W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz et al., One-parameter semigroups of positive operators, Lecture Notes in Mathematics, vol.1184, 1986.

R. Balescu, Irreversible Processes in Ionized Gases, Phys. Fluids, vol.3, p.52, 1960.

R. Balescu, Statistical mechanics of charged particles, 1963.

R. Balescu and H. S. Taylor, Binary Correlations in Ionized Gases, Phys. Fluids, vol.4, issue.1, pp.85-93, 1961.

G. Ben-arous and M. Brunaud, Méthode de laplace: étude variationnelle des fluctuations de diffusions de type champ moyen, Stochastics and Stochastic Reports, vol.31, issue.1-4, pp.79-144, 1990.

A. V. Bobylev, M. Pulvirenti, and C. Saffirio, From Particle Systems to the Landau Equation: A Consistency Result, Comm. Math. Phys, vol.319, issue.3, pp.683-702, 2013.

T. Bodineau, I. Gallagher, and L. Saint-raymond, From hard sphere dynamics to the Stokes-Fourier equations: an L 2 analysis of the Boltzmann-Grad limit, Ann. PDE, vol.3, issue.1, 2017.

N. N. Bogolyubov, Problems of a dynamical theory in statistical physics, volume I of Studies in Statistical Mechanics, 1962.

A. Decoster, P. A. Markowich, and B. Perthame, Modeling of collisions, of Series in Applied Mathematics (Paris). Gauthier-Villars, Éditions Scientifiques et Médicales, vol.2, 1998.

P. Degond, Spectral Theory of the Linearized Vlasov-Poisson Equation, Trans. Amer. Math. Soc, vol.294, issue.2, pp.435-453, 1986.

M. Duerinckx, On the size of chaos via Glauber calculus for mean-field classical particle systems

F. Golse, On the dynamics of large particle systems in the mean field limit, Macroscopic and large scale phenomena: coarse graining, mean field limits and ergodicity, vol.3, pp.1-144, 2016.
URL : https://hal.archives-ouvertes.fr/hal-00776304

R. L. Guernsey, The kinetic theory of fully ionized gases, 1960.

R. L. Guernsey, Kinetic Equation for a Completely Ionized Gas, Phys. Fluids, vol.5, pp.322-328, 1962.

T. Kato, Perturbation theory for linear operators, Classics in Mathematics, 1995.

Y. L. Klimontovich, The Statistical Theory of Non-Equilibrium Processes in a Plasma, vol.9, 1967.

N. A. Krall and A. W. Trivelpiece, Principles of plasma physics, International Series in Pure and Applied Mathematics, 1973.

C. Lancellotti, From Vlasov fluctuations to the BGL kinetic equation, Nuovo Cim, vol.33, pp.111-119, 2010.

A. Lenard, On Bogoliubov's kinetic equation for a spatially homogeneous plasma, Ann. Phys, vol.10, pp.390-400, 1960.

E. M. Lifshitz and L. P. Pitaevski?, Physical Kinetics, volume 10 of Course of theoretical physics

A. H. Merchant and R. L. Liboff, Spectral properties of the linearized Balescu-Lenard operator, J. Mathematical Phys, vol.14, issue.1, pp.119-129, 1973.

D. R. Nicholson, Introduction to Plasma Theory, 1983.

O. Penrose, Electrostatic instabilities of a uniform non-maxwellian plasma, Phys. Fluids, vol.3, issue.2, pp.258-265, 1960.

J. Piasecki, Self-Diffusion in Fluids with Weak Long-Range Forces, J. Stat. Phys, vol.26, issue.2, pp.375-396, 1981.

J. Piasecki and G. Szamel, Stochastic dynamics of a test particle in fluids with weak long-range forces, Physica A, vol.143, pp.114-122, 1987.

I. Prigogine, Non-Equilibrium Statistical Mechanics, 1962.

I. Prigogine and R. Balescu, Irreversible processes in gases. I. The diagram technique, Physica, vol.25, pp.281-301, 1959.

I. Prigogine and R. Balescu, Irreversible processes in gases. II. The equations of evolution, Physica, vol.25, pp.302-323, 1959.

H. Spohn, Kinetic equations from Hamiltonian dynamics: Markovian limits, Rev. Mod. Phys, vol.53, issue.3, pp.569-615, 1980.

R. M. Strain, On the linearized Balescu-Lenard equation, Comm. Partial Differential Equations, vol.32, pp.1551-1586, 2007.

D. A. Tidman, R. L. Guernsey, and D. Montgomery, Test Particle" Problem for an Equilibrium Plasma, Phys. Fluids, vol.7, pp.1089-1091, 1964.

J. J. Velázquez and R. Winter, The two-particle correlation function for systems with long-range interactions, J. Stat. Phys, vol.173, issue.1, pp.1-41, 2018.

R. Winter, Convergence to the Landau equation from the truncated BBGKY hierarchy in the weakcoupling limit. Preprint, vol.8628, 2019.