On the K_4 group of modular curves - Archive ouverte HAL Access content directly
Preprints, Working Papers, ... Year :

On the K_4 group of modular curves

Sur le groupe K_4 des courbes modulaires

Abstract

We construct elements in the group K_4 of modular curves using the polylogarithmic complexes of weight 3 defined by Goncharov and De Jeu. The construction is uniform in the level and uses new modular units obtained as cross-ratios of division values of the Weierstrass P function. These units provide explicit triangulations of the 3-term relations in K_2 of modular curves, which in turn give rise to elements in K_4. Based on numerical computations and on recent results of W. Wang, we conjecture that these elements are proportional to the Beilinson elements defined using the Eisenstein symbol.
Fichier principal
Vignette du fichier
K4.pdf (489.41 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

ensl-03012466 , version 1 (18-11-2020)
ensl-03012466 , version 2 (22-09-2022)

Identifiers

Cite

François Brunault. On the K_4 group of modular curves. 2022. ⟨ensl-03012466v2⟩
28 View
23 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More