is a C∗-algebra for the quotient norm. We naturally have the following exact sequence

0 → I → B → B/I → 0 .

And by hypothesis, since C is exact, we have the following exact sequence

0 → C ⊗min I → C ⊗min B → C ⊗min (B/I) → 0 .

By definition, this means that (C ⊗min B)/(C ⊗min I) ≃ C ⊗min (B/I). If πI is the quotient map from B
to B/I, the isomorphism between these two spaces is

f : x+ C ⊗min I 7→ idC ⊗min πI(x) .

Hence
f(P

(
1⊗ (YN )N∈N, S ⊗ 1

)
+ C ⊗min I) = P

(
1⊗ ((YN )N∈N + I), S ⊗ 1

)
. (45)

Let (H,ϕ) be a faithful representation of C, and (HN , ϕN ) a faithful representation of AN . The direct
sum (

⊕
N∈N

HN ,
⊕

N∈N
ϕN ) is a faithful representation of M and consequently of B too. More precisely,

it is defined by

⊕

N∈N

HN =

{
(xN )N∈N

∣∣∣∣∣ xN ∈ HN ,
∑

N

‖xN‖22 < ∞
}

.

Consequently, by definition of the spatial tensor product, it is the completion of the algebraic tensor C⊗B
in the operator space B (H ⊗2 (⊕NHN )) endowed with the operator norm. The notation ⊗2 means that
we completed the algeraic tensor H ⊗ (⊕NHN ) to make it a Hilbert space. It is important to see that
this space is isomorphic to ⊕N(H ⊗2 HN ), indeed it means that if P is a non-commutative polynomial,
then

∥∥P
(
1⊗ (YN )N∈N, S ⊗ 1

)∥∥
C⊗minB = sup

N≥0

∥∥P
(
1⊗ YN , S ⊗ 1

)∥∥
C⊗minAN

.

Consequently by using the definition of the quotient norm, we have

∥∥P
(
1⊗ (YN )N∈N, S ⊗ 1

)
+ C ⊗min I

∥∥
(C⊗minB)/(C⊗minI) = limsup

N→∞

∥∥P
(
1⊗ YN , S ⊗ 1

)∥∥
C⊗minAN

. (46)

Since f is a C∗-algebra isomorphism, thanks to (45), we have

∥∥P
(
1⊗ (YN )N∈N, S ⊗ 1

)
+ C ⊗min I

∥∥
(C⊗minB)/(C⊗minI) =

∥∥P
(
1⊗ ((YN )N∈N + I), S ⊗ 1

)∥∥
C⊗min(B/I) .

By definition of I, if P is a non-commutative polynomial, we have

‖P ((YN )N∈N + I)‖B/I = ‖P (Y )‖A .

For our purposes, we can assume that A = C∗(Y ). Therefore the map

P ((YN )N∈N + I) ∈ C〈(YN )N∈N + I〉 7→ P (Y ) ∈ C〈Y 〉
is well-defined and is an isometry. Thus since C〈(YN )N∈N + I〉 is dense in B/I and C〈Y 〉 is dense in A,
this isometry extends into an isomorphism between B/I and A. Consequently

∥∥P
(
1⊗ ((YN )N∈N + I), S ⊗ 1

)∥∥
C⊗min(B/I) =

∥∥P
(
1⊗ Y, S ⊗ 1

)∥∥
C⊗minA .

Thus, combined with (46), we have

limsup
N→∞

∥∥P
(
1⊗ YN , S ⊗ 1

)∥∥
C⊗minAN

=
∥∥P
(
1⊗ Y, S ⊗ 1

)∥∥
C⊗minA . (47)

Finally let f be a function which takes value 0 on (−∞, ‖P (1⊗ Y, S ⊗ 1)‖C⊗minA − ε] and positive value

on (‖P (1⊗ Y, S ⊗ 1)‖C⊗minA − ε,∞). Since the family (S ⊗ 1, 1⊗ Y N ) converges clearly in distribution
towards the family (S ⊗ 1, 1⊗ Y ), we have
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lim
N→∞

τC ⊗min τAN

(
f(P (1⊗ YN , S ⊗ 1))

)
= τC ⊗min τA

(
f(P (1⊗ Y, S ⊗ 1))

)
.

Thanks to Lemma 4.2, we know that τC ⊗min τA is faithful, consequently

τC ⊗min τA
(
f(P (1⊗ Y, S ⊗ 1))

)
> 0 .

This means that for N large enough, τC ⊗min τAN

(
f(P (1⊗ YN , S ⊗ 1))

)
> 0, thus for any ε > 0,

liminf
N→∞

∥∥P
(
1⊗ YN , S ⊗ 1

)∥∥
C⊗minAN

≥
∥∥P
(
1⊗ Y, S ⊗ 1

)∥∥
C⊗minA − ε .

This allows to conclude with (47) that

lim
N→∞

∥∥P
(
1⊗ YN , S ⊗ 1

)∥∥
C⊗minAN

=
∥∥P
(
1⊗ Y, S ⊗ 1

)∥∥
C⊗minA .

In order to prove Theorem 1.2 we use well-known concentration properties of Gaussian random vari-
able coupled with an estimation of the expectation, let us begin by stating the concentration properties
(see [2] Lemma 2.3.3).

Proposition 4.4. Let G be a Lipschitz function on Rn with Lipschitz constant K for the ℓ2- norm
‖γ‖2 = (

∑
i γ

2
i )

1/2, γ = (γ1, . . . , γn) independent centered Gaussian random variable of variance 1.
Then for all δ > 0,

P (G(γ)− E[G(γ)] ≥ δ) ≤ e−
δ2

2K2 .

In our situation, we have p independent GUE matrices (XN,i)s of size N , hence we fix γ the random
vector of size dN2 which consists of the union of (

√
NXN,i

s,s )i,s, (
√
2N ℜXN,i

s,r )s<r,i and (
√
2N ℑXN,i

s,r )s<r,i

which are indeed centered Gaussian random variable of variance 1 as stated in Definition 2.8. We would
like to apply Proposition 4.4 to

GN (γ) =
∥∥∥P ∗P (XN ⊗ IM , ZNM , ZNM∗

)
∥∥∥ .

However GN is not Lipschitz on RdN2

because of its polynomial behaviour at infinity. Hence we cannot
use directly Proposition 4.4. The following lemma is a well-known tool for this kind of situation, the
proof can be found in [14, Lemma 5.9].

Lemma 4.5. Let (X, d) be a metric space and µ a probability measure on (X, d) which satisfies a
concentration inequality, i.e. for all f : X → R with Lipschitz constant |f |L, for all δ > 0,

µ
(
|f − µ(f)| ≥ δ

)
≤ e

−g
(

δ
|f|L

)

for some increasing function g on R+. Let B be a subset of X and |f |BL be the Lipschitz constant of f
as a function from B to R. Let δ(f) = µ( 1x∈Bc(|f(x)|+ supu∈B |f(u)|+ |f |BLd(x,B)) ), then

µ
(
|f − µ(f)| ≥ δ + δ(f)

)
≤ µ(Bc) + e

−g

(

δ

|f|B
L

)

.

We can now prove the concentration inequality that we will use in the rest of this paper. To simplify
notations we will write M instead of MN . We also set ZNM = (ZN⊗IM , IN⊗Y M ) and Z = (z⊗1, 1⊗y).

Proposition 4.6. Let P ∈ Ad,p+q, there are some polynomials HP and KP which only depends on P
such that for any N,M ,

P
( ∣∣∣
∥∥∥P ∗P (XN ⊗ IM , ZNM , ZNM∗

)
∥∥∥− E

[∥∥∥P ∗P (XN ⊗ IM , ZNM , ZNM∗
)
∥∥∥
] ∣∣∣

≥ δ +KP

(∥∥ZNM
∥∥) e−N

)
≤ d e−2N + e

− δ2N

HP (‖ZNM‖) .
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Proof. We want to use Lemma 4.5 and Proposition 4.4. The metric space we will work with is Rn

endowed with the Euclidian norm, and we can take the function g to be g : x 7→ x2/2 by Lemma 4.4.
Thus we get that for any B ⊂ Rn, for any G : Rn 7→ R, if γ = (γ1, . . . , γn) is a vector of independent
centered Gaussian random variables of variance 1, then for all δ > 0,

P (G(γ)− E[G(γ)] ≥ δ + δ(G)) ≤ e
− δ2

2(|G|B
L

)2 . (48)

If 0 ∈ B as it will be the case later on, we have δ(G) ≤ E[1γ /∈B(|G(γ)|+supu∈B |G(u)|+ |f |BL ‖γ‖2)]. We
set BN =

{
∀i,
∥∥XN

i

∥∥ ≤ D
}

where D was chosen thanks to 2.11 such that for any N and i,

P
(∥∥XN

i

∥∥ ≥ D
)
≤ e−2N . (49)

Thus we have P(Bc
N ) ≤ d e−2N . With γ the vector of size dN2 which consists of the union of (

√
NXN,i

s,s )i,s,

(
√
2N ℜXN,i

s,r )s<r,i and (
√
2N ℑXN,i

s,r )s<r,i, we set GN (γ) =
∥∥∥P ∗P (XN ⊗ IM , ZNM , ZNM∗

)
∥∥∥. One can

see that on BN we can find a polynomial H ′
P such that for any N and ZNM ,

|GN (γ)−GN (γ̃)| ≤ H ′
P

(∥∥ZNM
∥∥)∑

i

∥∥∥XN
i − X̃N

i

∥∥∥ ,

where ‖.‖ is the operator norm. Besides

∑

i

∥∥∥XN
i − X̃N

i

∥∥∥ ≤
∑

i

TrN

(
(XN

i − X̃N
i )∗(XN − X̃N

i )
)1/2

≤ 2d√
N

‖γ − γ̃‖2 .

Thus, on BN , GN has Lipschitz constant 2dH ′
P

(∥∥ZNM
∥∥)N−1/2. Consequently with (48), we get that

P (GN (γ)− E[GN (γ)] ≥ δ + δ(GN )) ≤ e
− δ2N

2d+1H′
P (‖ZNM‖)2 .

Therefore, we set HP = 2d+1H ′
P , we also have that ‖γ‖22 = N

∑
iTrN ((XN

i )2). Consequently we have
some polynomial K ′

P such that,

δ(G) ≤ E


1{∃i,‖XN

i ‖>D}


|GN (γ)|+K ′

P (
∥∥ZNM

∥∥) + 2dH ′
P

(∥∥ZNM
∥∥)N1/2

√∑

i

∥∥XN
i

∥∥2





Hence the conclusion thanks to Proposition 2.11 and our choice of D in equation (49).

We can now prove Theorem 1.2. Firstly, we can assume that ZN and Y M are deterministic matrices
by Fubini’s Theorem. The convergence in distribution is a well-known theorem, we refer to [2], Theorem
5.4.5. We set g a C∞ function which takes value 0 on (−∞, 1/2] and value 1 on [1,∞), and belongs to
[0, 1] otherwise. Let us define fε : t 7→ g(ε−1(t− ‖PP ∗(x⊗ 1, Z, Z∗)‖)). By Theorem 1.1, there exists a
constant C which only depends on P , supM

∥∥Y M
∥∥ and supN

∥∥ZN
∥∥ (which is finite thanks to the strong

convergence assumption on ZN ) such that,

∣∣∣∣∣E
[
TrMN

(
fε

(
PP ∗

(
XN ⊗ IM , ZNM , ZNM∗)))]−MNτN ⊗ τM

(
fε

(
PP ∗

(
x⊗ IM , ZNM , ZNM∗)))

∣∣∣∣∣

≤ Cε−6M
3

N
.

According to Theorem A.1 from [19], (x, ZN )N≥1 converges strongly in distribution towards (x, z).
Besides thanks to Lemma 4.3 and Corollary 17.10 from [24], we have that (x⊗IM , 1⊗Y M )M≥1 converges
strongly in distribution towards (x⊗ 1, 1⊗ y). In Theorem 1.2, we are interested in the situation where
ZNM = ZN ⊗ IM or ZNM = IN ⊗ Y M . So, without loss of generality, we restrict ourselves to this kind
of ZNM . We know that (x⊗ IM , ZNM ) converges strongly towards (x ⊗ 1, Z), but since the support of
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fε is disjoint from the spectrum of PP ∗(x ⊗ 1, Z, Z∗), thanks to Proposition 2.2, for N large enough,

τN ⊗ τM

(
fε(PP ∗(x⊗ IM , ZNM , ZNM∗

))
)
= 0 and therefore,

E
[
TrMN

(
fε

(
PP ∗

(
XN ⊗ IM , ZNM , ZNM∗)))] ≤ Cε−6M

3

N
. (50)

Hence, using Proposition 2.11, we deduce for N large enough,

E
[∥∥∥PP ∗(XN ⊗ IM , ZNM , ZNM∗

)
∥∥∥
]
− ‖PP ∗(x⊗ IM , Z, Z∗)‖

≤ ε+

∫ ∞

ε

P
(∥∥∥PP ∗(XN ⊗ IM , ZNM , ZNM∗

)
∥∥∥ ≥ ‖PP ∗(x⊗ IM , Z, Z∗)‖+ α

)
dα

≤ ε+

∫ K

ε

P
(
TrNM

(
fα(PP ∗(XN ⊗ IM , ZNM , ZNM∗

))
)
≥ 1
)

dα+ Ce−N

≤ ε+ C′ε−5M
3

N
.

Finally we get that,

limsup
N→∞

E
[∥∥∥PP ∗(XN ⊗ IM , ZNM , ZNM∗

)
∥∥∥
]
≤ ‖PP ∗(x⊗ IM , Z, Z∗)‖ .

Besides, we know thanks to Theorem 5.4.5 of [2] that if h is a continuous function taking positive
values on (‖PP ∗(x⊗ 1, Z, Z∗)‖ − ε,∞) and taking value 0 elsewhere. Then 1

MN TrMN (h(PP ∗(XN ⊗
IM , Z, Z∗))) converges almost surely towards τA⊗minτB(h(PP ∗(x⊗1, Z, Z∗))). If this quantity is positive
for any h, then for any ε > 0, for N large enough,

∥∥∥PP ∗(XN ⊗ IM , ZNM , ZNM∗
)
∥∥∥ ≥ ‖PP ∗(x⊗ 1, Z, Z∗)‖ − ε .

Since h is non-negative and the intersection of the support of h with the spectrum of PP ∗(x⊗ 1, Z, Z∗)
is non-empty, we have that h(PP ∗(x ⊗ 1, Z, Z∗)) ≥ 0 and is not 0. Besides, we know that the trace
on the space where z is defined is faithful, and so is the trace on the C∗-algebra generated by a single
semicircular variable, hence by Theorem 2.3, so is τA. Thus, since both τA and τB are faithful, by Lemma
4.2, so is τA ⊗min τB and τA ⊗min τB(h(PP ∗(x⊗ 1, Z, Z∗))) > 0. As a consequence, almost surely,

liminf
N→∞

∥∥∥P (XN ⊗ IM , ZNM , ZNM∗
)
∥∥∥ ≥ ‖P (x⊗ 1, Z, Z∗)‖ . (51)

Thanks to Fatou’s Lemma, we deduce

liminf
N→∞

E
[∥∥∥PP ∗(XN ⊗ IM , ZNM , ZNM∗

)
∥∥∥
]
≥ ‖PP ∗(x⊗ IM , Z, Z∗)‖ .

We conclude that

lim
N→∞

E
[∥∥∥PP ∗(XN ⊗ IM , ZNM , ZNM∗

)
∥∥∥
]
= ‖PP ∗(x⊗ IM , Z, Z∗)‖ . (52)

Let us define the following objects,

εN =
∣∣∣E
[∥∥∥PP ∗(XN ⊗ IM , ZNM , ZNM∗

)
∥∥∥
]
− ‖PP ∗(x⊗ IM , Z, Z∗)‖

∣∣∣ ,

K = sup
N,M≥0

KP

(∥∥ZNM
∥∥)+HP

(∥∥ZNM
∥∥) .

K is finite thanks to the strong convergence of the families ZN and Y M . Then thanks to Proposition
4.6, we have that for any δ > 0,

P
( ∣∣∣
∥∥∥P ∗P (XN ⊗ IM , ZNM , ZNM∗

)
∥∥∥− ‖PP ∗(x⊗ IM , Z, Z∗)‖

∣∣∣ ≥ δ +Ke−N + εN

)
≤ d e−2N + e−

δ2N
K .

Since this is true for any δ > 0, by Borel-Cantelli’s Lemma, almost surely,

lim
N→∞

∥∥∥PP ∗(XN ⊗ IM , ZNM , ZNM∗
)
∥∥∥ = ‖PP ∗(x ⊗ 1, Z, Z∗)‖ .

We finally conclude thanks to the fact that for any y in a C∗-algebra, ‖yy∗‖ = ‖y‖2.
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4.4 Proof of Theorem 1.5

We first prove the following estimate that we use multiple times during the proofs.

Lemma 4.7. Let g be a C∞ function which takes value 0 on (−∞, 1/2] and value 1 on [1,∞), and in
[0, 1] otherwise. We set fε : t 7→ g(ε−1(t − α)) with α =

∥∥PP ∗(x⊗ IM , 1⊗ Y M )
∥∥, then there exists a

constant C such that for any ε > 0 and N ,

E

[
1

MN
TrNM

(
fε(PP ∗(XN ⊗ IM , IN ⊗ Y M ))

)]
≤ C

ε−4

N2
.

Proof. To estimate the above expectation we use the same method as in the proof of Theorem 1.2 with
a few refinements to have an optimal estimate with respect to ε. We set fκ

ε : t 7→ g(ε−1(t−α))g(ε−1(κ−
t) + 1) with α = ‖PP ∗(x ⊗ IM , 1⊗ YM )‖ and κ > α. Since g has compact support and is sufficiently

smooth we can apply Theorem 3.1. Setting h : t 7→ g(t− ε−1α)g(ε−1κ+ 1− t) = f̂κ
ε (εt), we have

2π

∫
y4|f̂κ

ε (y)| dy =

∫
y4
∣∣∣∣
∫

g(ε−1(t− α))g(ε−1(κ− t) + 1)e−iyt dt

∣∣∣∣ dy

=

∫
y4
∣∣∣∣
∫

h(t)e−iyεt εdt

∣∣∣∣ dy

= ε−4

∫
y4
∣∣∣∣
∫

h(t)e−iyt dt

∣∣∣∣ dy

≤ ε−4

∫
1

1 + y2
dy

∫
(|h(4)(t)|+ |h(6)(t)|) dt .

The derivatives h(4) and h(6) are uniformly bounded independently of t or ε. Since the support of these
functions is included in [ε−1α, ε−1α+ 1]∪ [ε−1κ, ε−1κ+1], there is a universal constant C such that for
any ε and κ,

∫
y4|f̂κ

ε (y)| dy ≤ Cε−4 .

With similar computations we can find a constant C such that for any ε and κ,

∫
(|y|+ y4)|f̂κ

ε (y)| dy ≤ Cε−4 . (53)

Since the support of fκ
ε is disjoint from the spectrum of PP ∗(x⊗ IM , 1⊗Y M ), for any ε and N one have

τ ⊗ τM

(
fκ
ε (PP ∗(x ⊗ IM , 1 ⊗ Y M ))

)
= 0. Consequently thanks to Theorem 3.1, we have a constant C

such that for any N , ε and κ,

E

[
1

MN
TrNM

(
fκ
ε (PP ∗(XN ⊗ IM , IN ⊗ Y M ))

)]
≤ C

ε−4

N2
.

Then by the monotone convergence Theorem, we deduce

E
[
TrNM

(
fε(PP ∗(XN ⊗ IM , IN ⊗ Y M ))

)]
= lim

κ→∞
E
[
TrNM

(
fκ
ε (PP ∗(XN ⊗ IM , IN ⊗ Y M ))

)]
.

Hence we have a constant C such that for any N and ε > 0,

E

[
1

MN
TrNM

(
fε(PP ∗(XN ⊗ IM , IN ⊗ Y M ))

)]
≤ C

ε−4

N2
.
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We finally complete the proof of Theorem 1.5. One can view XN = (XN
1 , . . . , XN

d ) as the random

vector of size dN2 which consists of the union of (
√
NXN,i

s,s )i,s, (
√
2N ℜXN,i

s,r )s<r,i and (
√
2N ℑXN,i

s,r )s<r,i

which are indeed centered Gaussian random variable of variance 1 as stated in Definition 2.8. Thus we
can apply the Poincaré inequality (see Proposition 2.9) to the function

ϕ : XN 7→ 1

MN
TrMN

(
fε(PP ∗(XN ⊗ IM , IN ⊗ Y M ))

)
,

and we get

Var
(
ϕ(XN )

)
≤ 1

(MN)2
E[‖∇ϕ(XN )‖22]

Besides, as in the proof of Lemma 3.6, if Q ∈ Ad,p+q,

N
∥∥∇TrMN

(
Q(XN ⊗ IM , IN ⊗ Y M )

)∥∥2
2
=
∑

s

∑

i,j

TrMN

(
DsQ Ei,j ⊗ IM

)
TrMN

(
DsQ Ei,j ⊗ IM

)∗
.

Besides, if fk is a polynomial with a single variable, then Dsfk(PP ∗) = ∂s(PP ∗)#̃f ′
k(PP ∗). Thus,

taking fk such that f ′
k converges towards f ′

ε for the sup norm on the spectrum of PP ∗(XN⊗IM , IN⊗Y M ),
we deduce that

Var
(
ϕ(XN )

)
≤ 1

M2N3

∑

s,i,j

E
[
TrMN

(
∂s(PP ∗)#̃f ′

ε(PP ∗) Ei,j ⊗ IM

)
TrMN

(
∂s(PP ∗)#̃f ′

ε(PP ∗) Ei,j ⊗ IM

)∗]
.

Now with A = ∂s(PP ∗)#̃f ′
ε(PP ∗),

∑

i,j

TrMN

(
A Ei,j ⊗ IM

)
TrMN

(
A Ei,j ⊗ IM

)∗
=
∑

i,j,k,l

g∗j ⊗ e∗kAgi ⊗ ek g∗i ⊗ e∗lA
∗gj ⊗ fl

=
∑

j,k,l

g∗j (IN ⊗ e∗k A IN ⊗ ek IN ⊗ e∗l A∗ IN ⊗ el) gj

= TrN (IN ⊗ TrM (A) IN ⊗ TrM (A∗))

= TrN (IN ⊗ TrM (A) (IN ⊗ TrM (A))∗) .

So by contractivity of the conditional expectation over MN (C)⊗ IM , that is IN ⊗ 1
M TrM , we have

∑

i,j

TrMN

(
A Ei,j ⊗ IM

)
TrMN

(
A Ei,j ⊗ IM

)∗
≤ TrMN (AA∗) M .

As a consequence, we find that

Var
(
ϕ(XN )

)
≤ 1

N3M

∑

s

E
[
TrMN

(
∂s(PP ∗)#̃f ′

ε(PP ∗) (∂s(PP ∗)#̃f ′
ε(PP ∗))∗

)]
.

Besides, if U, V and W are monomials,

|TrMN (Uf ′
ε(PP ∗)V f ′

ε(PP ∗)W )| ≤
√
TrMN (Uf ′

ε
2(PP ∗)U∗) TrMN (V f ′

ε(PP ∗)WW ∗f ′
ε(PP ∗)V ∗)

≤ TrMN (f ′
ε
2
(PP ∗)) ‖U‖ ‖V ‖ ‖W‖ .

Therefore there is a constant C depending only on P and supi
∥∥Y M

i

∥∥ such that
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Var
(
ϕ(XN )

)
≤ C

N2
E

[∏

s

(∥∥XN
s

∥∥2 degP
+ 1
) 1

MN
TrNM

(∣∣f ′
ε(PP ∗(XN ⊗ IM , IN ⊗ Y M ))

∣∣2
)]

.

Thanks to Proposition 2.11, we can find w and α such that for any s and u ≥ 0,

P
(∥∥XN

s

∥∥ ≥ w + u
)
≤ e−αuN .

There is a constant C independent of N and ε such that

Var
(
ϕ(XN)

)
≤ C

N2

(
E

[
1

MN
TrNM

(
(f ′

ε)
2(PP ∗(XN ⊗ IM , IN ⊗ Y M ))

)]
+ ε−2e−N

)
. (54)

We can now apply Theorem 3.1 to the right hand side of the above equation, noticing that (53) still
holds if we replace fκ

ε by (εf ′
ε)

2. As a consequence, we find an inequality similar the one of Lemma 4.7
and thus a constant C such that for any N or ε,

Var

(
1

MN
TrNM (fε(PP ∗(XN ⊗ IM , IN ⊗ Y M )))

)
≤ C

(
ε−6

N4
+ ε−2e−N

)
.

Therefore, thanks to Lemma 4.7 there exists a constant C such that for any N ∈ N and ε such that
ε4 > CM

N ,

P
(∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )

∥∥ ≥
∥∥PP ∗(x ⊗ IM , 1⊗ Y M )

∥∥+ ε
)

≤ P

(
1

MN
TrNM

(
fε(PP ∗(XN ⊗ IM , IN ⊗ Y M ))

)
≥ 1

MN

)

≤ P

(∣∣∣∣
1

MN
TrNM (fε(PP ∗))− E

[
1

MN
TrNM (fε(PP ∗))

]∣∣∣∣ ≥
1

MN
− C

N2ε4

)

≤ C

(
ε−6

N4
+ ε−2e−N

)(
1

MN
− C

N2ε4

)−2

.

Let us now set s = cN−1/4 with c a constant such that for any N ,

1

MN
− C

N2s4
≥ 1

2MN
.

Therefore, if x+ = max(x, 0), we have for some constant C,

E
[(∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )

∥∥−
∥∥PP ∗(x ⊗ IM , 1⊗ Y M )

∥∥)
+

]

=

∫

R+

P
(∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )

∥∥ ≥
∥∥PP ∗(x ⊗ IM , 1⊗ Y M )

∥∥+ ε
)
dε

≤ s+ 4CM2N2

∫ ∞

s

ε−6

N4
+ ε−2e−N dε ≤ s+ 4CM2N2(s−5N−4 + s−1e−N )

≤ CN−1/4 .

On one side, we have

P
(∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )

∥∥− E
[∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )

∥∥] ≥ δ +KP

(∥∥Y M
∥∥) e−N

)

≥ P
(∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )

∥∥−
∥∥PP ∗(x⊗ IM , 1⊗ Y M )

∥∥

≥ δ +KP (
∥∥Y M

∥∥)e−N + E
[(∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )

∥∥−
∥∥PP ∗(x⊗ IM , 1⊗ Y M )

∥∥)
+

] )

≥ P

(∣∣∥∥P (XN ⊗ IM , IN ⊗ Y M )
∥∥−

∥∥P (x⊗ IM , 1⊗ Y M )
∥∥∣∣ ≥ δ + CN−1/4

‖P (x⊗ IM , 1⊗ Y M )‖

)
.
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On the other side, thanks to Proposition 4.6, we have

P
(∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )

∥∥− E
[∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )

∥∥] ≥ δ +KP

(∥∥Y M
∥∥) e−N

)

≤ e
− δ2

HP (‖Y M‖)
N
+ de−2N .

Hence we can find constants K and C such that for any N ∈ N and δ > 0,

P
(∥∥P (XN ⊗ IM , IN ⊗ Y M )

∥∥−
∥∥P (x⊗ IM , 1⊗ Y M )

∥∥ ≥ δ + CN−1/4
)
≤ e−Kδ2N + de−2N .

And we get (4) by replacing δ by N−1/4δ.

The other inequality is trickier because we need to study the spectral measure of PP ∗(x⊗IM , 1⊗Y M ),
which is far from easy. We mainly rely on the Theorem 1.1 from [26]. We summarize the part of this
theorem which is interesting for us in the proposition below.

Proposition 4.8. Let x = (x1, . . . , xd) be a system of free semicircular variable, pi,j ∈ C〈X1, . . . , Xd〉
be such that S = (pi,j(x))i,j is self-adjoint with spectral measure ρ with support K. Then there exists a
finite subset A ⊂ R such that if I is a connected component of R\A, then either ρ|I = 0, or I ⊂ K. In
the second situation there exists an analytic function g defined for some δ > 0 on

W := {z ∈ C| |ℑz| < δ} \
⋃

a∈A

{
a− it

∣∣ t ∈ R+
}

such that for each a ∈ A, there exist N ∈ N and ǫ > 0 such that (z − a)Ng(z) admits an expansion on
W ∩ {z ∈ C| |z − a| < ǫ} as a convergent powerseries in rN (z − a) where rN (z) is the analytic N th-root
of z defined with branch C \ {−it| t ∈ R+}. Then ℑg|I is the probability density function of ρ|I.

What this means for us is that at the edge of the spectrum of PP ∗(x ⊗ IM , 1 ⊗ Y M ), either we
have an atom or the density of the spectral measure decays like 1

|x−a|r with r ∈ Q when approaching a.

Consequently we can find β ≥ 0 such that if ρ is the spectral measure of PP ∗(x⊗ IM , 1⊗ Y M ) then for
ε > 0 small enough,

ρ
([∥∥PP ∗(x⊗ IM , 1⊗ Y M )

∥∥− ε,∞
])

≥ εβ .

Consequently if once again g is a C∞ function which takes value 0 on (−∞, 0], 1 on [1/2,∞), and belongs
to (0, 1] otherwise. We then take fε : t 7→ g(ε−1(t−

∥∥PP ∗(x⊗ IM , 1⊗ Y M )
∥∥+ ε)) for some ε ≥ 0. Then

P
(∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )

∥∥ ≤
∥∥PP ∗(x⊗ IM , 1⊗ Y M )

∥∥− ε
)

= P

(
1

MN
TrNM

(
fε(PP ∗(XN ⊗ IM , IN ⊗ Y M ))

)
= 0

)

≤ P

(∣∣∣∣
1

MN
TrNM (fε(PP ∗))− E

[
1

MN
TrNM (fε(PP ∗))

]∣∣∣∣ ≥ E

[
1

MN
TrNM (fε(PP ∗))

])

≤ Var
(

1
MN TrNM (fε(PP ∗))

)

E
[

1
MN TrNM (fε(PP ∗))

]2 .

Thanks to (54), we have

Var

(
1

MN
TrN (fε(PP ∗))

)
≤ C

N2

(
E

[
1

MN
TrNM

(
(f ′

ε)
2(PP ∗)

)]
+ ε−2e−N

)

≤ C

N2

(
‖f ′

ε‖
2
+ ε−2

)
≤ C′

N2
ε−2 .
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On the contrary, with the same kind of computations which let us get Lemma 4.7, we can find constants
C and K such that

E

[
1

MN
TrNM (fε(PP ∗))

]
≥ τ ⊗ τM (fε(PP ∗))− C

ε−4

N2

≥ ρ
([∥∥PP ∗(x⊗ IM , 1⊗ Y M )

∥∥− ε/2,∞
])

− C
ε−4

N2
≥ Kmin(1, ε)β − C

ε−4

N2
.

Therefore we find finite constants C and K such that

P
(∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )

∥∥ ≤
∥∥PP ∗(x⊗ IM , 1⊗ Y M )

∥∥− ε
)
≤ K

N2ε2

(
min(1, ε)β − C

ε−4

N2

)−2

.

Now we fix r = cN−1/(3+β), with c constant such that for any N ,

min(1, r)β − C

N2r4
≥ min(1, r)β

2
.

Then, we have

E
[(∥∥PP ∗(x⊗ IM , 1⊗ Y M )

∥∥−
∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )

∥∥)
+

]

=

∫

R+

P
(∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )

∥∥ ≤
∥∥PP ∗(x⊗ IM , 1⊗ Y M )

∥∥− ε
)
dε

≤ r + 4KN−2

∫ ∞

r

ε−2 min(1, ǫ)−2β dε ≤ r + 4KN−2(r−1−2β + 1)

≤ CN−1/(3+β) .

We deduce the following bound

P
(∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )

∥∥− E
[∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )

∥∥] ≤ −δ −KP

(∥∥Y M
∥∥) e−N

)

≥ P
( ∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )

∥∥−
∥∥PP ∗(x⊗ IM , 1⊗ Y M )

∥∥

≤ −δ −KP (
∥∥Y M

∥∥)e−N − E
[(∥∥PP ∗(x⊗ IM , 1⊗ Y M )

∥∥−
∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )
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+

] )

≥ P
( ∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )

∥∥−
∥∥PP ∗(x⊗ IM , 1⊗ Y M )

∥∥ ≤ −δ − CN−1/(3+β)
)
.

Since on the event
{
∀i,
∥∥XN

i

∥∥ ≤ D
}

with D as in (49), we have

∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )
∥∥−

∥∥PP ∗(x⊗ IM , 1⊗ Y M )
∥∥
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∥∥) (JP (
∥∥Y M
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∥∥P (x⊗ IM , 1⊗ Y M )

∥∥) ,

we deduce that
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On the other side thanks to Proposition 4.6, we have

P
(∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )

∥∥− E
[∥∥PP ∗(XN ⊗ IM , IN ⊗ Y M )

∥∥] ≤ −δ −KP

(∥∥Y M
∥∥) e−N

)

≤ d e−2N + e
− δ2N

HP (‖Y M‖) .

Hence we can find constants K and C such that for any δ > 0,

P
(∥∥P (XN ⊗ IM , IN ⊗ Y M )

∥∥−
∥∥P (x⊗ IM , 1⊗ Y M )

∥∥ ≤ −δ − CN−1/(3+β)
)
≤ e−Kδ2N + 2d e−2N .

And we get (5) by replacing δ by N−1/(3+β)δ.
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