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ON THE SPECTRAL CHARACTERIZATION

OF BESSE AND ZOLL REEB FLOWS

VIKTOR L. GINZBURG, BAŞAK Z. GÜREL, AND MARCO MAZZUCCHELLI

Abstract. A closed contact manifold is called Besse when all its Reeb or-

bits are closed, and Zoll when they have the same minimal period. In this
paper, we provide a characterization of Besse contact forms for convex con-

tact spheres and Riemannian unit tangent bundles in terms of S1-equivariant

spectral invariants. Furthermore, for restricted contact type hypersurfaces of
symplectic vector spaces, we give a sufficient condition for the Besse property

via the Ekeland–Hofer capacities.
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1. Introduction

This work gives spectral characterizations of several classes of higher dimensional
Besse and Zoll contact manifolds. Recall that a contact manifold is a pair (Σ, λ),
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where Σ is a manifold of dimension 2n − 1, and λ is a 1-form on Σ such that
λ∧ (dλ)n−1 is nowhere vanishing. Throughout the paper, all contact manifolds are
assumed to be closed and connected. The spectrum mentioned above is the one
related to the Reeb dynamics. Namely, denote by R the Reeb vector field on (Σ, λ),
defined by λ(R) ≡ 1 and dλ(R, ·) ≡ 0. The action spectrum σ(Σ, λ) is the set of
periods of the closed Reeb orbits, i.e., of the periodic orbits of the flow φtR : Σ→ Σ
of R. Here by period we mean any, not necessarily minimal, period of a Reeb orbit:
a closed Reeb orbit with minimal period τ > 0 contributes to the spectrum all
multiples of τ . In all settings that we consider, the action spectrum is known to be
non-empty, whereas in general this is a conjecture due to Weinstein.

A closed connected contact manifold is called Besse when all its Reeb orbits are
closed, and in such a case the Reeb orbits admit a common period by a theorem
of Wadsley, [Wad75]. When the common period of the Reeb orbits is also their
minimal period, the contact manifold is called Zoll1. In other words, these are
the prequantization bundles equipped with connection forms. To be more specific,
consider a symplectic manifold (B,ω) such that [ω] is integral, i.e., [ω] lies in the
image of H2(B;Z) in H2(B;R). There exists an S1-bundle π : Σ → B with first
Chern class −[ω] or, more precisely, such that −[ω] is the image of its first Chern
class. This circle bundle is not unique if H2(B;Z) has torsion. Identifying the
Lie algebra of S1 with R, pick a connection form λ on this S1-bundle. (We refer
the reader to, e.g., [GGK02] for a discussion of sign conventions used here.) The
connection form λ is an S1-invariant form on Σ such that dλ = π∗ω. Note that
such a form is not unique up to a gauge transformation if H1(B;R) 6= 0. It is easy
to see that λ is a contact form. The contact manifold (Σ, λ) is often referred to as a
prequantization or Boothby–Wang bundle [BW58] and it is not hard to show that
every Zoll contact manifold has this form.

In [MS18a], the third author and Suhr proved that the unit tangent bundle of a
Riemannian 2-sphere (S2, g), equipped with its standard contact form, is Zoll if and
only if the simply closed geodesics of (S2, g) have the same length. In the recent
paper [CGM19], Cristofaro-Gardiner and the third author proved that a closed
connected contact 3-manifold (Σ, λ) is Besse if and only if its action spectrum
σ(Σ, λ) has rank one, that is, σ(Σ, λ) ⊂ {mτ | m ∈ Z} for some τ > 0. The proof
of this result uses in an essential way the properties of the spectral invariants from
embedded contact homology (ECH), [Hut14, CGH16], a tool which is only available
in dimension 3.

Even though a characterization such as the one in [CGM19] seems currently out
of reach for general high dimensional contact manifolds, in this paper we provide
results in this direction for three classes of contact manifolds: convex hypersur-
faces of symplectic vector spaces (R2n, ω), more general restricted contact type
hypersurfaces of (R2n, ω), and Riemannian unit tangent bundles. With one no-
table exception (Theorem 1.4), we are not able to obtain characterizations of the
Besse property from the mere knowledge of the action spectrum; our criteria require
the knowledge of suitable S1-equivariant spectral invariants, which are selectors of
values from the action spectrum.

1In the literature, Besse and Zoll contact manifolds are sometimes called almost regular and
regular contact manifolds respectively, see, e.g., [Tho76].
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1.1. Convex contact spheres. Consider R2n equipped with its standard symplectic
form

ω =

n∑
i=1

dxi ∧ dyi.

Let C ⊂ R2n be a compact ball containing the origin in its interior and having a
smooth boundary Σ = ∂C which is strongly convex, i.e., it is a level-set of a smooth
function with positive definite Hessian at every point. The primitive

n∑
i=1

1
2

(
xi dyi − yi dxi

)
of ω restricts to a contact form λ on Σ. In what follows, we will refer to such a
hypersurface Σ as a convex contact sphere, implicitly equipped with its contact
form λ, and denote its action spectrum by σ(Σ).

In their seminal work [EH87], Ekeland and Hofer constructed an increasing se-
quence

c0(Σ) ≤ c1(Σ) ≤ c2(Σ) ≤ . . .
of spectral invariants ci(Σ) ∈ σ(Σ) for integers i ≥ 0 by means of a suitable min-
max procedure with S1-equivariant cohomology classes. In this paper, we recall
an alternative definition of these spectral invariants relying on Clarke’s dual action
functional, as in Ekeland’s monograph [Eke90, Chapter V]; see Section 3.3.

Every τ -periodic Reeb orbit of Σ has a well defined Conley-Zehnder index (see
Section 3.6). In a more general symplectic setting, the Conley-Zehnder indices can
have arbitrary sign, but on a convex contact sphere they are always larger than
or equal to n. If Σ is Besse and τ is a common period for its Reeb orbits, then
all τ -periodic Reeb orbits have the same Conley-Zehnder index µ ∈ N, and we say
that Σ is (τ,µ)-Besse.

Example 1.1. Consider the ellipsoid

E(a) =

{
z = (z1, ..., zn) ∈ R2n

∣∣∣∣∣
n∑
h=1

|zh|2

ah
=

1

π

}
,

where a = (a1, ..., an) and 0 < a1 ≤ ... ≤ an <∞. The associated Reeb flow is the
linear one

φtR : E(a)→ E(a), φtR(z) = (eJ2πt/a1z1, ..., e
J2πt/anzn),

where J is the standard complex structure of the symplectic vector space (R2n, ω0).
The ellipsoid E(a) is Besse if and only if the ratios ah/ak are rational for all h, k ∈
{1, ..., n}. In this case, the minimal period τ0 > 0 of the Reeb flow is precisely the
least common multiple of a1, ..., an. For any multiple τ > 0 of τ0, the τ -periodic
Reeb orbits have Conley-Zehnder index µ = 2

(
τ
a1

+ ...+ τ
an

)
− n, and the spectral

invariants satisfy

τ = ci(Σ) = ci+n−1(Σ) (1.1)

for i = (µ− n)/2, see Section 3.7. �

Our first result shows that the equality (1.1) is indeed a characterizing property
of (τ, µ)-Besse convex contact spheres.
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Theorem 1.2. A convex contact sphere Σ ⊂ R2n is Besse if and only if ci(Σ) =
ci+n−1(Σ) for some integer i ≥ 0. In this case, Σ is (τ, µ)-Besse for τ = ci(Σ) =
ci+n−1(Σ) and µ = 2i+ n.

An immediate consequence of Theorem 1.2 is a characterization of Zoll convex
contact spheres:

Corollary 1.3. A convex contact sphere Σ ⊂ R2n is Zoll if and only if c0(Σ) =
cn−1(Σ).

A convex contact sphere Σ = ∂C ⊂ R2n is said to be δ-pinched when its compact
filling C can be squeezed between two round balls B2n(r) ⊆ C ⊆ B2n(R) whose

radii have ratio R/r < δ. The class of
√

2-pinched convex contact spheres Σ ⊂ R2n

is particularly significant in the study of periodic orbits: for instance, a theorem due
to Ekeland and Lasry [EL80] asserts that they always have at least n closed Reeb
orbits. (The multiplicity problem is still open for general convex contact spheres
of dimension at least 9 without any additional non-degeneracy assumptions; see
however [LZ02], and also [GG19] for more recent results and further references.)

Building on [EL80], we provide a characterization of Zoll
√

2-pinched convex contact
spheres, which is solely based on the action spectrum. Recall that the systole sys(Σ)
is the minimum of the spectrum σ(Σ), that is, the minimum among all the periods
of the closed Reeb orbits of Σ.

Theorem 1.4. A convex contact δ-pinched sphere Σ ⊂ R2n with δ ∈ (1,
√

2] is Zoll
if and only if its action spectrum satisfies σ(Σ) ∩ (sys(Σ), δ2sys(Σ)) = ∅.

In the context of geodesic flows (cf. Subsection 1.3), a theorem in the same spirit
was proved by Ballmann–Thorbergsson–Ziller [BTZ83, Theorem A].

1.2. Restricted contact type hypersurfaces of symplectic vector spaces. We now
consider a larger class of closed hypersurfaces Σ ⊂ R2n formed by hypersurfaces of
restricted contact type, i.e., such that there exists a primitive Λ of the standard sym-
plectic form ω which restricts to a contact form on Σ. For instance, the boundary
of a star-shaped domain in R2n has restricted contact type. In fact, every contact
form on S2n−1 supporting the standard contact structure can be obtained by a star-
shaped embedding. The action spectrum σ(Σ,Λ|Σ) is independent of the choice of
the primitive Λ, and therefore will be simply denoted by σ(Σ). Analogously, if
(Σ,Λ|Σ) is Besse, the same will be true if we replace Λ by any other primitive of
ω which restricts to a contact form on Σ, and therefore we will simply say that Σ
is Besse. For this class of contact manifolds, the variational theory of closed Reeb
orbits is more involved than in the convex case, and several approaches (predating
Floer theory and symplectic homology) were developed by Viterbo [Vit89], by Hofer
and Zehnder [HZ87], and by Ekeland and Hofer [EH89, EH90]. In this section, we
adopt the latter approach, which involves the Ekeland–Hofer symplectic capacities.

For each integer i ≥ 0 and for each bounded subset B ⊂ R2n, we denote by
ci(B) the i-th Ekeland–Hofer capacity. This is again an increasing sequence:

c0(B) ≤ c1(B) ≤ c2(B) ≤ . . .
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Two terminological remarks are due. First, note that there is a potential conflict
of notation here, since ci(·) was already used in Subsection 1.1 to denote the spectral
invariants for the Clarke’s dual action functional. Nevertheless, recent papers of
Abbondandolo and Kang [AK19], and Irie [Iri19] seem to suggest that the i-th
Ekeland–Hofer capacity of a convex contact sphere may indeed coincide with its
i-th spectral invariant defined via the Clarke’s dual action functional. Secondly,
here we think of ci as a function of B and thus ci naturally extends to a function
of compact subsets of R2n. In particular, one has ci(Σ) for Σ = ∂B defined in this
way. This notation could be somewhat inconsistent with the one from Section 1.1,
where the spectral invariants, a.k.a. action selectors, a.k.a. capacities, are associated
with the domain bounded by Σ. However, one of the remarkable features of the
Ekeland–Hofer capacities is that they are action selectors: if B ⊂ R2n is a compact
subset whose boundary Σ = ∂B is smooth and of restricted contact type, then
ci(B) = ci(Σ) ∈ σ(Σ) for all i ≥ 0.

Here we prove that the Ekeland–Hofer capacities provide sufficient conditions
for a restricted contact type hypersurface Σ to be Besse.

Theorem 1.5. Let Σ ⊂ R2n be a closed hypersurface of restricted contact type with
discrete action spectrum σ(Σ). Assume that ci(Σ) = ci+n−1(Σ) for some integer
i ≥ 0. Then Σ is Besse and ci(Σ) is a common period of its closed Reeb orbits.

In this theorem, the assumption that the action spectrum be discrete does not
seem to be essential, and is imposed only to avoid technical difficulties. Up to this
assumption, Theorem 1.5 is a generalization of one direction – the “if” assertion –
of Theorem 1.2. We do not know whether the Ekeland–Hofer capacities actually
provide a characterization of restricted contact type hypersurfaces, although this is
likely to be the case.

Question 1.1. Does the converse implication in Theorem 1.5 hold? More precisely,
if Σ is a Besse, closed, restricted contact type hypersurface whose Reeb orbits have
common period τ , is it true that ci(Σ) = ci+n−1(Σ) = τ , where 2i + n is the
Conley–Zehnder index of any τ -periodic Reeb orbit?

1.3. Geodesic flows. The last class of contact manifolds which we consider is that
of Riemannian unit tangent bundles

Σ = SM =
{

(q, v) ∈ TM
∣∣ ‖v‖g = 1

}
,

where M is a closed manifold of dimension n ≥ 2, and g is a Riemannian metric
on M . The unit tangent bundle SM is implicitly equipped with the contact form
which is the restriction of the Liouville 1-form on TM . The Reeb flow on SM is
the geodesic flow of (M, g), and in particular the closed Reeb orbits are the lifts of
closed geodesics of (M, g).

A Riemannian metric g on M is called Besse (resp. Zoll) when its unit tangent
bundle SM is Besse (resp. Zoll). We will say that a closed manifold M of dimension
at least 2 is Besse (resp. Zoll) when it admits a Besse (resp. Zoll) Riemannian metric.
In the recent paper [MS18b], the third author and Suhr provided a characterization
of the Zoll property of a Riemannian metric in terms of suitably defined spectral
invariants associated with a finite-dimensional reduction of the classical energy
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functional. Here, we provide an analogous characterization in terms of the usual
S1-equivariant spectral invariants of geodesic flows.

A celebrated theorem due to Bott and Samelson [Bot54, Sam63, Bes78] asserts
that any Besse manifold has the same integral cohomology ring as one of the com-
pact rank-one symmetric spaces

Sn, RPn, CPn/2, HPn/4, CaP2 (with dimension n = 16).

We denote by M0 ∈ {Sn,RPn,CPn/2,HPn/4,CaP2} the model of a Besse manifold
M , i.e., the unique manifold M0 from this list, satisfying H∗(M ;Z) ∼= H∗(M0;Z).
All simply connected Besse manifolds M are spin, except those whose associated
model is M0 = CPn/2 with even complex dimension n/2; see [RW17].

Let ΛM = W 1,2(S1,M) be the free loop space of M , and let us identify M ⊂ ΛM
with the subspace of constant loops. The circle S1 = R/Z acts on ΛM by time-shift

t · γ = γ(t+ ·), ∀t ∈ S1, γ ∈ ΛM,

and we can therefore consider the S1-equivariant cohomology of ΛM . Every non-
zero cohomology class µ ∈ H∗S1(ΛM,M ;Q) gives rise to an associated spectral
invariant cg(µ) ∈ σ(SM), which is the period of a unit-speed closed geodesic of
(M, g). We will recall the precise definition of cg(µ) in Subsection 5.1.

Assume now that M is an n-dimensional Zoll manifold, and consider a Zoll Rie-
mannian metric on M . The associated geodesic flow gives rise to an S1 action on
the unit tangent bundle SM . In this case, it is well known that the S1-equivariant
cohomology of the free loop space relative to the constants admits an explicit iso-
morphism

H∗S1(ΛM,M ;Q) ∼=
⊕
m≥1

H∗−mi(M)−(m−1)(n−1)(SM/S1;Q), (1.2)

for some integer i(M) > 0; see Section 5.4. We consider the non-zero cohomology
classes

αm ∈ Hmi(M)+(m−1)(n−1)
S1 (ΛM,M ;Q),

βm ∈ Hmi(M)+(m+1)(n−1)
S1 (ΛM,M ;Q),

which correspond to generators of H0
S1(SM/S1;Q) and H2n−2

S1 (SM/S1;Q), respec-
tively, of the m-th summand in the above direct sum decomposition. Note that the
definition of these classes relies on the fact that M admits a Zoll metric. (How-
ever, it is not immediately obvious that the classes αm and βm are determined by
M and completely independent of the choice of the reference Zoll metric.) Our
characterization of Zoll Riemannian metrics is as follows.

Theorem 1.6. Let M be a simply connected spin Zoll manifold of dimension n ≥ 2,
and let g be any Riemannian metric on M . Then, the following three conditions
are equivalent:

(i) cg(α1) = cg(β1),
(ii) cg(αm) = cg(βm) = mcg(α1) for all integers m ≥ 1,

(iii) g is Zoll, and its unit speed geodesics have minimal period cg(α1).

Moreover, if M = Sn with n 6= 3, condition (i) can be replaced by

(i’) cg(αm) = cg(βm) for some m ∈ N.
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The moreover part of Theorem 1.6 is based on the validity of the so-called Berger
conjecture, which was established for S2 by Gromoll and Grove [GG81], and recently
for Sn with n > 3 by Radeschi and Wilking [RW17]: any Besse Riemannian metric
on Sn is Zoll. The conjecture is still open for the other simply connected closed
manifolds admitting Zoll Riemannian metrics, and its validity would imply the
equivalence of (i’) and the Zoll condition in full generality.

1.4. General perspective. All results stated in this section fit the same general
pattern and can be cast in the framework of Lusternik–Schnirelmann theory. In
its modern version the theory gives a lower bound on the number of critical values
of a function or a functional f : X → R with isolated critical points in terms of
the structure of the cup product on the cohomology of the underlying space X or,
more generally, the Morse-type homology of f . It hinges on the fact that for two
cohomology classes α and β, we necessary have the inequality

c(α ^ β, f) ≥ c(α, f)

relating the minimax critical values of f associated with the classes α ^ β and α
and on the fact that this inequality is strict when β has degree |β| > 0 and the
critical points are isolated.

Furthermore, when the equality occurs the critical set K of f at the critical level
c(α ^ β, f) = c(α, f) must be sufficiently large: the restriction β|K of β to K is
necessarily non-zero. In particular, informally speaking, the dimension of K must
be at least |β|. These facts are well-known and in some form go back to the original
work of Lusternik and Schnirelmann, cf. [Vit97]. Moreover, they also hold in many
other versions of Morse theory, e.g., in fixed point Floer theory; [How12].

This general principle carries over to the equivariant setting when f is invariant
under an S1 action on X. The multiplication by the image of the generator of
e ∈ H2(BS1;R) gives rise to the shift operator D on H∗S1(X;R) increasing degree
by 2. As above, c(Dα, f) ≥ c(α, f) and the inequality is strict provided that
the action is locally free and the critical sets are isolated S1-orbits. Moreover,
whenever the equality holds, the operator D is necessarily non-zero on H∗S1(K;R),
where K is again the critical set on the level c(Dα, f) = c(α, f). In particular,
c(Dkα, f) = c(α, f) implies that K must have dimension at least 2k + 1, assuming
again that the action is locally free. This setting is analyzed in detail in Section 2
where we discuss the Fadell–Rabinowitz index.

Let us specialize these arguments to the case where f is an action–type functional
or the energy functional on a suitably defined loop space X of a manifold Y of
dimension 2n + 1. If c(Dnα, f) = c(α, f) for some class α, we conclude that Y is
filled in by the critical points of f . The results of the previous sections are examples
of this general principle.

The Lusternik–Schnirelmann type inequalities established in [GG19] indicate
that these results should also have analogues for equivariant Floer and symplectic
cohomology, readily leading to a systolic characterization of Reeb flows on more
general contact manifolds. (However, yet a more general version of the results,
mentioned above, with a homologically non-trivial critical set K ( Y of closed
Reeb orbits, identified with a subset of Y , of a smaller dimension encounters a
technical difficulty. It stems from the fact that the Floer homology is not the
homology of a loop space X, while H∗S1(K;R), unless K is “sufficiently nice”, is
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defined in terms of the equivariant homology of a neighborhood of K in the loop
space X.)

Finally, note that on the conceptual level the results from [CGM19] also fit in
this framework with the role of the equivariant cohomology taken by ECH and the
U -operator in ECH playing the role of the shift operator D.

1.5. Organization of the paper. In Section 2 we provide the background on the
Fadell–Rabinowitz index, and prove a technical result, Lemma 2.1, which will be
one of the key ingredients for the proofs of our theorems. In Section 3 we prove
the results concerning convex contact spheres. In Section 4 we prove Theorem 1.5
on restricted contact type hypersurfaces in R2n. Finally, in Section 5 we prove
Theorem 1.6 concerning geodesic flows.

Acknowledgments. The authors are grateful to Barney Bramham for suggesting
an improvement on the original statement of Theorem 1.4 and to Jean Gutt and
Andrzej Szulkin for useful discussions. Parts of this work were carried out while
the second and third authors were in residence at MSRI, Berkeley, CA, during the
Fall 2018 semester. The authors would like to thank the institute for its warm
hospitality and support.

2. The Fadell–Rabinowitz index

All equivariant spectral invariants used in this paper are based on a cohomolog-
ical index introduced by Fadell–Rabinowitz [FR78], which is a replacement for the
cup-length in equivariant critical point theory. We denote by e ∈ H2(BS1;Q) the
Euler class of the classifying vector bundle ES1 → BS1. Let X be a topological
space equipped with a continuous S1 action. Denote by pr2 : X ×S1 ES1 → BS1,
pr2([x, v]) = [v] the natural projection map. The cohomology class

eX := pr∗2e ∈ H2
S1(X;Q)

is the Euler class of the circle bundle

π : X × ES1 → X ×S1 ES1. (2.1)

If X 6= ∅, the Fadell–Rabinowitz index indFR(X) is the supremum of the integers
k ≥ 0 such that

ekX := eX ^ . . . ^ eX︸ ︷︷ ︸
×k

6= 0 in H2k
S1(X;Q).

It is convenient to set indFR(∅) := −1. Then the index becomes subadditive: if
A,B ⊂ X are two S1-invariant open subsets, then

indFR(A ∪B) ≤ indFR(A) + indFR(B) + 1. (2.2)

Moreover, it readily follows from its definition that the index is monotone with
respect to the inclusion: indFR(A) ≤ indFR(B) if A ⊆ B. If X is the total space of
a principal S1-bundle X → B with Euler class ẽ (e.g., a prequantization bundle),
then indFR(X) is equal to the supremum of all k ∈ N such that ẽk 6= 0 in H∗(B;Q).

The following technical lemma is an important ingredient in the proofs of our
main theorems. We prove it for metric spaces, which is sufficient for our purposes.

Lemma 2.1. Let X be a metric space equipped with a continuous S1 action such
that indFR(X) <∞ and K ⊂ X a compact S1-invariant subset admitting arbitrar-
ily small neighborhoods W ⊆ X with trivial cohomology H2p+1(W ;Q) for all p > q
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for some integer q > 0. Then K admits an S1-invariant neighborhood U ⊆ X with
Fadell–Rabinowitz index indFR(U) ≤ q.

Proof. Since indFR(X) < ∞, the monotonicity of the Fadell–Rabinowitz index
implies that every S1-invariant neighborhood V ⊆ X of K satisfies indFR(V ) <∞
as well. Therefore,

I :=
{

indFR(V )
∣∣ V ⊆ X is an S1-invariant neighborhood of K

}
is a subset of the non-negative integers. In order to prove the lemma, we must show
that r := min I ≤ q.

We consider an S1-invariant neighborhood V ⊆ X of K such that indFR(V ) = r.
Since erV 6= 0 and er+1

V = 0, the Gysin exact sequence of the circle bundle (2.1),
which reads

. . .
π∗−−→H2r+1(V ;Q)

π∗−−→H2r
S1(V ;Q)

^eV−−→H2r+2
S1 (V ;Q)

π∗−−→ . . . ,

implies that there exists a non-zero µ ∈ H2r+1(V ;Q) such that π∗(µ) = erV .
LetW ⊂ V be a neighborhood ofK such thatH2p+1(W ;Q) is trivial for all p > q.

The assumptions that X is a metric space and that K is compact guarantee that
there exists an S1-invariant neighborhood U ⊆W of K. Notice that indFR(U) = r,
since r = inf I and indFR(U) ≤ indFR(V ) = r. Let us consider the commutative
diagram

H2r+1(V ;Q)
ι∗1 //

π∗

��

H2r+1(W ;Q)
ι∗2 // H2r+1(U ;Q)

π∗

��
H2r
S1(V ;Q)

ι∗3 // H2r
S1(U ;Q)

Here, the horizontal homomorphisms are induced by the inclusions W ⊆ V , U ⊆W ,
and U ⊆ V . Notice that

0 6= erU = ι∗3(erV ) = ι∗3 ◦ π∗(µ) = π∗ ◦ ι∗2 ◦ ι∗1(µ).

In particular, H2r+1(W ;Q) 6= 0, and therefore r ≤ q. �

3. Convex contact spheres

3.1. Closed Reeb orbits on convex contact spheres. Let Σ ⊂ R2n be a convex
contact sphere, λ its canonical contact form, and R its Reeb vector field. We are
interested in the closed Reeb orbits of (Σ, λ), i.e., the curves γ : R→ Σ which are
solutions of {

γ̇(t) = R(γ(t)),
γ(0) = γ(τ) for some minimal τ = τγ > 0.

(3.1)

The action spectrum of Σ is the set of positive numbers

σ(Σ) :=
{
kτγ

∣∣ k ∈ N, γ solution of (3.1)
}
,

where N = {1, 2, 3, . . . } is the set of natural numbers.
The solutions of (3.1) can be studied by means of Clarke’s variational principle,

which we will briefly recall in the next subsection following Ekeland’s monograph
[Eke90]; we refer the reader to [Eke84, EH87] for alternative, although analogous,
approaches. A preliminary step consists in converting the problem (3.1) into an
analogous Hamiltonian periodic orbit problem with prescribed period. To this end,
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we fix once and for all α ∈ (1, 2), and consider the Hamiltonian H : R2n → [0,∞)
which is positively homogeneous of degree α and such that Σ = H−1(1). Since Σ
is strongly convex and encloses the origin, such a Hamiltonian exists, is unique and
smooth with positive-definite Hessian outside the origin. The non-trivial 1-periodic
Hamiltonian orbits ζ : R→ R2n of H are the solutions of{

ζ̇(t) = J∇H(ζ(t)),
ζ(0) = ζ(1) 6= 0.

(3.2)

There is a one-to-one correspondence between solutions γ of (3.1) and countable
sequences of solutions {γk | k ∈ N} of (3.2), given by

γk(t) =
( 2kτγ

α

)1/(α−2)
γ(kτγt). (3.3)

In other words, γk is a rescaling of the k-th iterate of γ.

3.2. Variational setting. Consider the exponent β = α/(α − 1) ∈ (2,∞) which is
Hölder conjugate to α. The Legendre dual of H is the function

H∗ : R2n → R, H∗(w) = max
z∈R2n

(
〈z, w〉 −H(z)

)
,

which is positively homogeneous of degree β, smooth with positive-definite Hessian

outside the origin, and C2 at the origin. Setting S1 = R/Z, denote by Lβ0 (S1,R2n)
the space of functions in Lβ(S1,R2n) with zero average. Namely, every such func-

tion is of the form ζ̇ for some ζ ∈ W 1,β(S1,R2n). The Clarke action functional is
defined by

Ψ : Lβ0 (S1,R2n)→ R, Ψ(ζ̇) =

∫ 1

0

(
− 1

2 〈Jζ(t), ζ̇(t)〉+H∗(−Jζ̇(t))
)

dt,

The circle S1 acts on the Banach space Lβ0 (S1,R2n) by the time-shift

t · ζ̇ = ζ̇(t+ ·), ∀t ∈ S1, ζ̇ ∈ Lβ0 (S1,R2n),

and Ψ is invariant under this action.
The Clarke action functional Ψ satisfies all standard conditions required to ap-

ply the classical variational methods: it is C1,1, bounded from below, and satis-
fies the Palais–Smale condition. Beside the origin, its critical points are precisely
ζ̇ ∈ C∞(S1;R2n) admitting a primitive ζ which is a 1-periodic solution of the
Hamiltonian system (3.2). Therefore, in the notation from (3.3), there is a one-to-
one correspondence between solutions γ of (3.1) and sequences of critical circles⋃

k∈N

S1 · γ̇k ⊂ crit(Ψ)

with associated critical values

Ψ(γ̇k) = −
(
1− α

2

)
H(γk(t)) = −

(
1− α

2

)
(2kα−1τγ)−α/(2−α) < 0.

The origin is thus the only critical point of Ψ with non-negative critical value, and
indeed Ψ(0) = 0. It is notationally convenient to renormalize Ψ by introducing

A : {Ψ < 0} → (0,∞), A(ζ̇) = α
2

((
2

α−2

)
Ψ(ζ̇)

)α−2
α ,

so that crit(A) = crit(Ψ) \ {0}, and the critical value of each γk is precisely the
action of the k-th iterate of the associated closed Reeb orbit γ, i.e.

A(γ̇k) = kτγ ∈ σ(Σ).
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3.3. Equivariant spectral invariants. Let us recall the construction of the equi-
variant spectral invariants {ci(Σ) | i ≥ 0} for a convex contact sphere Σ, which
is originally due to Ekeland and Hofer [EH87]. In the setting of the Clarke ac-
tion functional [Eke90, Section V.3], such a construction is based on the fact that
indFR({Ψ < 0}) =∞. Since Ψ satisfies the Palais–Smale condition, for each integer
i ≥ 0 the real number

c̃i(Σ) := inf
{
a ∈ R

∣∣ indFR({Ψ < a}) ≥ i
}

is a negative critical value of the Clarke action functional Ψ, and c̃i(Σ) → 0 as
i→∞. Namely, the value

ci(Σ) := α
2

((
2

α−2

)
c̃i(Σ)

)(α−2)/α
= inf

{
a ∈ R

∣∣ indFR({A < a}) ≥ i
}

belongs to the action spectrum σ(Σ), and

lim
i→∞

ci(Σ) =∞. (3.4)

3.4. Cohomology of neighborhoods of critical sets. We denote by φtR : Σ → Σ the

Reeb flow on Σ, i.e. φ0
R = id and d

dtφ
t
R = R ◦ φtR. We fix τ > 0, and consider the

(possibly empty) compact subset

K := fix(φτR) ⊆ Σ.

Namely, for each z ∈ K, the curve γz(t) := φtR(z) is a τ -periodic Reeb orbit. As

follows from Equation (3.3), γz has an associated critical point ζ̇z ∈ crit(A) given
by

ζz(t) := (2τα−1)1/(α−2)γz(τt), (3.5)

and with critical value A(ζ̇z) = τ . We set

K :=
{
ζ̇z ∈ Lβ0 (S1,R2n)

∣∣ z ∈ K}.
Lemma 3.1. We have indFR(U) ≥ n−1 for all sufficiently small S1-invariant neigh-

borhoods U ⊂ Lβ0 (S1,R
2n) of K if and only if K = Σ.

Proof. We define the smooth map

ι : W 1,β(R/τZ,Σ)→ Lβ0 (S1,R2n)

by ι(γ) = ζ̇, where ζ(t) = (2τα−1)1/(α−2)γ(τt). In particular, using the notation

from Equation (3.5), ι(γz) = ζ̇z.
It is well known that the Reeb vector fields are geodesible. More specifically, if

we define g to be any Riemannian metric on Σ such that g(R, ·) = λ, then the orbits
of the Reeb flow φtR : Σ→ Σ are unit-speed geodesics of the Riemannian manifolds
(Σ, g). We fix one such g from now on. Let ε > 0 be a small enough quantity
such that, for each z ∈ Σ and t ∈ [0, ε], we have dg(z, φ

t
R(z)) < injrad(Σ, g). Here,

dg and injrad(Σ, g) denote the Riemannian distance and the injectivity radius of
(Σ, g) respectively. We choose an arbitrarily small open neighborhood W ⊆ Σ of
the compact subset K, which is small enough so that

dg(φ
τ−ε
R (z), z) < injrad(Σ, g), ∀z ∈W.

For each z ∈ W , we define γ̃z ∈ W 1,β(R/τZ,Σ) to be the curve such that γ̃z(t) =
φtR(z) for all t ∈ [0, τ − ε], and γz|[τ−ε,τ ] is the unique shortest geodesic of (Σ, g)
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parametrized with constant speed and joining φτ−εR (z) and z. Notice that, since
the Reeb orbits of Σ are unit-speed geodesics of (Σ, g), we have

γ̃z(t) = γz(t) = φtR(z), ∀z ∈ K, t ∈ R/τZ.
After shrinking W if necessary, we see that the map

γ̃ : W ↪→W 1,β(R/τZ,Σ), γ̃(z) = γ̃z

is a smooth embedding. The space W := ι ◦ γ̃(W ) is thus a (2n − 1)-dimensional

smooth submanifold of Lβ0 (S1,R2n) diffeomorphic to the open subset W ⊆ Σ. We
denote by

N ⊂ Lβ0 (S1,R2n) (3.6)

a tubular neighborhood of W, which is thus homotopy equivalent to W . In partic-
ular,

H2n−1(N ;Q) ∼= H2n−1(W;Q) ∼= H2n−1(W ;Q).

BothW and N can be chosen arbitrarily small, and thus this construction provides
a fundamental system of open neighborhoods of the critical set K.

If K 6= Σ, then K admits an arbitrarily small open neighborhood W ( Σ, and
in particular H∗≥2n−1(W ;Q) = 0. Therefore, by the previous paragraph, K admits

an arbitrarily small neighborhood N ⊂ Lβ0 (S1,R2n) with H∗≥2n−1(N ;Q) = 0. We
can thus apply the abstract Lemma 2.1, and infer that K admits an S1-invariant

neighborhood U ⊂ Lβ0 (S1,R2n) with indFR(U) < n− 1.
Finally, if K = Σ, every point z ∈ Σ lies on a closed Reeb orbit of period τ .

Therefore, for each z ∈ Σ, the curve ζ̇z ∈ Lβ0 (S1,R2n) is a critical point of A with

critical value A(ζ̇z) = τ . The time-rescaled Reeb flow t 7→ φτtR defines a locally-free
S1 action on Σ, and the homeomorphism

Σ→ K, z 7→ ζ̇z

is S1-equivariant. This implies that indFR(K) = indFR(Σ). The Gysin sequence

...
π∗−−→H∗+1(Σ;Q)

π∗−−→H∗S1(Σ;Q)
^eΣ−−→H∗+2

S1 (Σ;Q)
π∗−−→H∗+2(Σ;Q)

π∗−−→ ...

of the circle bundle π : Σ × ES1 → Σ ×S1 ES1 readily implies that en−1
Σ 6= 0 in

H2n−2
S1 (Σ;Q), and thus

indFR(K) = indFR(Σ) ≥ n− 1.

We conclude that every S1-invariant neighborhood U ⊂ Lβ0 (S1,R2n) has Fadell–
Rabinowitz index indFR(U) ≥ indFR(K) ≥ n− 1. �

3.5. Spectral characterization of the Besse and Zoll conditions. We can now prove
one implication in Theorem 1.2.

Lemma 3.2. Let Σ ⊂ R2n be a convex contact sphere. If ci(Σ) = ci+n−1(Σ) for
some i ≥ 0, then Σ is Besse and every Reeb orbit has (not necessarily minimal)
period ci(Σ).

Proof. We recall that ci(Σ) is obtained as the minmax of A associated to the i-th

power of the Euler class of the circle bundle (2.1) with X = Lβ0 (S1,R2n). There-
fore, if ci(Σ) = ci+n−1(Σ), the classical Lusternik–Schnirelmann theorem [Vit97,

Theorem 1.1] implies that every S1-invariant neighborhood U ⊂ Lβ0 (S1,R2n) of
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crit(A)∩A−1(ci(Σ)) has Fadell–Rabinowitz index indFR(U) ≥ n−1. By Lemma 3.1,
every point z ∈ Σ must lie on a closed Reeb orbit of period ci(Σ). �

We postpone the proof of the other implication in Theorem 1.2, and we first deal
with the remaining statements concerning convex contact spheres.

Proof of Corollary 1.3. If c0(Σ) = cn−1(Σ), then Lemma 3.2 implies that Σ is
Besse, and every Reeb orbit has period c0(Σ). Since c0(Σ) = minA = sys(Σ),
it must actually be the minimal period of each Reeb orbit. Hence Σ is Zoll.

The opposite implication is well known and analogous to the last paragraph in
the proof of Lemma 3.1. Indeed, if Σ is Zoll, then for each z ∈ Σ the curve

ζ̇z ∈ Lβ0 (S1,R2n), ζz(t) = (2c0(Σ)α−1)1/(α−2)φ
c0(Σ)t
R (z)

is a global minimizer of A, i.e.,

A(ζ̇z) = minA = c0(Σ).

The time-rescaled Reeb flow t 7→ φ
c0(Σ)t
R defines a free S1 action on Σ, and the

homeomorphism

Σ→ A−1(c0(Σ)), z 7→ ζ̇z

is S1-equivariant. Therefore,

indFR(A−1(c0(Σ))) = indFR(Σ) = n− 1,

which readily implies cn−1(Σ) = c0(Σ). �

Proof of Theorem 1.4. If Σ is Zoll, then σ(Σ) = {k sys(Σ) | k ∈ N} and thus the

intersection σ(Σ) ∩ (sys(Σ), 2 sys(Σ)) is empty. Conversely, for δ ∈ (1,
√

2], assume
that the action spectrum of a convex δ-pinched contact sphere Σ ⊂ R2n satisfies
σ(Σ)∩ (sys(Σ), δ2sys(Σ)) = ∅. We now argue building on the work of Ekeland and
Lasry [EL80], and we will follow the exposition in Ekeland’s monograph [Eke90,
Section V.2]. We choose 0 < r < R such that R/r < δ and the filling C ⊂ R2n of
Σ satisfies B2n(r) ⊆ C ⊆ B2n(R). We consider the Hamiltonian H : R2n → [0,∞)
which is positively homogeneous of degree α ∈ (1, 2) and satisfies H−1(1) = Σ,
its Legendre dual H∗ : R2n → [0,∞) which is positively homogeneous of degree
β = α/(α − 1), and the associated renormalized Clarke action functional A. The
function H∗ is squeezed between the corresponding dual functions associated to the
round spheres ∂B2n(r) and ∂B2n(R), i.e.,

β−1(rα/α)β−1‖u‖β ≤ H∗(u) ≤ β−1(Rα/α)β−1‖u‖β . (3.7)

The left-most inequality readily implies

πr2 ≤ sys(Σ).

Consider now the unit sphere S2n−1 ⊂ R2n equipped with the usual Hopf circle
action t · z = e2πJtz for all t ∈ S1 and z ∈ S2n−1. The smooth embedding

ι : S2n−1 ↪→ Lβ0 (S1,R2n), ι(z)(t) = (2π)
1−α
2−α (α/Rα)

1
2−α e2πJtz

is S1-equivariant, and the right-most inequality in (3.7) implies

maxA ◦ ι ≤ πR2.

Since indFR(S2n−1) = n− 1, we readily infer that

indFR({A ≤ πR2}) ≥ indFR(ι(S2n−1)) = indFR(S2n−1) = n− 1,
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and therefore

cn−1(Σ) ≤ πR2 < δ2πr2 ≤ δ2sys(Σ). (3.8)

Since c0(Σ) ≤ cn−1(Σ) and σ(Σ) ∩ (sys(Σ), δ2sys(Σ)) = ∅, the inequality (3.8)
implies that cn−1(Σ) = sys(Σ) = c0(Σ), and Corollary 1.3 implies that Σ is Zoll. �

3.6. Morse indices of the Clarke action functional. The fact that the Clarke action
functional Ψ (and its renormalized version A) is not C2 does not pose any problem
for its Morse theory. Actually, Ekeland and Hofer, [EH87], showed that, after ap-
plying a suitable saddle point reduction, Ψ becomes C2. Without entering into the
technical details of this procedure, let us quickly recall the definition and properties
of the Morse indices of Ψ. Let γ : R/τZ→ Σ be a closed Reeb orbit and ζ̇ be the
associated critical point of A given by

ζ(t) = (2τα−1)1/(α−2)γ(τt)

so that A(ζ̇) = τ . Consider the quadratic function Q : L2
0(S1;R2n)→ R,

Q(η̇) =

∫ 1

0

(
〈Jη(t), η̇(t)〉+∇2H∗(−Jζ̇(t))[η̇(t), η̇(t)]

)
dt.

We define the Morse index ind(ζ̇) and the nullity nul(ζ̇), respectively, as the dimen-
sion of the negative eigenspace and of the kernel of the bounded self-adjoint operator
P on L2

0(S1;R2n) associated to the quadratic form Q, i.e. Q(η̇) = 〈P η̇, η̇〉L2 . Even
though these are not exactly the standard definitions, it turns out that both indices
are finite and the ordinary results from Morse theory apply to A with these two
indices; see [Eke90, Section IV.3].

We denote by φtH : R2n → R2n the Hamiltonian flow of H, i.e. φ0
H = id and

d
dφ

t
H = J∇H ◦φtH . Recall that ζ(t) = φtH(ζ(0)) is the 1-periodic Hamiltonian orbit

associated to γ. On the energy hypersurface Σ = H−1(1), the τ -periodic Reeb
orbit γ can be reparametrized into a 2

ατ -periodic Hamiltonian orbit, for φtH(γ(0)) =
γ(α2 t). We consider the continuous path of symplectic matrices

Γα : [0, 1]→ Sp(2n), Γα(t) = dφ2α−1τt
H (γ(0)).

Here we write Γα with a subscript α in order to stress its dependence from α, for
the Hamiltonian H is the positively homogeneous function of degree α such that
H−1(1) = Σ. The path Γα has a well defined Conley–Zehnder index indCZ(Γα),
which can be defined as follows. We denote by Kn :=

{
M ∈ Sp(2n)

∣∣ det(M−I) =

0
}

the Maslov cycle. The symplectic group has fundamental group π1(Sp(2n)) ∼= Z,
and the complement Sp(2n) \Kn has two connected components. If Γα is a “non-
degenerate” path, i.e., Γα(1) 6∈ Kn and Γα|(0,1) intersects Kn only outside its
singular locus and transversely, then indCZ(Γα) is the suitably oriented intersection
number of Γα|(0,1) and Kn. The index of a degenerate path is then defined in such a
way that the function Ψ 7→ indCZ(Ψ) is the point-wise largest lower semicontinuous
extension of the index function on the space of non-degenerate paths. It was proved
by Brousseau [Bro90] (see also [Lon98, Lemmas 1.3-4]) that the Morse indices of
the Clarke’s action functional are related to the indices of Γα as

ind(ζ̇) = indCZ(Γα)− n, nul(ζ̇) = dim ker(Γα(1)− I). (3.9)
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By [Eke90, Proposition I.7.5], the Conley–Zehnder index indCZ(Γα) is actually
independent of α ∈ (1, 2], i.e.

indCZ(Γα) = indCZ(Γ2), ∀α ∈ (1, 2).

Notice that up to now we have only considered α ∈ (1, 2), but the symplectic path
Γα is perfectly defined for α = 2 as well. Moreover, according to a result due
to Ekeland [Eke90, Theorem I.4.6], the Morse index can be computed by suitably
counting the multiplicity of the conjugate points along the symplectic path Γα as

ind(ζ̇) =
∑
t∈(0,1)

dim ker(Γα(t)− I). (3.10)

Since the Hamiltonian H is positively homogeneous of degree α ∈ (1, 2), the map
Γα(1) preserves the symplectic vector subspace E := span{γ̇(0), γ(0)}, and indeed

Γα(1)γ̇(0) = γ̇(0), Γα(1)γ(0) = (α− 2)τ γ̇(0) + γ(0).

We denote as usual by

Eω =
{
v ∈ R2n

∣∣ 〈v, Jw〉 = 0 ∀w ∈ E
}

the symplectic orthogonal to E. Notice that Eω ⊂ Tγ(0)H
−1(1), and if we consider

the decomposition R2n = E ⊕ Eω, the symplectic matrix Γα(1) can be written in
symplectic blocks as

Γα(1) =

(
Mα 0
0 N

)
. (3.11)

The first block is given by

Mα =

(
1 (α− 2)τ
0 1

)
, (3.12)

whereas the second block N = dφτR(γ(0))|Eω is independent of α; see [Eke90,
pages 69–72].

If Σ is Besse and K ⊂ crit(A) is a connected component, then the Morse index

ind(ζ̇) and the nullity nul(ζ̇) are the same for all ζ̇ ∈ K, and therefore we will
simply write them as ind(K) and nul(K) respectively. We will need the following
remark concerning the Morse index. In the context of geodesic flows, an analogous
statement was proved by Wilking [Wil01, Theorem 3].

Lemma 3.3. If Σ is Besse, then every connected component K ⊂ crit(A) is an odd
dimensional closed manifold with nullity nul(K) = dim(K) and even Morse index
ind(K).

Proof. Assume that Σ is Besse, and let K ⊂ crit(A) be a connected component of
the critical set. We employ the notation of the previous paragraphs with respect
to an arbitrary critical point ζ ∈ K. It is well known that K is an odd dimensional
closed manifold, and if we consider the symplectic matrix N in (3.11) we have
dim(K) = 1 + dim ker(N − I); see [CGM19, Section 4.1]. Since α ∈ (1, 2), we
conclude that

nul(ζ̇) = dim ker(Γα(1)− 1) = 1 + dim ker(N − I) = dim(K).

As for the index, let us first remark that the parity of the Conley–Zehnder index
of a symplectic path Ψ : [0, 1] → Sp(2n) with Ψ(0) = I only depends on the final
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point Ψ(1). Indeed, if Υ : [0, 1] → Sp(2n) is another continuous path such that
Υ(0) = I and Υ(1) = Ψ(1), then Υ is homotopic (with fixed endpoints) to the
concatenation of Ψ with a certain number of positive and negative full turns in
Sp(2n), and every such full turn contributes to the index with a summand ±2.
Therefore, if M := Ψ(1) ∈ Sp(2n), we can define

par(M) := indCZ(Ψ) mod 2 ∈ {0, 1}.

We already mentioned that indCZ(Γα) = indCZ(Γ2). We readily see from (3.12)
that M2 = I2 ∈ Sp(2). By Wadsley’s theorem [Wad75], there exists an integer k ≥ 1
such that kτ is a common period for the closed Reeb orbits. Therefore, in (3.11) the
symplectic matrix N must satisfy Nk = I2n−2 ∈ Sp(2n− 2). In particular, we can
find a symplectic matrix P ∈ Sp(2n) such that PNP−1 decomposes in symplectic
blocks

PNP−1 =

(
N1 0
0 N2

)
where N1 = I2n1 ∈ Sp(2n1), and N2 ∈ Sp(2n2) is a symplectic matrix whose eigen-
values are all contained in S1 \{1}. Here, S1 denotes the unit circle in the complex
plane. Since the Conley–Zehnder index is invariant under symplectic conjugation
and is additive on symplectic blocks, we have

par(N) = (par(N1) + par(N2)) mod 2.

Since σ(N2) ⊂ S1\{1}, the symplectic matrixN2 is contained in the same connected
components of Sp(2n2) \Kn2

as −I2n2
, and therefore

par(N2) = par(−I2n2
).

It is well known that the symplectic path Ψ1 : [0, 1]→ Sp(2n1), Ψ1(t) = e2πJt has
Conley–Zehnder index indCZ(Ψ1) = n1, and analogously Ψ2 : [0, 1] → Sp(2n2),
Ψ2(t) = eπJt has Conley–Zehnder index indCZ(Ψ2) = n2. Therefore,

par(Ni) = indCZ(Ψi) mod 2 = ni mod 2, i = 1, 2,

and analogously par(M2) = 1. By (3.9), we conclude that

ind(ζ̇) mod 2 = (indCZ(Γα)− n) mod 2

= (indCZ(Γ2)− n) mod 2

= (par(M2) + par(N1) + par(N2)− n) mod 2

= (1 + n1 + n2 − n) mod 2

= 0. �

We can finally prove the remaining implication in Theorem 1.2. We recall that a
convex contact sphere Σ is called (τ, µ)-Besse when every Reeb orbit is τ -periodic
and has Conley-Zehnder index µ at period τ . For notational convenience, we set
c−1(Σ) := 0.

Lemma 3.4. If Σ ⊂ R2n is a (τ, µ)-Besse convex contact sphere, then i := (µ−n)/2
is a non-negative integer and

ci−1(Σ) < τ = ci(Σ) = ci+n−1(Σ) < ci+n(Σ).
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Proof. The statement follows from Lemma 3.3 and the lacunarity principle in Morse
theory. Indeed, consider the critical manifold K := crit(A)∩A−1(τ). Formula (3.10)
for the Morse index implies that for all connected components K′ ⊂ crit(A) with
A(K′) < τ (if they exist at all) we have ind(K′)+nul(K′) ≤ ind(K). By Lemma 3.3,
ind(K′) + nul(K′) is odd, whereas ind(K) is even. Therefore

ind(K′) + nul(K′) < ind(K).

We set τ ′ := A(K′) and ε > 0 small enough so that (τ ′, τ ′ + ε] does not contain
critical values of A. If the negative bundle of K′ is not orientable, we have

H∗S1({A < τ ′ + ε}, {A < τ ′};Q) = 0.

If, instead, the negative bundle of K′ is orientable, we have

H∗S1({A < τ ′ + ε}, {A < τ ′};Q) ∼= H
∗−ind(K′)
S1 (K′;Q) ∼= H∗−ind(K′)(K′/S1;Q);

Since K′ is a closed manifold, its quotient K′/S1 is a closed orbifold, and in par-
ticular Hd(K′/S1;Q) vanishes for all degrees d ≥ dim(K′) = nul(K′). Therefore, in
both cases, we conclude that

Hd
S1({A < τ ′ + ε}, {A < τ ′};Q) = 0, ∀d ≥ ind(K)− 1,

and thus

Hd
S1({A < τ};Q) = 0, ∀d ≥ ind(K)− 1. (3.13)

If we set i := (µ − n)/2 = ind(K)/2, which is a non-negative integer according to
Lemma 3.3, this readily implies that indFR({A < τ}) < i, and therefore

ci(Σ) ≥ τ > ci−1(Σ). (3.14)

Analogously, for all connected components K′′ ⊂ crit(A) with τ ′′ := A(K′′) > τ
we have ind(K′′) > ind(K) + nul(K) = ind(K) + 2n−1 and, if ε > 0 is small enough
so that (τ ′′, τ ′′ + ε] does not contain critical values of A,

Hd
S1({A < τ ′′ + ε}, {A < τ ′′};Q) = 0, ∀d ≤ ind(K) + 2n− 1.

Therefore, for all sufficiently small ε > 0,

Hd
S1({A <∞}, {A < τ + ε};Q) = 0, ∀d ≤ ind(K) + 2n− 1,

which implies that the homomorphism induced by the inclusion

H
ind(K)+2n−2
S1 ({A <∞};Q)→ H

ind(K)+2n−2
S1 ({A < τ + ε};Q)

is injective. This implies that indFR({A < τ + ε}) ≥ i+ n− 1 and thus

ci+n−1(Σ) ≤ τ. (3.15)

Since ci(Σ) ≤ ci+n−1(Σ), Equations (3.14) and (3.15) imply that

ci−1(Σ) < ci(Σ) = ci+n−1(Σ) = τ.

Finally, since K is simply connected (being homeomorphic to Σ), its negative bundle
is orientable, and we have

H∗S1({A < τ + ε}, {A < τ};Q) ∼= H∗−2i
S1 (K;Q) ∼= H∗−2i(K/S1;Q);

since Hd(K/S1;Q) vanishes for all degrees d ≥ dim(K) = nul(K) = 2n−1, we have

H
2(i+n)
S1 ({A < τ + ε}, {A < τ};Q) = 0.

This, together with (3.13), implies that ci+n(Σ) > τ . �
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3.7. The spectral invariants of ellipsoids. In order to justify the claims made in
Example 1.1, we compute the spectral invariants of general ellipsoids

E(a) =

{
z = (z1, ..., zn) ∈ R2n

∣∣∣∣∣
n∑
h=1

|zh|2

ah
=

1

π

}
,

where a = (a1, ..., an) and 0 < a1 ≤ ... ≤ an < ∞. We recall that the associated
Reeb flow is given by

φtR : E(a)→ E(a), φtR(z) = (eJ2πt/a1z1, ..., e
J2πt/anzn).

Let τ1 < τ2 < τ3 < ... be the elements of the action spectrum σ(E(a)) enumerated
in increasing order. Notice that each τj is a positive multiple of some parameter ah.

We fix α ∈ (1, 2), and consider the spectral invariants ci(E(a)) defined by means
of the Clarke’s action functional Ψ and its renormalized version A associated to
the positively α-homogeneous Hamiltonian H : R2n → [0,∞) such that H−1(1) =
E(a). The following proposition is certainly well-known to the experts, and its
analogue for the Ekeland-Hofer capacities was proved in [EH90, Section III].

Proposition 3.5. For all i ≥ 1, the spectral invariant ci−1(E(a)) is the i-th element
in the sequence

τ1, ..., τ1︸ ︷︷ ︸
×m1

, τ2, ..., τ2︸ ︷︷ ︸
×m2

, τ3, ..., τ3︸ ︷︷ ︸
×m3

, ... (3.16)

where mj is the number of parameters ah having τj as a positive multiple.

Proof. The expression of the Reeb flow φtR readily implies that, for every j ≥ 0,
the stratum of τj-periodic orbits

Σj := fix(φ
τj
R ) ⊂ E(a)

is an ellipsoid of dimension dim(Σj) = 2mj − 1. The critical set

Kj := crit(A) ∩ A−1(τj)

is S1-equivariantly homeomorphic to the ellipsoid Σj , where the S1 action on Σj is

given by the renormalized Reeb flow t 7→ φ
τjt
R . In particular,

Hd
S1(Kj ;Q) ∼= Hd

S1
(Σk) ∼=

{
Q, if d ∈ {0, 2, ..., 2mj − 2},
0, otherwise.

The Morse indices of each Kj are given by

ind(Kj) = 2

n∑
h=1

(⌈
τj
ah

⌉
− 1

)
,

nul(Kj) = dim(Kj) = 2mj − 1.

These values can be obtained by means of the relations (3.9) and the well-known
computation of the Conley-Zehnder indices of the periodic Reeb orbits of φtR (see,
e.g., [Eke90, Section I.7]. Notice in particular that

ind(Kj+1) = ind(Kj) + 2

n∑
h=1

(⌈
τj+1

ah

⌉
−
⌈
τj
ah

⌉)
= ind(Kj) + 2mj = ind(Kj) + nul(Kj) + 1,
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and therefore

ind(Kj) = 2
∑

0<h<j

mh.

This readily implies that the functional A is perfect for the S1-equivariant coho-
mology, that is, for all τ > 0 we have

H∗S1({A < τ};Q) ∼=
⊕
τj<τ

H
∗−ind(Kj)
S1 (Kj ;Q)

∼=
⊕
τj<τ

H
∗−2(m1+...+mj−1)

S1 (Kj ;Q).
(3.17)

Notice that the summands in the right-hand side are supported in complementary
even degrees. This readily implies that ci(E(a)) = τj where j is such that

2(m1 + ...+mj−1) ≤ 2i ≤ 2(m1 + ...+mj). �

4. Restricted contact type hypersurfaces of symplectic vector
spaces

4.1. Equivariant spectral invariants. Let us recall the construction of equivariant
spectral values of asymptotically quadratically-convex Hamiltonians, which is due
to Ekeland and Hofer, [EH90]. We denote by Hm the space of smooth Hamiltonians
H : R2n → [0,∞) such that R2n \ supp(H) 6= ∅ and H(z) = (m + 1

2 )π‖z‖2 for
some integer m ≥ 1 outside a compact set.

Recall that the Hilbert space H1/2(S1,R2n) = W 1/2,2(S1,R2n), where S1 =
R/Z, splits as a direct sum

H1/2(S1,R2n) =
⊕
k∈Z

Ek,

where each Ek is the 2n-dimensional vector space containing those γ ∈ C∞(S1,R2n)
of the form γ(t) = expJ2πkt γ(0). We consider the orthogonal projections

P± : H1/2(S1,R2n)→ E± :=
⊕
±k>0

Ek.

For each γ ∈ H1/2(S1,R2n), we will write γ± = P±γ and γ0 = γ − γ+ − γ−. The
1-periodic orbits of the Hamiltonian flow of any H ∈ Hm are precisely the critical
points of the action functional ΦH : H1/2(S1,R2n)→ R given by

ΦH(γ) = 1
2

(
‖γ+‖2H1/2 − ‖γ−‖2H1/2

)
︸ ︷︷ ︸

=:A(γ)

−
∫
S1

H(γ(t)) dt︸ ︷︷ ︸
=:BH(γ)

.

The quadratic form A : H1/2(S1,R2n) → R is sometimes called the symplectic
action, since on the subspace of smooth γ ∈ C∞(S1,R2n) it is given by

A(γ) =

∫
γ

Λ,

where Λ is any primitive of the standard symplectic form ω of R2n. The functional
ΦH is smooth (see [HZ94, Appendix 4]) and satisfies the Palais–Smale condition.
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Since H is autonomous, ΦH is invariant under the S1 action on H1/2(S1,R2n) given
by

t · γ = γ(t+ ·), ∀t ∈ S1, γ ∈ H1/2(S1,R2n).

Ekeland–Hofer’s spectral values for H are min-max values of ΦH over a suitable
family of S1-invariant subspaces. In order to define such a family, they needed to
introduce a group Γ of S1-equivariant homeomorphisms of H1/2(S1,R2n) which is
large enough to contain the time-t maps of the anti-gradient flow of ΦH ; the group
Γ consists of those homeomorphisms ψ : H1/2(S1,R2n) → H1/2(S1,R2n) of the
form

ψ(γ) = eF
+(γ)γ+ + γ0 + eF

−(γ)γ− +K(γ),

where F± : H1/2(S1,R2n) → R are S1-invariant continuous functions mapping
bounded sets to bounded sets, and K : H1/2(S1,R2n) → H1/2(S1,R2n) is an S1-
equivariant, possibly non-linear, compact, continuous map. Here, by a compact
map we mean a map such that the image of any bounded set is pre-compact.

Let X ⊂ H1/2(S1,R2n) be an S1-invariant subset. The Ekeland–Hofer index is
defined by

indEH(X) := inf
ψ∈Γ

indFR(ψ(X) ∩ S+),

where S+ is the unit sphere of the Hilbert subspace E+ ⊂ H1/2(S1,R2n), and
indFR(·) denotes the Fadell–Rabinowitz index (see Section 2). Indices of this kind,
in an abstract setting, were first investigated by Benci [Ben82]. The i-th Ekeland–
Hofer spectral invariant is the min-max of ΦH over the family of S1-invariant
subsets X ⊆ H1/2(S1,R2n) with indEH(X) ≥ i, i.e.

ci(H) := inf

{
sup
X

ΦH

∣∣∣∣ indEH(X) ≥ i
}
.

Due to the special form of the Hamiltonians in Hm, it turns out that

0 < c0(H) ≤ c1(H) ≤ ... ≤ cn(m−1)−1(H) ≤ cn(m−1)(H) <∞, ∀H ∈ Hm,

and every such spectral invariant is a critical value of ΦH .
The following statement is a version of the Lusternik-Schnirelmann theorem for

the Ekeland–Hofer spectral invariants.

Lemma 4.1. For each H ∈ Hm and integers 0 ≤ i1 ≤ i2 ≤ n(m − 1) such that
ci1(H) = ci2(H) =: c, every S1-invariant neighborhood U ⊆ H1/2(S1,R2n) of the
critical set crit(ΦH) ∩ Φ−1

H (c) has Fadell–Rabinowitz index indFR(U) ≥ i2 − i1.

Proof. Let X be a topological space equipped with an S1 action, and A,B,C ⊂ X
three S1-invariant open subsets such that B ⊂ C. The subadditivity property (2.2)
of the Fadell–Rabinowitz index implies

indFR(A) ≤ indFR((A \B) ∪ C) ≤ indFR(A \B) + indFR(C) + 1.

Following Benci [Ben82], this can be applied to the Ekeland–Hofer index as follows:
if U1,U2,Y ⊂ H1/2(S1,R2n) are three S1-invariant open subsets such that U1 ⊂ U2,
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indFR(U2) <∞, and indEH(Y) <∞, then

indEH(Y) ≥ indEH(Y \ U1)

= inf
ψ∈Γ

indFR

(
(ψ(Y ∪ U1) ∩ S+) \ ψ(U1)

)
≥ inf
ψ∈Γ

(
indFR

(
ψ(Y ∪ U1) ∩ S+

)
− indFR(ψ(U2))− 1

)
= inf
ψ∈Γ

(
indFR

(
ψ(Y ∪ U1) ∩ S+)− indFR(U2)− 1

)
= indEH(Y ∪ U1)− indFR(U2)− 1.

(4.1)

Let us now consider the setting of the statement, with ci1(H) = ci2(H) =: c. We
can assume that some S1-invariant open neighborhood V ⊂ H1/2(S1,R2n) of the
critical set K := crit(ΦH) ∩ Φ−1

H (c) has finite Fadell–Rabinowitz index indFR(V) <
∞ (for otherwise the lemma already follows). We fix an arbitrary S1-invariant
open neighborhood U2 ⊆ V of K, and a smaller S1-invariant open neighborhood
U1 ⊂ U1 ⊂ U2 of K. Since ΦH satisfies the Palais–Smale condition, there exists
ε > 0 small enough so that the anti-gradient flow of ΦH deforms the sublevel set
{ΦH < c + ε} into {ΦH < c} ∪ U1. This, together with the equality c = ci2(H),
implies

indEH({ΦH < c} ∪ U1) ≥ indEH({ΦH < c+ ε}) ≥ i2.

Moreover, since c = ci1(H), we have

indEH({ΦH < c}) ≤ i1 − 1.

We can now apply Equation (4.1) with Y = {ΦH < c}, and obtain

indFR(U2) ≥ indEH({ΦH < c} ∪ U1)− indEH({ΦH < c})− 1 ≥ i2 − i1. �

4.2. The Ekeland–Hofer capacities. For any bounded subset B ⊂ R2n and integer
m ≥ 1, we consider the family of Hamiltonians

Hm(B) :=
{
H ∈ Hm

∣∣ supp(H) ∩B = ∅
}
,

and we set

H(B) :=
⋃
m≥1

Hm(B).

The i-th Ekeland–Hofer capacity2 of the bounded set B is defined as

ci(B) = inf
H∈H(B)

ci(H).

This is indeed a symplectic capacity, i.e., it satisfies the monotonicity property
(ci(A) ≤ ci(B) if there exists a symplectic embedding ψ : A ↪→ B), the conformality
property (ci(rB) = r2ci(B) for all r ∈ R \ {0}), and is non-trivial (ci(B

2n(1)) =
ci(B

2(1)×B2n−2(R)) = (i+ 1)π for all R ≥ 1).
We consider a compact subset B ⊂ R2n whose boundary Σ = ∂B is smooth and

of restricted contact type. A remarkable feature of the Ekeland–Hofer capacities is
that they are action selectors, i.e.

ci(B) = ci(Σ) ∈ σ(Σ); (4.2)

2Our index i for the Ekeland–Hofer capacity is shifted by one with respect to the index in the
original reference [EH90]: namely, our c0(·) corresponds to c1(·) in [EH90].
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see [EH90, Prop. 2].

4.3. A sufficient condition for the Besse property. Let Σ ⊂ R2n be a compact
hypersurface of restricted contact type, and B the closure of the bounded connected
component of R2n \ Σ. In the proof of Theorem 1.5, we utilize the sequence of
Hamiltonians Hm ∈ Hm(B) from [EH89] used in the proof of (4.2). Since we need
to make minor modifications in the construction, we include its full details for the
reader’s convenience.

We fix a primitive Λ of the standard symplectic form ω of R2n which restricts
to a contact form λ = Λ|Σ, and we denote by R the Reeb vector field of (Σ, λ), and
by φtR the associated Reeb flow. We now consider the associated Liouville vector
field V on R2n, which is uniquely defined by Λ = ω(V, ·), and denote by φsV its
flow. Since LV Λ = Λ, we have (φsV )∗Λ = esΛ. In order to simplify the notation,
let us assume without loss of generality that φsV |Σ is defined for all s ∈ [0, 2]. The
hypersurface Σs := φsV (Σ) is again of restricted contact type, and its Reeb vector
field is

Rs(φ
s
V (z)) = e−sdφsV (z)R(z).

In particular,

σ(Σs) = esσ(Σ), ∀s ∈ [0, 2].

Let r > 0 be large enough so that

Σ2 = φ2
V (Σ) ⊂ B2n(r).

We fix b > (m + 1
2 )πr2 and k ≥ max{4, b−1}. Since the action spectrum σ(Σ) is

nowhere dense, we can find

τ ∈
[
(b− 1

k )(e3/k − e2/k)−1, (b− 1
2k )(e3/k − e2/k)−1

]
\ σ(Σ).

We consider a smooth monotone increasing function φ = φb,k : [0,∞)→ [0, b] such
that

φ|[0,1/k] ≡ 0,

d3

ds3φ(s) > 0, ∀s ∈
(

1
k ,

2
k

]
,

φ( 2
k ) < 1

2k ,

φ|[4/k,∞) ≡ b,

φ(s) = τes − τe2/k + φ( 2
k ), ∀s ∈

[
2
k ,

3
k

]
.

The condition on the third derivative of φ guarantees that

d
ds

(
φ̇(s)− φ(s)

)
> 0, ∀s ∈

(
1
k ,

2
k

]
, (4.3)

while the bounds on τ imply that

b− 1
k < φ(s) ≤ b, ∀s ∈ [ 3

k ,∞).

Next, we consider a smooth convex function g = gb,m : [0,∞) → [b,∞) such that
g|[0,r] ≡ b, g(s) ≥ (m + 1

2 )πs2 for all s > r, and g(s) = (m + 1
2 )πs2 for all s large

enough. We set

Bs := φsV (B) ⊂ R2n,
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which is the compact subset with boundary ∂Bs = Σs. We define the Hamiltonian

H = Hb,k,m ∈ Hm(B), H(z) =

0, if z ∈ B,
φ(s), if z ∈ Σs, s ∈ [0, 1]
g(|z|), if z 6∈ B1.

(4.4)

Lemma 4.2. For each positive critical value c > 0 of the action functional ΦH there
exists

s = s(c) ∈ ( 1
k ,

2
k

]
∪ [ 3

k ,
4
k

)
such that every critical point γ ∈ crit(ΦH)∩Φ−1

H (c) lies on the energy hypersurface
Σs. In particular,

c = φ̇(s)− φ(s), (4.5)

and the curve ζ(t) := φ−sV (γ(tes/φ̇(s))) is a closed Reeb orbit of (Σ, λ) with period

A(ζ) = φ̇(s)e−s.

Proof. Let us fix a critical point γ ∈ crit(ΦH) ∩Φ−1
H (0,∞). Since the Hamiltonian

H is autonomous, γ is contained in a level set of H. Clearly, σ cannot intersect
B1/k nor B2n(r) \ B4/k, for otherwise it would be a constant curve with H(γ) ≥
0 and associated critical value ΦH(γ) ≤ 0. Analogously, γ cannot intersect the
complement of B2n(r), for otherwise H(γ) = g(|γ|), and we would still have

ΦH(γ) = 1
2 ġ(|γ|)|γ| − g(|γ|) ≤ 1

2 (m+ 1
2 )π2|γ| |γ| − (m+ 1

2 )π|γ|2 = 0.

Therefore, γ must be contained in B4/k \ B1/k, which is foliated by the restricted

contact type energy hypersurfaces Σs, s ∈ [ 1
k ,

4
k ]. Notice that on Σs the Hamiltonian

vector field J∇H is given by

J∇H|Σs = φ̇(s)Rs

In particular, if γ lies on Σsγ , the curve

ζ(t) = φ
−sγ
V (γ(tesγ/φ̇(sγ))

is a closed Reeb orbit of (Σ, λ) with period A(ζ) := φ̇(sγ)e−sγ . This readily implies
that sγ 6∈ [ 2

k ,
3
k ], for otherwise we would have A(ζ) = τesγe−sγ = τ , contradicting

the fact that τ 6∈ σ(Σ). Finally, notice that the critical value of γ is

ΦH(γ) = φ̇(sγ)− φ(sγ).

By (4.3), the function s 7→ φ̇(s) − φ(s) is strictly monotone increasing on
(

1
k ,

2
k

]
,

and therefore sγ only depends on the critical value ΦH(γ). �

From now on, we will assume that the action spectrum σ(Σ) is discrete.

Lemma 4.3. For each integer m ≥ 4 there exist

b > (m+ 1
2 )πr2, k ≥ max{m, b−1

m }
such that the Hamiltonian

Hm := Hb,k,m ∈ Hm(B) (4.6)

has the following property: there exist

si(Hm) ∈ ( 1
k ,

2
k

]
, ∀i ∈ {0, . . . , n(m− 1)}
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such that every critical point γ ∈ crit(ΦHm) ∩ Φ−1
Hm

(ci(Hm)) lies on the energy
hypersurface Σsi(Hm).

Proof. We fix an integer m ≥ 4, and we remove it from the notation as much as
possible. Let φb,k be the function entering the definition of Hb,k,m as in (4.4). By
Lemma 4.2, there exists

s = si,b,k ∈ ( 1
k ,

2
k

]
∪ [ 3

k ,
4
k

)
such that every critical point

γ = γi,b,k ∈ crit(ΦHb,k,m) ∩ Φ−1
Hb,k,m

(ci(Hb,k,m))

lies on the energy hypersurface Σs, and the curve

ζ = ζi,b,k

given by ζ(t) = φ−sV (γ(tes/φ̇b,k(s))) is a closed Reeb orbit of (Σ, λ) with period

A(ζ) = φ̇b,k(s)e−s. Equation (4.5), together with A(γ) = esA(ζ), implies that

A(ζ)− e−sci(Hb,k,m) = e−sφb,k(s) ∈
[
0, e−s 1

2k

]
∪
[
e−s(b− 1

k ), e−sb
]
. (4.7)

Notice that, if we fix an integer k1 ≥ max{4, b−1}, for all integers k2 > k1

sufficiently large we have Hb,k1,m < Hb,k2,m pointwise. This implies that the limit

ci(b) := lim
k→∞

ci(Hb,k,m)

exists and is finite and bounded from below by the Ekeland–Hofer capacity ci(B).
Moreover, for each s ∈ (0, 1], we have that Hb,k,m|Σs → b as k →∞, and therefore
ci(b) can also be characterized by

ci(b) = inf

{
ci(H)

∣∣∣∣ H ∈ Hm(B), max
B2n(r)

H ≤ b
}
.

In particular, b 7→ ci(b) is continuous and non increasing. Set

ci := lim
b→∞

ci(b).

The uniform bound on ci(b), together with (4.7), implies that the limits

a′i,b := lim inf
k→∞

A(ζi,b,k) ≤ lim sup
k→∞

A(ζi,b,k) =: a′′i,b

are both finite, and

a′i,b, a
′′
i,b ∈ {ci(b), ci(b) + b} ∩ σ(Σ). (4.8)

We claim that ci(b) ∈ σ(Σ) for all b large enough. Indeed, arguing by contradic-
tion assume that ci(b) 6∈ σ(Σ) for arbitrarily large b. Since σ(Σ) is assumed to be
discrete and since ci(b) converges monotonically to ci as b → ∞, we indeed have
that ci(b) 6∈ σ(Σ) for all b large enough, say for b ≥ b. This, together with (4.8),
implies that a′′i,b = ci(b) + b for all b ≥ b. In particular ci(b) + b ∈ σ(Σ) for all b ≥ b.
Since the action spectrum σ(Σ) is discrete, the continuous function b 7→ ci(b) + b
should be constant for b ≥ b. However, we already know that ci(b) + b → ∞ as
b→∞. This contradiction proves the desired claim.

Since b 7→ ci(b) is continuous and takes values inside the discrete action spectrum
σ(Σ) for all b large enough, say for b ≥ b, we have that

ci(b) = ci, ∀b ≥ b.
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Once again, thanks to the discreteness of the action spectrum σ(Σ), we can fix an
arbitrarily large b > (m+ 1

2 ) such that

ci + b 6∈ σ(Σ), ∀i = 0, . . . , n(m− 1),

which implies a′i,b = a′′i,b = ci(b). Therefore, for this value of b and for all integers

k large enough, Equation (4.7) implies that

e−si,b,kφb,k(si,b,k) ∈
[
0, e−si,b,k 1

2k

]
,

and thus that si,b,k ∈ ( 1
k ,

2
k

]
. �

Proof of Theorem 1.5. We consider the sequence of Hamiltonians Hm ∈ Hm(B)
provided in (4.6), which satisfies

ci(B) = ci(Σ) = lim
m→∞

ci(Hm).

We denote by φm the function that enters the definition of Hm as in (4.4), so that
Hm|Σs = φm(s) for all s ∈ [0, 1]. We set m̃ := 1 + (i+ n− 1)n−1, so that for every
integer m ≥ m̃ we have i+ n− 1 ≤ n(m− 1) and ci+n−1(Hm) <∞.

By Lemmas 4.2 and 4.3, for each m ≥ m̃ and j ∈ {0, . . . , i+ n− 1} there exists

sm,j := sj(Hm) ∈ (0, 2
m )

such that every critical point γ ∈ crit(ΦH) ∩ Φ−1
H (cj(Hm)) lies on the energy hy-

persurface Σsm,j and

τm,j := e−sm,j φ̇m(sm,j) = e−sm,j (cj(Hm) + φm(sm,j)) ∈ σ(Σ).

Since 0 < φm(sm,j) ≤ φm( 2
m ) < 1

2m , we have the limit

lim
m→∞

τm,j = cj(Σ).

Due to our assumption that the action spectrum σ(Σ) is discrete, this limit implies
that the sequence τm,j must stabilize for large m and therefore

τm,j = cj(Σ), ∀m ≥ mj .

By Equation (4.3), τm,j uniquely determines sm,j . Therefore, if we fix an integer
m ≥ max{mi,mi+n−1}, since

τ := τm,i = ci(Σ) = ci+n−1(Σ) = τm,i+n−1,

we have s := sm,i = sm,i+n−1 and

ci(Hm) = e−s(φ̇m(s)− φm(s)) = ci+n−1(Hm).

We now proceed as in the proof of Lemma 3.1, by choosing a Riemannian metric
g on Σ such that the Reeb orbits on Σ are unit speed geodesics. Consider the
compact subset K := fix(φτR) ⊂ Σ. For each z ∈ K, we denote the corresponding
τ -periodic Reeb orbit by ζz(t) = φtR(z) and set

K := {ζz | z ∈ K} ⊂ C∞(R/τZ,Σ).

As in the proof of Lemma 3.1, for each open neighborhood W ⊆ Σ of K, we can find
an open neighborhood N ⊂ H1/2(R/τZ,R2n) of K which is homotopy equivalent
to W . Picking W small, we can make N an arbitrarily small neighborhood of K.

To finish the proof, assume now to the contrary that Σ is not Besse, so that
K 6= Σ. Choosing W 6= Σ, we then obtain

H∗≥2n−1(N ;Q) ∼= H∗≥2n−1(W ;Q) = 0.
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The open subset

Nm :=
{
φsV (ζ(τ ·))

∣∣ ζ ∈ N} ⊂ H1/2(S1,R2n)

is an arbitrarily small open neighborhood of Km := crit(ΦHm)∩Φ−1
Hm

(ci(Hm)) with

H∗≥2n−1(Nm;Q) ∼= H∗≥2n−1(N ;Q) = 0.

By Lemma 2.1, Km admits an S1-invariant neighborhood U ⊂ H1/2(S1,R2n)
with indFR(U) < n − 1. This, together with Lemma 4.1, contradicts the equal-
ity ci(Hm) = ci+n−1(Hm). �

5. Geodesic flows

5.1. Equivariant spectral invariants. Let (M, g) be a closed Riemannian manifold
of dimension n ≥ 2. Its closed geodesics, parametrized in order to have constant
speed and period 1, are the critical points with positive critical value of the energy
functional

E : ΛM → [0,∞), E(γ) =

∫
S1

‖γ̇(t)‖2g dt,

where ΛM = W 1,2(S1,M) and S1 = R/Z. Once again, we are in an equivariant
setting: the circle S1 acts on ΛM by time-shift

t · γ = γ(t+ ·), ∀t ∈ S1, γ ∈ ΛM,

and the energy E is invariant under this action. The subspace of constant curves
E−1(0), which we identify with M with a common abuse of notation, is the set
of fix points of this action. Every other critical point γ ∈ crit(E) ∩ E−1(0,∞)
thus belongs to an embedded critical circle S1 · γ ⊂ ΛM . Moreover, for every
integer m ≥ 1, the m-th iterate γm ∈ ΛM , which is defined by γm(t) = γ(mt), is
also a critical point of E with critical value E(γm) = m2E(γ). Therefore, every
oriented closed geodesic of (M, g) gives rise to the countable sequence of critical
circles S1 · γm of E.

The energy functional E satisfies all the commonly desired assumptions from
critical point theory: it is non-negative, smooth, and satisfies the Palais–Smale
condition; see e.g. [Kli78]. As usual, we denote the energy sublevel sets by ΛM<b :=
{E < b}, and by ιb : (ΛM<b,M) ↪→ (ΛM,M) the inclusion. Every non-zero
cohomology class µ ∈ H∗S1(ΛM,ΛM ;Q) defines an equivariant spectral invariant

cg(µ) := inf
{√

b > 0
∣∣ ι∗bµ 6= 0

}
∈ (0,∞)

which is the square root of a positive critical value of E, that is, the period of a
unit-speed closed geodesic of (M, g).

5.2. A sufficient condition for the Besse property. Once again, one of the ingredi-
ents for the proof of Theorem 1.6 is the Fadell–Rabinowitz index (see Section 2),
which in the context of closed geodesics was first investigated by Rademacher
[Rad94]. We will need the following finiteness property of the index, which is
certainly well known to the experts, and holds in a rather general setting.

Lemma 5.1. Let (X, g) be a Hilbert manifold equipped with a continuous S1 action
such that, for each t ∈ S1, the action map ρt : X → X, ρt(x) = t · x is a smooth
isometry. Let K ⊂ X a compact S1-invariant subset such that, for each x ∈ K,
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the curve γx : S1 → K, γx(t) = ρt(x) is a smooth immersion. Then, K has an S1-
invariant neighborhood U ⊆ X with finite Fadell–Rabinowitz index indFR(U) <∞.

Proof. Since every ρt is an isometry, the exponential map exp of the Hilbert mani-
fold (X, g) is S1-equivariant, i.e.,

expt·x(t · v) = t · expx(v).

Since the S1 action on K is locally free, for each x ∈ K there exists τ = τx ∈ (0, 1]
such that τ · x = x and t · x 6= x for all t ∈ (0, τ). The S1-orbit

Cx := S1 · x = γx([0, τ ]) ⊆ K
is a smooth embedded circle in X. Consider the normal bundle NCx and, for each
t ∈ R/τZ, the open ball Bt ⊂ Nt·xCx of radius ε > 0 around the origin. Notice
that s ·Bt = Bs+t for all s ∈ S1. The union

B :=
⋃

t∈R/τZ

Bt

forms the open neighborhood of radius ε of the zero-section of the normal bundle
NCx. We require ε > 0 to be small enough so that the exponential map provides
a diffeomorphism onto its image

ψ : B → X, ψ(v) = expt·x(v), ∀v ∈ Bt.

Namely, Ux := ψ(B) is an S1-invariant tubular neighborhood of Cx, which admits
an S1-invariant deformation retraction

rs : Ux → Ux, rs(expt·x(v)) = expt·x((1− s)v)

such that r0 = id and r1 is a retraction onto Cx. This implies that

H∗S1(Ux) ∼= H∗S1(Cx) ∼= H∗(Cx/S
1) ∼= H∗(pt),

and in particular indFR(Ux) = 0. Since K is compact, there exists a finite collection
x1, . . . , xr ∈ K such that U := Ux1 ∪ . . . ∪ Uxr is an open neighborhood of K. By
the subadditivity of the Fadell Rabinowitz index (Equation (2.2)), we conclude

indFR(U) ≤ indFR(U1) + 1 + indFR(U2) + 1 + . . .+ indFR(Ur) + 1 = r. �

The following lemma provides a sufficient condition for a Riemannian metric
to be Besse and is an equivariant analogue of [MS18b, Lemma 5.2], although its
proof is somewhat different. We will employ the notation of Section 2 and denote by
eΛM ∈ H2

S1(ΛM ;Q) the Euler class of the circle bundle ΛM×ES1 → ΛM×S1ES1.

Lemma 5.2. Let µ ∈ H∗S1(ΛM,M ;Q) be a cohomology class such that µ ^ en−1
ΛM 6=

0 in H∗S1(ΛM,M ;Q). If ` := cg(µ) = cg(µ ^ en−1
ΛM ), then g is Besse and ` is a

common period for its unit-speed closed geodesics.

Proof. The proof is analogous to the one of Lemma 3.1, but since the current setting
is different we provide the argument in full details. We denote by φt : SM → SM
the geodesic flow of (M, g), and set

K := crit(E) ∩ E−1(`2), K :=
{

(γ(0), γ̇(0)) ∈ SM
∣∣ γ ∈ K}.

Notice that K is invariant under the geodesic flow and φ`|K = id. The free loop
space ΛM and its S1 action satisfy the assumptions of Lemma 5.1, which implies
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that K admits an S1-invariant open neighborhood X ⊂ ΛM with finite Fadell–
Rabinowitz index indFR(X ) <∞.

Let us assume that (M, g) has at least one geodesic that is not closed, or is
closed but not with period `. Therefore, SM \ K 6= ∅. We fix a constant ε ∈
(0, injrad(M, g)), and an open neighborhood W ( SM of K which is small enough
so that dist(expx((` − ε)v, x) < injrad(M, g). For each z = (x, v) ∈ W , we set
x′ := expx((`− ε)v), v′ := ε−1 exp−1

x′ (x), and define the smooth embedding

ι : W ↪→ ΛM, ι(z)(t) := γz(t) =

{
expx(tv), if t ∈ [0, `− ε],
expx′((t− `)v′) if t ∈ [`− ε, `].

We consider a tubular neighborhood W ⊂ ΛM of ι(W ), so that ι : W ↪→ W is a
homotopy equivalence, and in particular

H∗≥2n−1(W;Q) ∼= H∗≥2n−1(W ;Q) = 0.

By shrinking W and W, this latter tubular neighborhood can be made smaller
than any given neighborhood of K, and in particular contained in the above S1-
invariant neighborhood X with finite Fadell–Rabinowitz index. We can now apply
the abstract Lemma 3.1, which provides an S1-invariant neighborhood U of K with
Fadell–Rabinowitz index

ind(U) < n− 1. (5.1)

If we had ` := cg(µ) = cg(µ ^ en−1
ΛM ), the classical Lusternik-Schnirelmann theorem

would imply that every S1-invariant neighborhood U ⊂ ΛM of K has Fadell–
Rabinowitz index indFR(U) ≥ n− 1, contradicting (5.1). �

5.3. Equivariant Morse theory of the energy functional. Let M be a simply con-
nected Besse manifold of dimension n ≥ 2 and let g be a Besse Riemannian
metric on M . The equivariant Morse theory of the associated energy function
E : ΛM → [0,∞) has been thoroughly investigated by Hingston [Hin84] and,
specifically in the Besse case, by Radeschi and Wilking [RW17]. In this subsection,
we recap those results from [RW17] which will be needed later on.

The Besse condition on the Riemannian metric implies that E is Morse-Bott, that
is, the set of critical points crit(E) is a disjoint union of closed manifolds which are
transversally non-degenerate. Moreover, E is perfect for the S1-equivariant rational
cohomology relative to the constant loops H∗S1(−,M ;Q), which means that, for all
0 < a < b < c ≤ ∞, the inclusion induces the injective and, respectively, surjective
homomorphisms

H∗S1(ΛM<c,ΛM<b;Q) ↪→ H∗S1(ΛM<c,ΛM<a;Q) � H∗S1(ΛM<b,ΛM<a;Q).

If K is a connected component of crit(E), we denote by ind(K) its Morse index,
and by nul(K) := dim(ker(d2E|K)) its nullity3. Both indices are well known to be
finite; see e.g. [Kli78]. We assume that M is spin, which implies that every critical
manifold of E has an orientable negative bundle, and therefore is homologically
visible. This, together with the perfectness of E, implies

H∗S1(ΛM,M ;Q) ∼=
⊕
K
H∗−ind(K)(K/S1;Q), (5.2)

3In the closed geodesics literature, the nullity is often defined as dim(ker(d2E|K))− 1, so that
a non-degenerate closed geodesic has an associated critical circle with nullity 0.
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where the direct sum runs over the space of all connected components K ⊂ crit(E).
The integer

i(M) := min
{

ind(K)
∣∣ K ∈ crit(E) ∩ E−1(0,∞)

}
turns out to be positive and independent of the choice of a Besse Riemannian metric
on M ; indeed, if M0 is the model of M (see Section 1.3), we have

i(M) = i(M0) =


n− 1, if M0 = Sn,
1, if M0 = CPn/2,
3, if M0 = HPn/4,
7, if M0 = CaP2.

(5.3)

Since g is a Besse Riemannian metric, Wadsley’s theorem [Wad75] implies that
all unit speed closed geodesics have a minimal common period ` > 0. Therefore, the
critical manifold K := crit(E)∩E−1(`2) is diffeomorphic to the unit tangent bundle
SM via the evaluation map γ 7→ (γ(0), γ̇(0)). We denote by Km := {γm | γ ∈ K}
the critical manifold containing the m-th iterates of the loops in K. Bott’s index
formula [Bot56] for the critical manifolds Km becomes particularly simple:

ind(Km) = m ind(K) + (m− 1)(n− 1), nul(Km) = 2n− 1. (5.4)

5.4. Spectral characterization of Zoll Riemannian metrics. We now assume that the
Riemannian metric g is Zoll and that its unit-speed closed geodesics have minimal
period ` > 0. The critical manifold of non-iterated closed geodesics

K := crit(E) ∩ E−1(`2)

is S1-equivariantly homeomorphic to the unit tangent bundle SM equipped with
the S1 action provided by the geodesic flow. Every other critical manifold of E
with positive critical value is of the form Km, for m ≥ 2. Bott’s formulas (5.4) for
the Morse indices reduce to

ind(Km) = mi(M) + (m− 1)(n− 1), nul(Km) = 2n− 1.

This, together with (5.2), implies that H∗S1(ΛM,M ;Q) has the form (1.2), and in
particular

H
i(M)
S1 (ΛM,M ;Q) ∼= H0(K/S1) ∼= Q. (5.5)

Let Nm ⊂ N−Km be the open neighborhood of radius r > 0 of the zero-section
in the negative normal bundle of Km. Namely, for every γ ∈ K, the fiber (Nm)γ is
the open ball of radius r > 0 in the negative eigenspace of the Hessian d2E(γ). We
assume that r > 0 is small enough so that the exponential map of ΛM (with respect
to its canonical S1-invariant Riemannian metric induced by g) is a diffeomorphism

onto its image, and Exp(Nm)\Km is contained in the sublevel set ΛM<m2`2 . From
now on, with a slight abuse of notation we identify Nm ≡ Exp(Nm), and thus
consider Nm as a finite dimensional smooth submanifold of ΛM containing Km. If
0 < ε < `, the inclusion induces the ring isomorphism

H∗S1(ΛM<m2(`+ε)2

,ΛM<m2`2 ;Q) ∼= H∗S1(Nm,Nm \ Km;Q).

Since the negative bundle N−Km → Km is orientable, it has a non-zero Thom class
with rational coefficients, which we can view as a relative cohomology class

τm ∈ H ind(Km)
S1 (Nm,Nm \ Km;Q),
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and we have a Thom isomorphism

H∗S1(Nm;Q)
∼=−→H

∗+ind(Km)
S1 (Nm,Nm \ Km;Q),

η 7−→ τm ^ η.

The exponential map allows us to construct an S1-equivariant deformation retrac-
tion of Nm onto Km, and, in particular, the inclusion induces the ring isomorphism

H∗S1(Nm;Q) ∼= H∗S1(Km;Q).

Since the S1 action on Km is locally free, the projection

pr1 : Km ×S1 ES1 → Km/S1, pr1(γ, e) = γ

induces the ring isomorphism

pr∗1 : H∗(Km/S1;Q)
∼=−→H∗S1(Km;Q).

With a suitable orientation, this isomorphism maps the Euler class e′ of the circle
bundle Km → Km/S1 to the Euler class eKm of the circle bundle Km × ES1 →
Km ×S1 ES1, i.e.,

eKm = pr∗1(e′) ∈ H2
S1(Km;Q).

It is well known that, in De Rham cohomology, e′ is represented by a symplectic
form on Km/S1; see [BW58]. In particular, erKm 6= 0 if and only if r ∈ {0, ..., n−1},
that is, Nm has Fadell–Rabinowitz index

indFR(Nm) = indFR(Km) = n− 1.

Since E is perfect, the inclusion induces the surjective and, respectively, injective
homomorphisms

H∗S1(Nm,Nm \ Km;Q)
i∗m

�−−H∗S1(ΛM,ΛM<m2`2 ;Q)
j∗m

↪−−→H∗S1(ΛM,M ;Q).

In particular, there exists

νm ∈ H ind(Km)
S1 (ΛM,ΛM<m2`2 ;Q)

such that i∗m(νm) = τm and i∗m(νm ^ en−1
ΛM ) = τm ^ en−1

Nm 6= 0. Therefore, we have

αm := j∗m(νm) 6= 0, βm := αm ^ en−1
ΛM = j∗m(νm ^ en−1

ΛM ) 6= 0.

Since E is perfect, we readily see that cg(αm) = cg(βm) = m` for all integers m ≥ 1.
The following statement summarizes the discussion and proves that (iii) implies

(ii) in Theorem 1.6.

Lemma 5.3. Let M be a closed manifold of dimension at least 2 admitting a Zoll
Riemannian metric g. Then, cg(αm) = cg(βm) = m` for all m ∈ N, where ` > 0 is
the minimal period of the unit-speed closed geodesics of (M, g). �

Proof of Theorem 1.6. We are only left to prove that (i) implies (iii), and that (i’)
implies (iii) when M = Sn with n 6= 3. The argument is analogous to the one
of [MS18b, pages 22-23]. The equality m` = cg(αm) = cg(βm), together with

βm = αm ^ en−1
ΛM and Lemma 5.2, implies that g is Besse and m` is a common

period for its unit-speed closed geodesics. If M = Sn with n 6= 3, then the Berger
conjecture [GG81, RW17] implies that g is Zoll, and by Lemma 5.3 the common
period of the closed geodesics must be ` = cg(α1)1/2.
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Assume now that M is a general spin Zoll manifold, and ` = cg(α1) = cg(β1).
We have to prove that `2 is the minimal positive critical value of E. The critical
set K := crit(E)∩E−1(`2) is diffeomorphic to the unit tangent bundle SM via the
diffeomorphism γ 7→ (γ(0), γ̇(0)). Since the degree of the cohomology class α1 is
i(M), we have ind(K) ≤ i(M). Hence ind(K) = i(M) because i(M) is the minimal
Morse index of the closed geodesics of (M, g). Now, assume by contradiction that
g is not Zoll and so there exists m > 1 such that the compact set

W := crit(E) ∩ E−1(m−2`2)

is non-empty. Since i(M) ≤ ind(W) ≤ ind(K), we must have ind(W) = i(M).
Since E is perfect, we have

dimH
i(M)
S1 (ΛM,M ;Q) ≥ dim(H0(W/S1)) + dim(H0(K/S1)) ≥ 2,

which contradicts (5.5). �
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