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SECTIONAL ALGEBRAS OF SEMIGROUPOID BUNDLES

LUIZ GUSTAVO CORDEIRO

Abstract. In this article we use semigroupoids to describe a notion of algebraic bundles, mostly mo-
tivated by Fell (C∗-algebraic) bundles, and the sectional algebras associated to them. As the main
motivational example, Steinberg algebras may be regarded as the sectional algebras of trivial (direct
product) bundles. Several theorems which relate geometric and algebraic constructions – via the con-
struction of a sectional algebra – are widely generalized: Direct products bundles by semigroupoids
correspond to tensor products of algebras; Semidirect products of bundles correspond to “naïve” crossed
products of algebras; Skew products of graded bundles correspond to smash products of graded al-
gebras; Quotient bundles correspond to quotient algebras. Moreover, most of the results hold in the
non-Hausdorff setting. In the course of this work, we generalize the definition of smash products to
groupoid graded algebras.

As an application, we prove that whenever θ is a ∧-preaction of a discrete inverse semigroupoid
S on an ample (possibly non-Hausdorff) groupoid G, the Steinberg algebra of the associated groupoid
of germs is naturally isomorphic to a crossed product of the Steinberg algebra of G by S. This is a
far-reaching generalization of analogous results which had been proven in particular cases.

1. Introduction

1.1. Historical remarks. Bundles (or fields) of algebras have been thoroughly studied in the last
century, and are an instance of the general technique of decomposing a mathematical object into more
manageable components. For example, any finite-dimensional C∗-algebra A may be decomposed as a
direct sum A = ⊕x∈XAx, where X is a finite set called the base space and each Ax is a full matrix
algebra. In other words, A is isomorphic to an algebra of block diagonal matrices.

However, when considering infinite dimensional algebras, such a decomposition is generally not possible
in any meaningful way. There are two possibilities to deal with this problem.

In one direction, we may permit that the base spaceX , over which the initial algebra A is decomposed,
is infinite, or more specifically a topological space. This leads to the notion of “continuous bundles of
C∗-algebras”. These have their origin in Godement [23] and Kaplansky [24] as a generalization of direct
sums to a continuous setting, after von Neumann’s introduction of measurable fields of Hilbert spaces in
[47].

In the other direction, we may allow that the base space X itself has some dynamical strucuture (on
top of possibly being infinite) – e.g. it is a group – and the decomposition of A along X respects that
structure, i.e., that A is a graded algebra.

In [19], Fell introduces “Banach ∗-algebraic bundles” over topological groups, which are continuous
versions of group graded ∗-algebras. The C∗-analogues were introduced in [20], and are now more
commonly referred to as “Fell bundles”.

Finally, both of the approaches above were combined by Kumjian in [26], who defined Fell bundles
over groupoids.

The goal of this article is to utilize the language of semigroupoids to lay out a general framework for
the study of bundles of algebras. Whenever possible, we will consider general topological algebras over
topological rings satisfying some minimal regularity conditions. Although the finer details become more
intricate in this very general setting, it has the obvious advantage of being more widely applicable.

Let us outline the structure of this article. The remainder of the Introduction is devoted to recall
some basic facts and terminology, which will be used throughout the paper, about algebras over non-
commutative rings, topological spaces, and topological semigroupoids. In Section 2 we define algebraic
bundles over semigroupoids and their associated sectional algebras. Section 3 describes several classes of
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2 LUIZ GUSTAVO CORDEIRO

algebras which may be regarded as somewhat trivial cases of sectional bundle algebras, so as to make it
precise how to apply our results in those specific settings. The short Section 4 deals with a very natural
problem: Are sectional algebras topological algebras in a natural manner? We provide a positive answer
in a specific, but nonetheless sufficiently wide, setting. We finish this article with the fifth section, with
several isomorphism theorems relating geometric constructions with bundles and algebraic constructions
of the associated sectional algebras. The results of this section affirm the strength of this theory in
their applications, since we are able to generalize and connect previously-known results of the are by
interpreting different theories in this more general setting in very straightforward manners.

1.2. Algebraic generalities. All rings and algebras are assumed to be associative, and any module or
bimodule M over a unital ring R will be assumed to be unital, i.e., 1m = m and/or m1 = m for all
m ∈M .

If A is an abelian group, written additivelly, and F is a collection of subsets of A, then
∑

F denotes
the abelian subgroup of A generated by F , i.e., the set of all finite sums of elements of sets in F .

Some fine details of the theory of algebras over non-commutative rings differs significantly from that
of commutative rings, so let us spell out all relevant definitions.

Tensor products. Let R be a ring, M a right R-module and N a left R-module. If A is an abelian
(additive) group, a map T : M ×N → A is said to be balanced if

• For every m ∈M and n ∈ N , the sections T (·, n) : M → A and T (m, ·) : N → A are additive;
• For every m ∈M , n ∈ N and r ∈ R, we have T (mr, n) = T (m, rn)

The tensor product M ⊗R RN is constructed in the usual manner, as the free abelian group generated by
symbolsm⊗n, where (m,n) ∈M×N , modulo the conditions stating that the map T : M×N →M ⊗R RN
is balanced. If no confusion arises we write simply M ⊗N .

If S is another ring and M has an (S,R)-bimodule structure, then the tensor product M ⊗R R N has
a left S-module structure determined by s(m⊗ n) = (sm)⊗ n for all s ∈ S and (m,n) ∈M ×N .

Similarly, any right module structure on N compatible with the left R-module structure induces a
right module structure on M ⊗R R N .

Algebras over non-commutative rings. An algebra A over a ring R (or simply an R-algebra) consists
of a ring A enriched with an R-bimodule structure – the ring addition and the R-bimodule addition being
the same – such that for all a, b ∈ A and r ∈ R,

(ra)b = r(ab), (ar)b = a(rb), and (ab)r = a(br).

The middle equation above means that the product of A is balanced, and thus is determined as an
R-bimodule homomorphism A ⊗R R A→ A, a⊗ b 7→ ab.

Tensor products of algebras. In general, the tensor product of two R-algebras, where R is a ring,
is just an R-bimodule, and not an algebra. This is in constrast with the more familiar setting of
commutative rings, which we briefly recall below.

If R is a commutative ring, then any left (or right) R-module M may be regarded as an R-bimodule
where the left and right actions of R are the same: rm = mr for all r ∈ R and m ∈ M . The R-
bimodules obtained in this manner are called symmetric. This defines an injective and full functor from
the category of left R-modules to the category of R-bimodules. However this functor is not essentially
surjective, since there are non-symmetric bimodules over commutative rings (e.g. R = D2(R), the ring of
2× 2 real diagonal matrices, and M =M2(R), the 2× 2 real matrix algebra, regarded as an R-bimodule
via matrix multiplication).

If A and B are symmetric R-algebras (i.e., the R-bimodule structures are symmetric), then the tensor
product A ⊗R R B has a canonical symmetric R-algebra structure, determined by (a1 ⊗ b1)(a2 ⊗ b2) =
(a1a2)⊗ (b1b2).

1.3. Topological conventions. A subset A ⊆ X is a neighbourhood of a point x ∈ X if x belongs
to its interior int(A). A neighbourhood basis of x is a set B of neighbourhoods of x such that for any
neighbourhood A of x, there exists B ∈ B such that B ⊆ A.

Whenever we state that a topological space X satisfies some property “locally”, we shall mean that
every point of X admits a neighbourhood basis consisting of subsets satisfying such property under
the subspace topology. So for example, a space X is locally compact if every point of X admits a
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neighbourhood basis of compact sets, which will be in general not open inX . If necessary for precision, we
may say that a topological property holds “globally” in constrast with “locally” (e.g. globally Hausdorff ).

Even though this “local requirement” may sometimes be weakened to just assuming that each point has
at least one neighbourhood (instead of a basis) satisfying such a property, this is not sufficiently strong
for our needs. For example, a compact and locally Hausdorff space X may be non-locally compact in
our sense (although it is well-known that any compact and globally Hausdorff space is so).

If X and Y are topological spaces, the set of continuous functions from X to Y is denoted by C(X,Y ).
If A is a topological ring or a topological algebra, the support supp(f) of a (possibly discontinuous)
function f : X → A is the closure of {x ∈ X : f(x) 6= 0}.

1.4. Topological and étale semigroupoids. Semigroupoids provide a modern approach to unify the
theories of categories and semigroups, and in particular the study of inverse semigroupoids allows one to
join the theories of groupoids and inverse semigroups. Two working definitions, by Tilson [44] and Exel
[17], have appeared in the literature. For our purposes, we will consider semigroupoids in the sense of
Tilson, which are, in simple terms, “categories without identities”.

Definition 1.1. A semigroupoid consists of a tuple (Λ,Λ(0),Λ(2), s, r, µ), where

(i) Λ is a directed graph (or quiver) over Λ(0), with source and range maps s, r : Λ → Λ(0), respec-
tively; (we allow loops and multiple arrows between vertices)

(ii) Λ(2) = {(a, b) ∈ Λ × Λ : s(a) = r(b)} is the set of composable pairs. Note that this is also the
graph of 2-paths on Λ;

(iii) µ : Λ(2) → Λ is the multiplication or product map, and denoted by concatenation – µ(a, b) = ab;
(iv) µ is a graph morphism from Λ(2) to Λ, i.e., if s(a) = r(b) then s(ab) = s(b) and r(ab) = r(a);
(v) µ is associative, i.e., (ab)c = a(bc) whenever s(a) = r(b) and s(b) = r(c).

The product of subsets A,B of a semigroupoid Λ is

AB ..=
{
ab : (a, b) ∈ (A×B) ∩ Λ(2)

}
.

A map φ : Λ1 → Λ2 between semigroupoids is a homomorphism if (a, b) ∈ Λ
(2)
1 implies (φ(a), φ(b)) ∈

Λ
(2)
2 and φ(ab) = φ(a)φ(b). An isomorphism is a bijective homomorphism whose inverse is also a

homomorphism.
More generally, in the same manner that one may define a category internal to any category with

pullbacks, we may also define semigroupoids internal to any category with pullbacks. In particular, a
topological semigroupoid is simply a semigroupoid Λ where both Λ and Λ(0) are endowed with certain
topologies making all structural maps (source, range, and multiplication) continuous. (In this case Λ(2)

has the product topology, coming from Λ× Λ.)

Definition 1.2. An étale semigroupoid is a topological semigroupoid E such that the source and range
maps s, r : E → E(0) are local homeomorphisms and the vertex set E(0) is locally compact and globally
Hausdorff.

Note that an étale semigroupoid E is locally compact and locally Hausdorff. The product map of E
is also a local homeomorphism, so E is actually a semigroupoid internal to the category of topological
spaces and étale maps (local homeomorphisms). This fact may be proven just as in [14, Proposition 3.5].
Note that the Hausdorff property of E(0) is necessary just to ensure that the product of compact sets is
compact, which can also be proven just as in [14, Lemma 5.1(b)]. In short, we have:

Proposition 1.3. If E is an étale semigroupoid, then the product of compact subsets of E is compact,
and the product is a local homeomorphism from E(2) to E.

If E is an étale semigroupoid, then E admits a basis of open subsets U such that the source and
range maps restrict to homeomorphisms of U onto open subsets of E(0). These sets are called the open
bisections of E, and will be used heavily throughout this article.

Definition 1.4. A bisection of a semigroupoid E is a subset U ⊆ E such that the source and range maps
are injective on U . If E is étale, we denote by B(E) the set of all open bisections of E. In this case, B(E)
is a topological basis for E, and it is closed under products of sets (and hence is a semigroup).
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We will also be interested more specifically in inverse semigroupoids, which allow us to consider
dynamical systems by means of (global/partial/∧-pre-) actions. We refer to [14] for the finer details, but
nevertheless let us write all relevant definitions and properties below.

Definition 1.5. An inverse semigroupoid is a semigroupoid S such that for every s ∈ S, there exists
a unique t ∈ S such that s(s) = r(t), r(s) = s(t), sts = s and tst = t. This unique element is denoted
t = s∗ and is called the inverse of s.

The two best examples of (étale) inverse semigroupoids to keep in mind are (discrete) inverse semi-
groups and (étale) groupoids.

Just as in the case for inverse semigroups, we denote by E(S) ..= {e ∈ S : s(e) = r(e) and ee = e} the
set of idempotents of an inverse semigroupoid S. Then E(S) is a commutative subsemigroupoid of S, i.e.,
if e, f ∈ E(S), then ef is defined if and only if fe is defined, in which case ef = fe.

We have a canonical order on any inverse semigroupoid S, where s ≤ t is determined by any of the
following equivalent statements: (i) s = ts∗s; (ii) s = te for some e ∈ E(S); (iii) s = ss∗t; or (iv) s = ft
for some f ∈ E(S). (Note that we implicitly assume that s(s) = s(t) and r(s) = r(t).)

The inverses and the order in inverse semigroupoids obey the usual rules: As long as the statements
make sense, we have (a) (st)∗ = t∗s∗; (b) (s∗)∗ = s; (c) s ≤ t ⇐⇒ s∗ ≤ t∗; and (d) s1 ≤ t1 and s2 ≤ t2
implies s1s2 ≤ t1t2.

For topological (and étale) inverse semigroupoids, we also assume that the inversion map a 7→ a∗ is
continuous. In this case, the semigroup B(S) of open bisections is an inverse semigroup.

1.5. ∧-preactions, partial actions, and global actions. The notions of partial and global actions
(and the more general but less studied ∧-preactions) of inverse semigroups and groupoids can be im-
mediatelly generalized to the context of inverse semigroupoids. As we want to have a general approach
that encompasses both the topological as the algebraic settings, it is useful to consider actions of inverse
semigroupoids on semigroupoids.

If f is a function, we denote its domain by dom(f) and its range by ran(f). If g is another function,
then the composition gf is defined on “the largest domain on which the formula (gf)(x) = g(f(x)) makes
sense”, that is,

dom(gf) ..= f−1(ran(f) ∩ dom(g)), ran(gf) ..= g(dom(g) ∩ ran(f)),

and (gf)(x) = g(f(x)) for all x ∈ dom(gf).

Definition 1.6. An ideal of a semigroupoid Λ is a subset I ⊆ Λ such that IΛ ∪ ΛI ⊆ I.

Definition 1.7. A ∧-preaction θ of an inverse semigroupoid S on a semigroupoid Λ consists of a collection
of maps {θs}s∈S

satisfying:

(i) For all v ∈ S(0),
⋃

s∈s
−1(v) dom(θs) is an ideal of Λ, which we temporarily denote I(θ, v);

(ii) For all s ∈ S, dom(θs) is an ideal of I(θ, s(s)), ran(θs) is an ideal of I(θ, r(s)), and θs is a
semigroupoid isomorphism from dom(θs) to ran(θs);

(iii) For all s ∈ S, θs∗ = θ−1
s (in particular ran(θs) = dom(θs∗));

(iv) If (s, t) ∈ S(2), then θst is an extension of θsθt, i.e., θ−1
t (ran(θt) ∩ dom(θs)) ⊆ dom(θst) and

θs(θt(x)) = θst(x) for all x ∈ θ−1
t (ran(θt) ∩ dom(θs)).

A ∧-preaction is called a partial action if it satisfies, in addition:

(v) If s ≤ t in S then dom(θs) ⊆ dom(θt).

Finally, θ is a global action if θst = θs ◦ θt for all (s, t) ∈ S(2), or in other words if the set inclusion in
item (iv) is actually an equality. Every global action is a partial action.

A ∧-preaction θ of an inverse semigroupoid S on a semigroupoid Λ will be denoted by “θ : S y Λ”.

In operational terms:

• If θ is a ∧-preaction and (s, t) ∈ S(2), then

(1.8) θs(θt(x)) = θst(x)

whenever the left-hand side is defined, as it implies that the right-hand side is also defined;
• If θ is a ∧-preaction and s ≤ t in S, then

(1.9) θs(x) = θt(x).

whenever both sides are simultaneously defined.
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• If θ is a partial action, then Equation (1.9) holds whenever its left-hand side is defined, as it
implies that the right-hand side is also defined;

• If θ is a global action, then Equation (1.8) holds whenever any side is defined, as it implies that
the other one also defined.

Remark. Originally ([14, Definition 2.41]), in the definition of ∧-preactions we also require a function
π : Λ → S(0) which is a semigroupoid morphism, in the sense that if ab is defined in Λ then π(a) = π(b).
Instead of conditions (i) and (ii) of Definition 1.7, we require that

(i)’ π−1(v) is an ideal of Λ for every v ∈ S(0); and
(ii)’ dom(θs) is an ideal of π−1(s(s)) for every s ∈ S.

These two approaches are in fact equivalent in the following sense: Given a ∧-preaction θ as in Definition
1.7, we construct the new semigroupoid

Γ ..=
⋃

v∈S(0)

{v} × I(θ, v)

with canonical product when we see S(0) as a unit groupoid: (v, a)(u, b) = (v, ab) whenever v = u and
ab is defined in Λ.

Now we define a new action θ̃ of S on Γ by setting, for every s ∈ S, dom(θ̃s) = {s(s)} × dom(θs), and
θ̃s(s(s), a) = (r(s), θs(a)).

Let π1 : Γ → S(0), π1(x, a) = x. Then (π1, θ̃) is an ∧-preaction in the sense of [14]. The second
coordinate map π2 : Γ → Λ, π2(v, a) = a, intertwines the ∧-preactions θ̃ and θ, i.e., for every s ∈ S, π2
restricts to a bijection of dom(θ̃s) onto dom(θs), and π2 ◦ θ̃s = θs ◦ π2 on dom(θ̃s). All of this remains
true for topological semigroupoids, in which case all relevant functions are continuous.

The main point is that the semidirect product S⋉Λ, as defined below in Definition 1.10, is isomorphic
to the semidirect product S⋉Λ of [14, Definition 2.51], and thus all the theory of [14] may be transferred
immediately to the setting we consider.

Definition 1.10. Given a ∧-preaction θ : S y Λ, the semidirect product S⋉θ Λ is the set

S⋉θ Λ ..=
⋃

s∈S

{s} × dom(θs) = {(s, a) ∈ S× Λ : a ∈ dom(θs)}

with graph structure over S(0) × Λ(0) given by

s(s, a) = (s(s), s(a)) and r(s, a) = (r(s), r (θs(a)))

and product
(s, a)(t, b) = (st, θt∗(aθt(b)))

whenever s(s) = r(t) and s(a) = r(θt(b)).

We write simply S ⋉ Λ for the semidirect product if no confusion arises from dropping θ from the
notation.

The product of S ⋉ Λ is not associative in general, but it is associative in all cases of interest. For
example, if dom(θs) is an inverse semigroupoid for all s ∈ S, then the product defined in Definition 1.10
is associative, and S⋉ Λ is a semigroupoid. See [14, Section 2.5] for details.

Definition 1.11. A ∧-preaction θ : S y Λ is associative if for all s, t, u ∈ S with stu defined, and all
(a, b, c) ∈ dom(θs) × dom(θt) × ran(θu), we have θt∗(aθt(b))c = θt∗(aθt(bc)). This is equivalent to the
semidirect product being associative with respect to the product in Definition 1.10 (see the proof of [14,
Theorem 2.56]).

In general we will only consider associative ∧-preactions.

Definition 1.12. Given a ∧-preaction θ : S y Λ, we abuse notation and also use θ to denote the action
map

θ : S⋉ Λ → Λ, θ(s, a) = θs(a).

If S is a topological inverse semigroupoid and Λ is a topological semigroupoid, we say that θ is continuous
or open if the action map is continuous or open, respectively.

Of course, if θ : S y Λ is a continuous associative ∧-preaction, then S⋉Λ is a topological semigroupoid.
If S and Λ are étale and θ is continuous and open, then S⋉ Λ is étale as well.
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2. Sectional algebras

2.1. Algebraic bundles. Throughout this section, we let R be a fixed unital topological ring.
We will define R-bundles in terms of semigroupoid homomorphisms. However an additional property

will be required of the homomorphisms under consideration.
Let π : Λ → Γ be a homomorphism of semigroupoids. Then we have Λ(2) ⊆ (π × π)−1(Γ(2)), however

the reverse inclusion is not true in general. In general, the image π(Λ) might not be a subsemigroupoid
of Γ and thus is not a semigroupoid in any natural manner. This is a realization of the fact that the
kernel of π, kerπ ..= {(x, y) ∈ Λ× Λ : π(x) = π(y)}, is not a congruence for Λ in any suitable sense (i.e.,
in a manner that the quotient Λ/ kerπ has a natural semigroupoid structure).

On the other hand, if (π × π)−1(Γ(2)) ⊆ Λ(2), then π(Λ) is in fact a subsemigroupoid of Γ, and the
quotient Λ/kerπ has a canonical semigroupoid structure, making it isomorphic to π(Λ).

Definition 2.1. A semigroupoid homomorphism π : Λ → Γ is rigid if (π × π)−1(Γ(2)) = Λ(2).

When Λ has no sources nor sinks as a graph, rigidity of a homomorphism π : Λ → Γ has alternative
descriptions. In this case, π induces a unique vertex map π(0) : Λ(0) → Γ(0) in such a way that (π(0), π)
is a graph morphism, i.e., sΓ ◦π = π(0) ◦ sΛ, and similarly for the range maps (see [14, Proposition 2.19]).

On the other hand, following [29, 4.1.2], a congruence ρ on Λ is called rigid (also called graphed in
[14, Definition 4.3]) if the source and range maps of Λ are constant on ρ-equivalence classes.

Then the following statements are equivalent (assuming that Λ has no sources nor sinks):

(1) π : Λ → Γ is a rigid homomorphism;
(2) The vertex map π(0) : Λ(0) → Γ(0) is injective;
(3) kerπ is a rigid congruence.

This will be the additional condition for the semigroupoid homomorphisms we consider for R-bundles.

Definition 2.2. An R-bundle consists of a rigid semigroupoid homomorphism π : Λ → Γ, together with
an R-bimodule structure on the fiber π−1(γ) for each γ ∈ Γ, such that for every (γ1, γ2) ∈ Γ(2), the
product map

µ|π−1(γ1)×π−1(γ2) : π
−1(γ1)× π−1(γ2) → π−1(γ1γ2), (x, y) 7→ xy

is R-balanced; thus it is regarded as an R-bimodule homomorphism µ(γ1,γ2) : π
−1(γ1) ⊗R R π−1(γ2) →

π−1(γ1γ2).
We will refer simply to π as the R-bundle. The zero of π−1(γ) may be denoted by 0γ if necessary, or

simply 0.
If Λ and Γ are topological semigroupoids, the R-bundle π : Λ → Γ is said to be continuous if

(i) π is continuous;
(ii) The addition + is continuous from {(x, y) ∈ Λ× Λ : π(x) = π(y)} to Λ;
(iii) Left and right scalar multiplications are continuous (i.e., the map (r, x) 7→ (rx, xr) from R × Λ

to Λ× Λ is continuous).
(iv) The zero function 0 : Γ → Λ, γ 7→ 0γ is continuous;

Note that the nontrivial inclusion (π × π)−1(Γ(2)) ⊆ Λ(2), which is guaranteed as π is a rigid homo-
morphism, implies that π−1(γ1) × π−1(γ2) is contained in Λ(2) whenever (γ1, γ2) ∈ Γ(2), so µ(γ1,γ2) is a
well-defined map.

Moreover, since bimodules are nonempty by definition, then π−1(γ) is nonempty for all γ ∈ Γ, so π is
surjective.

Example 2.3. The assumption that the zero function is continuous does not automatically follow from
the other ones, and it will be necessary in the proof of Theorem 5.13. For example, let R be any unital
topological ring, and Γ be any topological semigroupoid without isolated points. Let Λ be the same
semigroupoid as Γ, however with the discrete topology. Let I : Λ → Γ be the identity map, and regard
each fiber I−1(γ) = {γ} as the zero R-module, so that we have an R-bundle.

Then the zero function 0 : Γ → Λ is the identity map, and it is discontinuous everywhere, even though
conditions (i)-(iii) are satisfied.

Remark. Suppose that π : Λ → Γ is a continuous R-bundle. If X is a topological space, f : X → Λ
and h : X → R are continuous functions, then the function hf : x 7→ h(x)f(x) is continuous, as it is the
composition of (h, f) : X → R× Λ with the scalar multiplication, and similarly fh is continuous.
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2.2. Sectional algebras. We will now define the sectional algebra of an R-bundle, where R is a unital
topological ring. As we work in a general setting, we will need to assume at least that a version of
Urysohn’s Lemma holds for R-valued functions.

Definition 2.4. Let R be a unital topological ring. A topological space X is said to be R-normal if for
any two disjoint closed subsets A,B ⊆ X there exists a continuous function f : X → R such that f = 0
on A and f = 1 on B. The space X is said to be locally R-normal if every point of X admits a basis of
R-normal neighbourhoods.

Note that every closed subset of an R-normal space is again R-normal, with the subspace topology.
This definition covers all cases of interest to us. For example, every locally compact, locally Hausdorff

space is locally R and locally C-normal. More generally, if R is a path-connected unital topological ring
(e.g. a unital Banach algebra), then every locally compact, locally Hausdorff space is locally R-normal.

In the more extreme case, every locally compact, locally Hausdorff, zero-dimensional space is locally
R-normal for any unital topological ring R. In particular, ample groupoids (as in [36, Definition 2.2.4])
are R-normal for any unital topological ring R.

For the next definitions, we fix a continuous R-bundle π : Λ → Γ, where Γ is étale. If X is any
topological space, the support of a function f : X → Y is the closure of

{
x ∈ X : f(x) = 0π(f(x))

}
in X .

Definition 2.5. A section of π is a right-inverse of π, i.e., a function α : Γ → Λ such that π ◦ α = idΓ.
We consider the set of sections of π as an R-bimodule under pointwise addition and product by R.

Given an open subset V ⊆ Γ, let Cc(V, π) be the collection of all sections α : Γ → Λ such that α = 0
outside V , α is continuous on V , and supp(α) ∩ V is compact.

If V is an open Hausdorff subset of Γ and α is a section of π, note that supp(α) ∩ V is simply the
support of the restriction of α to V . Since V is Hausdorff, then supp(α) ∩ V is compact if and only
if α = 0 outside of a compact subset of V . Thus we shall say that elements of Cc(V, π) are compactly
supported in V .

Definition 2.6. The sectional algebra of the continuous R-bundle π : Λ → Γ is the R-bimodule A(π)
generated by the union of Cc(V, π) for all Hausdorff open subsets V ⊆ Γ.

By the remark after Definition 2.3, A(π) is a C(Γ, R)-bimodule with pointwise product, i.e., if f : Γ →
R is continuous and α ∈ A(π), then the function fα : γ 7→ f(γ)α(γ) also belongs to A(π) (and similarly
αf ∈ A(π)).

In order to define the product structure of A(π), we will need to make use of the fact that Γ is étale
(as we specified above). In this case, the first point is to prove that we may strengthen the condition
in Definition 2.6, to allow us to take generating elements of A(π) in sets of the form Cc(V, π) where V
belongs to some prescribed basis of Γ.

The following Lemma may be proven, with obvious modifications, as in the classical (R-valued) case,
see e.g. [39, Theorem 2.13].

Lemma 2.7 (Existence of partitions of unity). Suppose that R is a unital topological ring and X is a
Hausdorff, locally compact, locally R-normal space. Then for every compact K ⊆ X and every finite
open cover V1, . . . , Vn of K, there exist continuous functions f1, . . . , fn : X → R such that supp(fi) ⊆ Vi
for all i, and

∑n
i=1 fi = 1 on K. Moreover, fi may be taken to have compact support on X.

As usual, we call the collection f1, . . . , fn a partition of unity subordinate to V1, . . . , Vn.
In fact, the same technique as in [39, Theorem 2.13] gives us the useful permanence of the R-normal

property in the case of interest.

Lemma 2.8. Let R be a unital topological ring and X and Y two compact and Hausdorff spaces. If both
X and Y are R-normal, then X × Y is also R-normal.

In particular, any finite product of locally compact, locally Hausdorff, and locally R-normal spaces is
locally R-normal.

The second statement above follows from the fact that any locally compact, locally Hausdorff and
locally R-normal space X admits a neighbourhood basis of sets which are simultaneously Hausdorff,
compact and R-normal. Indeed, for every x ∈ X and every open set U containing X , there exist
neighbourhoods K, N and H of x such that K is compact, N is R-normal, and H is Hausdorff, and
x ∈ K ⊆ N ⊆ H ⊆ U . As H is Hausdorff and K is compact, K is closed in H , so it is also closed in N ,
and thus it is R-normal, compact and Hausdorff.
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Lemma 2.9. Suppose that R is a unital topological ring, and π : Λ → Γ is a continuous R-bundle where
Γ is an étale, locally R-normal semigroupoid. If B is any topological basis of Γ, then A(π) is generated,
as an additive group, by

⋃
{Cc(U, π) : U ∈ B}.

Proof. It is sufficient to prove that if V is open in Γ and Hausdorff, and α ∈ Cc(V, π), then f is a sum
of sections in

⋃
{Cc(U, π) : U ∈ B}.

Consider a cover B1, . . . , Bn of the compact supp(α)∩V , where Bi ∈ B and Bi ⊆ V . Take a partition
of unity h1, . . . , hn of supp(α) ∩ V subordinate to B1, . . . , Bn. Then for each i, the section αi

..= hiα is
continuous and compactly supported on Bi, i.e., αi ∈ Cc(Bi, π). Since

∑n
i=1 hi = 1 on supp(α)∩V then∑n

i=1 αi = α. �

Let us reiterate that Γ is étale. As a last point before being able to describe the multiplicative structure
of A(π), note that for all α ∈ A(π) and all x ∈ Γ(0), there are only finitely many elements γ ∈ Γ such that
s(γ) = x and α(γ) 6= 0: Indeed, there exists a compact set K such that α = 0 outside K. As Γ is étale,
then s

−1(x) is a closed subspace of Γ, and discrete with the subspace topology. In particular s−1(x)∩K
is a discrete, closed subset of the compact K, and hence it is finite, and all elements γ ∈ s

−1(x) for which
α(γ) 6= 0 belong to this set.

Similarly, there are only finitely many γ ∈ Γ such that r(γ) = x and α(γ) 6= 0
We thus define the convolution product of two sections α, β ∈ A(π) as

(α ∗ β)(γ) =
∑

ab=γ

α(a)β(b).

Note that if ab = γ in Γ, then r(a) = r(γ) and s(b) = s(γ), so the sum above is finite by the previous
paragraph. Then α∗β is a well-defined section of π. However, we still need to verify that it is an element
of A(π).

Proposition 2.10. Suppose that Γ is étale and locally R-normal. If α, β ∈ A(π) then α ∗ β ∈ A(π).

Proof. By Lemma 2.9, it is enough to prove that if α ∈ Cc(U, π) and β ∈ Cc(V, π), where U, V ∈ B(Γ)
are open bisections, then α ∗ β ∈ Cc(UV, π). For this, consider the compact sets K ..= supp(α) ∩ U and
L ..= supp(β) ∩ V

By definition of the convolution product, α ∗ β = 0 outside of KL, which is compact (Proposition
1.3), and in particular α ∗ β = 0 outside UV . So in order to conclude that α ∗ β ∈ Cc(UV, π), we just
need to prove that α ∗ β is continuous on UV .

Suppose that we have a converging net γi → γ in UV . First, write γi = uivi for each i, and a = uv,
where ui, u ∈ U and vi, v ∈ V . Since U and V are bisections and α and β are zero outside U and
V , respectively, then (α ∗ β)(γi) = α(ui)β(vi) for each i, and (α ∗ β)(γ) = α(u)β(v). Since γi → γ,
then r(ui) = r(γi) → r(γ) = r(u), and since the range map is a homeomorphism from U to r(U) then
ui → u, so α(ui) → α(u) as α is continuous on U . Similarly, β(vi) → β(v), and we conclude that
(α ∗ β)(γi) = α(ui)β(vi) → α(u)β(v) = (α ∗ β)(γ), since the product of Λ is continuous. Therefore α ∗ β
is continuous on UV . �

2.3. Graded sectional algebras. In the next section, we will describe several classes of algebras as
sectional algebras in canonical manners. In particular, all graded algebras may be regarded as sectional
algebras of bundles over discrete semigroupoids. We will thus be interested in considering graded sectional
algebras as well. This is in vogue with the current trend on the study of graded Steinberg algebras,
and more specifically Leavitt path algebras. See [2, 9, 10, 45, 46]. Graded algebras and their graded
homomorphisms are, by definition, more rigid (and manageable) than general ungraded algebras, but
their graded theory alone may be used to obtain insight and in fact results about the ungraded structure
as well. See [34] for an introduction to the classical aspects of the subject, [25, 33, 35] for semigroup
graded rings, and [30] for groupoid graded rings.

The same notion of grading by a category (e.g. see [30, Definition 2.1]) may be used in the context of
semigroupoids, so as to cover both semigroup and category gradings.

Definition 2.11. Let G be a discrete semigroupoid. An algebra A over a ring R is G-graded if it is
equipped with a family {Ag}g∈G

of sub-bimodules satisfying

(i) A = ⊕g∈GAg;
(ii) AgAh ⊆ Agh whenever (g, h) ∈ G(2);



SECTIONAL ALGEBRAS OF SEMIGROUPOID BUNDLES 9

(iii) AgAh = {0} whenever (g, h) 6∈ G(2).

Each sub-bimodule Ag is called a homogeneous component of the graded algebra A.
A graded homomorphism between two G-graded algebras A = ⊕g∈GAg and B = ⊕g∈GBg is an algebra

homomorphism φ : A→ B satisfying φ(Ag) ⊆ Bg for all g ∈ G. If φ is bijective then it is called a graded
isomorphism. (The inverse of any graded isomorphism is also a graded homomorphism.)

Suppose that π : Λ → Γ is a continuous R-bundle, where Γ is étale and locally R-normal. G is a
discrete semigroupoid and c : Γ → G is a continuous semigroupoid homomorphism. We also call the
homomorphism c a grading of Γ.

Define a grading on A(π) by setting, for all g ∈ G

A(π)g =
∑{

Cc(U, π) : U is open, Hausdorff and U ⊆ c−1(g)
}
.

Note that, as G is discrete and c is continuous, then c−1(g) is open in Γ for all g ∈ G. By Lemma 2.9,
A(π) is generated as an additive group by

⋃
g∈GA(π)g . It is then straightforward to verify that this

yields a G-graded structure to A(π). With this G-grading, we call A(π) a graded sectional algebra (via
the homomorphism c).

The following alternative description of the homogeneous components A(π)g is useful:

Lemma 2.12. Given g ∈ G, the following two equalities hold:

A(π)g =
{
α ∈ A(π) : α = 0 outside of c−1(g)

}
=
{
α ∈ A(π) : supp(α) ⊆ c−1(g)

}
.

Proof. Since c : Γ → G is continuous and G is discrete, then c−1(g) is clopen, so the rightmost equality
holds. Moreover, every element of A(π)g is clearly zero outsize c−1(g).

It is thus enough to prove that any α ∈ A(π) which is zero outsize c−1(g) belongs to A(π)g . Indeed,
write α =

∑n
i=1 αi, where αi ∈ Cc(Vi, π) for certain Hausdorff open subsets Vi ⊆ Γ. Consider the

(R-valued) characteristic function 1c−1(g) of c−1(g). Since α = 0 outside c−1(g) then

α = 1c−1(g)α =

n∑

i=1

1c−1(g)αi,

where the products are pointwise. For each i = 1, . . . , n, we have 1c−1(g)αi ∈ Cc(Vi ∩ c
−1(g), π), again

because c−1(g) is clopen.
Therefore 1c−1(g)αi ∈ A(π)g for each i, so α ∈ A(π)g as well. �

If Γ is a discrete semigroupoid, then we may grade A(π) via the identity morphism idΓ of Γ. We
call this the trivial grading of A(π). In this case, the homogeneous component at an element γ ∈ Γ is
isomorphic to π−1(γ); Namely, the map

A(π)γ → π−1(γ), α 7→ α(γ)

is a bimodule isomorphism.

3. Examples of sectional algebras

3.1. Graded algebras as sectional algebras. As explained in the Introduction, continuous R-bundles
may be interpreted as “continuous gradings” of R-algebras. We may make this interpretation formal by
considering the inverse direction, and showing that bundles over discrete semigroupoids are equivalent
to graded algebras.

In one direction, we already know how to associate a graded algebra to any discreteR-bundle π : Λ → G
(i.e., both Λ and G are discrete): Simply take the sectional algebra A(π) with its trivial G-grading.

In the other direction, given a G-graded algebra A = ⊕g∈ΓAg we construct the semigroupoid S(A) =⋃
g∈G

{g}×Ag (which may be regarded as the disjoint union of the homogeneous components of A). The
product of S(A) is determined by

(g, a)(h, b) = (gh, ab)

whenever (g, h) ∈ G(2). The first coordinate projection ηA : S(A) → G, (g, a) 7→ g, is a rigid homo-
morphism, and each section η−1

A (g) = {g} × Ag has an R-bimodule structure coming from Ag. This
determines an algebraic bundle ηA.
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These two constructions are inverse to each other in a categorical sense: if we start with a graded
algebra A = ⊕g∈GAg, then A(ηA) and A are graded isomorphic: If we denote by π2(s, a) = a the second
coordinate projection of S(A), then the map

A(ηA) → A, α 7→
∑

g∈G

π2(α(g))

is a graded isomorphism.
Similarly, it is also straightforward to verify that if π : Λ → G is a discrete R-bundle then Λ is

isomorphic, as a semigroupoid, to S(A(π)). The isomorphism is obtained by regarding S(A(π)) as the
disjoint union of the homogeneous components A(π)g , which we already know to be isomorphic to π−1(g).
So we have an identification S(A(π)) ≃ ⊔g∈Gπ

−1(g) = Λ.
To completely formalize this equivalence, let us say that a homomorphism between bundles πi : Λi →

G, i = 1, 2 (over the same semigroupoid G) is a semigroupoid homomorphism φ : Λ1 → Λ2 for which
π2 ◦ φ = π1. Straightforward arguments, much as above, show that the category of G-graded algebras
and their graded homomorphisms is equivalent to the category of discrete bundles over G and their
homomorphisms.

3.2. “Naïve” Crossed products as sectional algebras. Crossed products of C∗-algebras by actions
of inverse semigroups were originally considered by Sieben in [40], as an alternative to Exel’s approach
to C∗-dynamics via partial group actions ([16]). Sieben’s main result was that every C∗-crossed product
by a partial group action is isomorphic to a C∗-crossed product by a (global) inverse semigroup action.
However, C∗-crossed products by inverse semigroups were defined in terms of “covariant representations”
in [40].

In [18], Exel gave an alternative description of inverse semigroup crossed products, more algebraic in
flavour and may be applied as well in the discrete setting (for example, when considering Steinberg alge-
bras). Let us briefly and somewhat informally describe the procedure to construct an inverse semigroup
crossed product: Let θ be a global action of an inverse semigroup S on an algebra A:

1. First, one proceeds in a manner similar as to when constructing a twisted group algebra: Consider
the bimodule of all finite sums of elements δsa, where a ∈ dom(θs), with product determined
by (δsa)(δtb) = δstθt∗(aθt(b)). This defines an algebra S⋆A, which we call the “naïve” crossed
product.

2. Then consider the ideal N of S⋆A generated by all terms of the form δsa − δta, where s ≤ t
and a ∈ dom(θs). The crossed product of A by S is the quotient of S⋆A by N . (In the case of
actions of groups this step is unnecessary.)

In the C∗-algebraic case one then takes the C∗-envelope of the resulting algebra S⋆A/N . For further
and more general reference, see [8] in the C∗-algebraic case, and [5, 7] in the discrete case.

In this subsection we will deal with the first step described above, while the second one will be
considered in Subsection 5.4. More precisely, we will now describe naïve crossed products as sectional
algebras.

Let A be a topological R-algebra, where R is a unital topological ring. By a ∧-preaction (or partial
action, or global action) θ of an étale inverse semigroupoid S on A, as an algebra, we shall mean a
∧-preaction of S on A, as in Definition 1.7, where A is regarded as a semigroupoid under product, which
also satisfies:

• For every s ∈ S, dom(θs) is a sub-bimodule of A and θs is a bimodule isomorphism.

Note that we already assume that, for every v ∈ S, I(θ, v) =
⋃

s∈s
−1(v) dom(θs) is a multiplicative ideal

of A, and hence it is an ideal as an R-algebra. Similarly, dom(θs) is a multiplicative ideal of I(θ, s(s))
for each s ∈ S, so dom(θs) is a subalgebra of A. As θs preserves products (being a semigroupoid
homomorphism), it is actually an algebra isomorphism.

Suppose also that θ is continuous and associative. Consider the semidirect product semigroupoid S⋉A
(not to be confused with crossed products of [5, 7, 8]). The product is given by

(s, a)(t, b) = (st, θt∗(aθt(b)) whenever sensible.

Let π : S ⋉ A → S be the projection π(s, a) = s. Then each section π−1(s) = {s} × dom(θs) has an
obvious R-bimodule structure coming from dom(θs). In this manner, π : S ⋉ A → S is a continuous
algebraic bundle. Since we assume that S is étale, we may consider the respective sectional algebra.
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Definition 3.1. The naïve crossed product (induced by θ) is the sectional algebra S⋆A ..= A(π).

We may simplify the description of the crossed product to a more usual approach as follows: A
section α : S → S⋉A of π always has the form α = (idS, f) for some unique function f : S → A satisfying
f(s) ∈ dom(θs) for all s ∈ S. Moreover, the sets of continuity points of α and of f coincide, as do the
supports of α and of f .

Therefore, we may instead regard elements S⋆A as functions from S to A, and obtain the alternative
description (up to natural isomorphism):

Definition 3.2. The naïve crossed product S⋆A induced by a continuous, associative ∧-preaction θ of
an étale, locally R-normal inverse semigroupoid S on a topologicalR-algebraA is the R-algebra generated
by all functions f : S → A such that

(i) for all s ∈ S, f(s) ∈ dom(θs);
(ii) There exists an open and Hausdorff subset V ⊆ S such that f = 0 outside V , and supp(f) ∩ V

is compact.

As in Lemma 2.9, we may restrict the sets in (ii) to belonging to any basis of S.
The R-bimodule structure of S is the pointwise one, whereas the convolution product is given by

(f ∗ g)(s) =
∑

xy=s

(θy∗(f(x)θy(g(y))).

If c : S → G is a continuous homomorphism from S to a discrete semigroupoid G, then S⋆A is graded,
with homogeneous component (S⋆A)g the set of function f : S → A as above which vanish outside of
c−1(g).

Remark. We use the convention that the elements of S should be thought of as functions, and thus act
on the left on elements in their domains, so in some sense a function f in a crossed product should be
regarded as a “continuous sum” f =

∑
δsf(s), where δs denotes the Dirac function at s ∈ S. Thus for

such an interpretation to be valid we need that f(s) ∈ dom(θs).
The reverse approach is more common: Regard f as a continuous sum f =

∑
f(s)δs, so we should

instead require that f(s) ∈ ran(θs). This is the approach taken in [32, p. 79] for partial actions of discrete
groups on C∗-algebras; on [40, p. 9] for actions of inverse semigroups on C∗-algebras; and [6, Definition
2.5] for partial actions of inverse semigroups on discrete algebras.

Both of these approaches are equivalent, since we may use the ∧-preaction θ itself to move elements
from dom(θs) to ran(θs) and vice-versa.

More precisely, let us denote, just as in [5, p. 3], by L (θ) the span (as an R-bimodule) of all functions
f : S → A, which are continuously and compactly supported on some open bisection of S, and which
satisfy f(s) ∈ ran(θs) for all s ∈ S, with pointwise R-bimodule structure, and product given by

(f ∗ g)(s) =
∑

xy=s

θx (θx∗(f(x))g(y)) .

Then the map
φ : S⋆A→ L (θ), φ(f)(s) = θs(f(s)),

is promptly verified to be an algebra isomorphism. (We remark that it is necessary to use Equation (1.9)
to check that φ is multiplicative.)

3.3. Semigroupoid algebras as sectional algebras. Here we give a simple adaptation of the usual
notions of “category algebras” and “semigroup algebra” to the context of étale semigroupoids. The
definition we use is based on that of Steinberg algebras of ample groupoids, which were first considered
in [41] and [12], as “algebraizations” of groupoid C∗-algebras and as models for Leavitt path algebras,
and also work as a “laboratory” ([11]) for studying groupoid C∗-algebras.

Let R be a unital topological ring, A a topological R-algebra, and Γ an étale, locally R-normal
semigroupoid.

Definition 3.3. The semigroupoid algebra AΓ is the algebra generated by all functions f : Γ → A for
which there exists an open Hausdorff V ⊆ Λ such that

(i) f = 0 outside V ;
(ii) f |V : V → A is continuous and compactly supported.
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The bimodule structure of AΓ is pointwise, and the product of f, g ∈ AΓ is (f ∗ g)(γ) =
∑

ab=γ f(a)g(b).
Just as in Lemma 2.9, it is sufficient to consider the open sets V of (ii) as belonging to a prescribed

basis of Γ.

If S is an étale, locally R-normal inverse semigroupoid, then the algebra AS is simply the crossed
product under the trivial action of S on A: θs(a) = a for all s ∈ S and a ∈ A, and thus may be realized
as a sectional algebra as in the previous subsection. The same is true for non-inverse semigroupoids, as
we detail below.

Let R, A and Γ be as above. Consider the topological semigroupoid A × Γ, with entrywise product
(a, γ)(b, δ) = (ab, γδ) whenever γδ is defined in Γ. Consider the projection π : A × Γ → Γ, π(a, γ) = γ.
For every γ ∈ Γ, the preimage π−1(γ) = A × {γ} has an obvious R-bimodule structure induced by A,
and in this way, π is an algebraic bundle. Then AΓ is isomorphic to the sectional algebra A(π), just as
in the previous subsection.

If c : Γ → G is a grading of Γ over a discrete semigroupoid G, then the groupoid algebra AΓ is graded
with homogeneous components (AΓ)g consisting of all functions f ∈ AΓ which vanish outside of c−1(g).

4. The compact-open topology of A(π)

Since we consider algebraic structures with compatible topologies, it is natural to ask whether the
construction of the sectional algebras ends up in that same category, i.e., if we can make A(π) into a
topological algebra in a natural manner. In fact, this will be an issue that we will need to consider in
Theorem 5.13.

The study of topologies on spaces of functions is a classical problem of elementary topology, and is mo-
tivated by the question of exponentiability of a topological space X : A topological space is exponentiable
if for any other topological space Y , we may topologize the set C(X,Y ) of continuous functions from X
to Y in such a manner that for any topological space A, the sets C(A×X,Y ) and C(A,C(X,Y )) are in
natural bijection. (This is the same as exponentiability of X in the category of topological spaces.) The
exponentiable spaces are precisely the core compact ones, which in particular include all locally compact
Hausdorff spaces. In this case, the topology on C(X,Y ) is the compact-open topology, also known as the
topology of compact convergence. See [15] (specially Theorem 5.3) for reference.

Definition 4.1. Let X and Y be topological spaces and let A be any collection of functions from X to
Y . The compact-open topology on A is the topology generated by sets of the form

[K,V ] = {f ∈ A : f(K) ⊆ V } ,

where K ⊆ X is compact and V ⊆ Y is open. Note that these sets form a sub-basis for the compact-open
topology, and not a basis.

However, the compact-open topology does not make the sectional algebra A(π) of a continuous R-
bundle into a topological algebra, even in the discrete (and in particular Hausdorff) setting.

Example 4.2. Consider the action α of Z on itself by addition: αm(n) = m+ n, for all m,n ∈ Z. Let
Γ = Z ⋉ Z be the (discrete) semidirect product groupoid. The product is given by (m,n + p)(n, p) =
(m+n, p). Let R be any nontrivial unital discrete ring. We regard the groupoid algebra RΓ as a sectional
algebra as in Subsection 3.3.

Then the compact-open topology of RΓ coincides with the topology of pointwise convergence. The
sequence of functions fk = δ(−k,k) + δ(k,0), where δ∗ denotes the Kronecker delta, converges to 0, but
(fkfk)(0, 0) = 1 for all k, so the product of RΓ is not continuous.

In the example above, we used the fact that there are sequences of elements in Γ(2) converging to
infinity, but whose product always lie in a prescribed compact set (namely, (−k, k)(k, 0) = (0, 0)).

So in order to obtain continuity of the product map we should restrict this analysis to semigroupoids
for which the multiplication map is proper. Recall that a continuous map f : X → Y between topological
spaces is proper if f−1(K) is compact whenever K ⊆ Y is compact.

Example 4.3. Let θ be a continuous and associative ∧-preaction of a finite inverse semigroupoid S on
a locally compact, globally Hausdorff space X , and assume that dom(θs) is closed for every s ∈ S. Then
the product map of S ⋉X is proper.

Indeed, let p : S ⋉ X → X be the second coordinate projection. Note that (S ⋉ X)(2) is a closed
subset of S ×X × S ×X . Let µ be the product map of S ⋉X . If K ⊆ S ⋉X is compact then it is also
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closed, and so µ−1(K) is a closed subset of the compact
⋃

s,t∈S {s} × θt(p(K) ∩ dom(θt)) × {t} × p(K),
and hence µ−1(K) is compact.

Proposition 4.4. Suppose that π : Λ → Γ is a continuous R-bundle, where Γ is an étale, globally Haus-
dorff, locally R-normal semigroupoid with proper multiplication map. Then the compact-open topology
makes A(π) into a topological algebra.

Before proving this proposition, we need a lemma which allows us to see Γ(2) locally as a product of
Γ and a finite set.

Lemma 4.5. Let X and Y be Hausdorff and locally compact spaces, and µ : X → Y a local homeomor-
phism. Then the following are equivalent:

(1) µ is a proper map.
(2) For every k ∈ Γ, the set µ−1(k) is finite and the function

#µ−1 : Γ → N, k 7→ #µ−1(k)

is continuous.

Proof. (1)⇒(2): Suppose that µ is proper. Given y ∈ Y , the set µ−1(y) is compact and discrete in the
subspace topology of X , because µ is a local homeomorphism, and thus it is finite. This proves that the
function #µ−1 is well-defined.

To prove that #µ−1 is continuous, fix y ∈ Y and let n = #µ−1(y). Enumerate µ−1(y) = {x1, . . . , xn}.
Since X is Hausdorff and µ is a local homeomorphism, we may take a family of pairwise disjoint neigh-
bouhoods Ui of each xi such that µ is injective on each Ui.

Consider the neighbourhood V ..=
⋂n

i=1 µ(Ui) of y. Substituting each Ui by Ui ∩ µ−1(V ), we may
assume that µ(Ui) = V for each i. Let us prove that #µ−1(p) ≥ n for each p ∈ V . Indeed, for each i,
the map µ restricts to a homeomorphism from Ui to V , so in particular #(µ−1(p) ∩ Ui) = 1. Since all
Ui are disjoint then #µ−1(p) ≥ n.

We may now prove that #µ−1 = n on a neighbourhood of y. If this was not the case, then the previous
paragraph implies that there exists a converging net pi → y and elements ai ∈ µ−1(pi) \

⋃n
i=1 Ui. As Y

is locally compact and µ is proper, we may pass to a subnet if necessary and assume that the net (ai)i
converges in X , say ai → a. Howeover, all ai belong to the closed set Γ(2) \

⋃n
i=1 Ui, so a does so as

well. On the other hand µ(a) = limi µ(ai) = limi pi = y, so a belongs to µ−1(y), which is contained in⋃n
i=1 Ui, a contradiction.
Therefore, #µ−1 is locally constant, i.e., continuous.
(2)⇒(1): For the converse direction, suppose #µ−1 is well-defined and continuous. Let K be a

compact subset of Y . We need to prove that µ−1(K) is compact. Since the function #µ−1 has finite
image when restricted to K, we may decompose K into the sets

{
k ∈ K : #µ−1(k) = n

}
, where 0 ≤ n ≤

max
{
#µ−1(k) : k ∈ K

}
, and assume that #µ−1 has a constant value K. Call this value n.

Given k ∈ K, we enumerate µ−1(k) = {a1, . . . , an}, and take disjoint compact neighbourhoods
A(1, k), . . . , A(n, k) of each ai, respectively. As µ is a local homeomorphism, we may assume that
µ(A(i, k)) = µ(A(j, k)) for each i and j. The sets {µ(A(1, k)) : k ∈ K} form a neighbourhood cover of
K, so we extract a finite subcover {µ(A(1, k1)), . . . , µ(A(1, kN ))} of K. We are finished by proving that
µ−1(K) ⊆

⋃N
j=1

⋃n
i=1 A(i, kj) (because the A(i, k) were taken compact).

Given a ∈ µ−1(K), let k = µ(a). Choose j such that k ∈ µ(A(1, kj)). For each i ∈ {1, . . . , n}, we
have k ∈ µ(A(1, kj)) = µ(A(i, kj)), so k = µ(ai) for some ai ∈ A(i, kj). As the sets A(i, kj) are pairwise
disjoint and #µ−1(k) = n, then these elements a1, . . . , an comprise all of µ−1(ai), and in particular
a = ai ∈ A(i, kj) for some i. �

Proof of Proposition 4.4. The verification that addition and scalar multiplication of A(π) are continuous
with respect to the compact-open topology is straightforward, since these operations are pointwise and
all elements of A(π) are continuous (because Γ is Hausdorff). In fact, if Γ were simply a topological
space (i.e., a unit groupoid), then the convolution product would also be pointwise, and the proof of
its continuity would be essentially the same as that of the continuity of addition. The problem in the
general case is that the convolution product is defined in terms of a sum, namely

(α ∗ β)(γ) =
∑

ab=γ

α(a)β(b),
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and the number of nonzero terms in this sum depends on the argument γ. This is where Lemma 4.5 will
come into play, as it allows us to control how many nonzero terms appear in this sum.

Denote by µ : Γ(2) → Γ the product of Γ. Then µ is proper, by hypothesis, and a local homeomorphism
(Proposition 1.3).

Suppose that α, β ∈ A(π), and take a sub-basic neighbourhood [K,V ] of αβ, whereK ⊆ Γ is Hausdorff
and V ⊆ Λ is open. This means that for every k ∈ K we have

∑
(a,b)∈µ−1(k) α(a)β(b) ∈ V . The set

µ−1(k) is finite, so we may enumerate it as µ−1(k) =
{
(a1, b1), . . . , (aN(k), bN(k))

}
. As addition and

multiplication of Λ are continuous, there exist neighbourhoods A(k, j) and B(k, j) of each α(aj) and

β(bj), respectively, such that
∑N(k)

j=1 A(k, j)B(k, j) ⊆ V . As α and β are continuous, take compact
neighbourhoods P (k, j) and Q(k, j) of aj and bj such that α(P (k, j)) ⊆ A(k, j) and β(Q(k, j)) ⊆ B(k, j).
Taking smaller neighbourhoods if necessary, we may assume, by Lemma 4.5, that

(I) #µ−1 is constant on P (k, j)Q(k, j) for each j;
(II) The sets P (k, j)×Q(k, j) are pairwise disjoint.

The family
{⋂N(k)

j=1 P (k, j)Q(k, j) : k ∈ K
}

is a neighbourhood cover of K, so take a finite subcover
{⋂N(k1)

j=1 P (k1, j)Q(k1, j), . . . ,
⋂N(kn)

j=1 P (kn, j)Q(kn, j)
}
. Consider the neighbourhoods

A =
n⋂

i=1

N(ki)⋂

j=1

[P (ki, j), A(ki, j)] and B =
n⋂

i=1

N(ki)⋂

j=1

[Q(ki, j), B(ki, j)]

of α and β, respectively. We prove that AB ⊆ [K,V ]. Let α′ ∈ A and β′ ∈ B. Given k ∈ K, choose
i such that k ∈

⋂N(ki)
j=1 P (ki, j)Q(ki, j). This means that for each j = 1, . . . , N(ki), there is an element

(aj , bj) ∈ (P (ki, j)×Q(ki, j))∩Γ(2) such that ajbj = k. By (II), these pairs (aj , bj) are pairwise distinct,

i.e., there are N(ki) of them. Since #µ−1 is constant on
⋂N(ki)

j=1 P (k, j)Q(k, j) (by (I)), then these
elements (aj , bj) comprise all of µ−1(k). Therefore,

(α′β′)(k) =

N(ki)∑

j=1

α′(aj)β
′(bj) ∈

N(ki)∑

j=1

α′(P (ki, j))β
′(Q(ki, j)) ⊆

N(ki)∑

j=1

A(ki, j)B(ki, j) ⊆ V.

We conclude that α′β′ ∈ [K,V ], as desired. �

5. Isomorphism theorems

5.1. Tensor products. Tensor products are the algebraic counterpart of products of topological spaces.
For example, if X and Y are locally compact Hausdorff spaces, then the C∗-algebra C0(X × Y ) is
isomorphic to the C∗-algebraic tensor product C0(X)⊗C0(Y ). Recently, Rigby proved an analogous
result in the setting of Steinberg algebras (see [38, Theorem 4.3]): If R is a discrete unital commutative
ring and G and H are ample Hausdorff groupoids, then the Steinberg algebra R(G×H) is isomorphic to
the (algebraic) tensor product RG⊗RH. Analogous results hold in the setting of groupoid C∗-algebras
(this is folklore; see [3, Lemma 2.10] for a proof).

Rigby’s proof uses a slight generalization of the universal property of the Steinberg algebra RG of
an ample Hausdorff groupoid G, which states, in simple terms, that RG is universal for representations
of the semigroup KB(G) of compact-open bisections of G as a Boolean inverse semigroup. See [12,
Theorem 3.10] for details. The proof relies much on the Hausdorff property of G, which allows one to
take differences of compact-open bisections - this is a concrete realization of the fact that G is Hausdorff
if and only if KB(G) is Boolean in the sense of [27, p.140], as proven in [41, Proposition 3.7] (see also
Proposition 3.23 and Theorem 3.25 of [27]).

Since we do not have any analogue of such an universal property for sectional algebras we just proceed
with a direct proof of our result. Although this approach requires longer and more involved computations,
it has the advantage of allowing us to drop some of the “Hausdorff” requirements on our semigroupoids.

In the case of C∗-algebras (which are our model for general topological algebras), “C∗-tensor products”
are defined as completions of algebraic tensor products with respect to certain norms. More specifically,
if X and Y are compact Hausdorff topological spaces, the canonical map

T : C(X)⊗ C(Y ) → C(X × Y ), T (f ⊗ g)(x, y) = f(x)g(y)

is not surjective, but it is injective with dense image.
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Since sectional algebras do not have (in general) any appropriate topology, and much less their tensor
products over arbitrary topological rings, it is not sensible to consider any kind of completion, and thus
we will need to consider only purely algebraic tensor products.

Suppose that π : Λ → Γ is a continuous R-bundle and E is an étale semigroupoid. We consider the
new R-bundle

π × E : Λ× E → Γ× E, (π × E)(λ, e) = (π(λ), e),

where each fiber (π × E)−1(γ, e) = π−1(γ)× {e} has the R-bimodule structure induced by π−1(γ).
We will seek an R-bimodule isomorphism between A(π × E) and A(π) ⊗R R RE, where RE is the

semigroupoid algebra of E as in Subsection 3.3.
Let us finish this preliminary discussion with some considerations about the “symmetry” of our mod-

ules, which relates to the possible algebra structure of a tensor product (this problem was already
addressed in the Introduction). Suppose that π : Λ → Γ is a continuous R-bundle, where R is a uni-
tal topological ring. If all of the R-bimodules π−1(γ) are symmetric, then A(π) is also symmetric. In
particular, if R is a commutative ring and E is an étale semigroupoid then the semigroupoid algebra
RE is a symmetric R-bimodule, since it is, by definition, the sectional algebra of the trivial (coordinate
projection) bundle R× E → E, whose fibers have the R-bimodule structure coming from R.

The following elementary lemma will be used several times during the proof of Theorem 5.3.

Lemma 5.1. Suppose that X,Y, Z are topological spaces, f : X → Y is continuous and g : Y → Z is a
local homeomorphism. Then g ◦ f is a local homeomorphism if and only if f is a local homeomorphism.

As previously mentioned, one of the main motivations for this work are the Steinberg algebras con-
sidered in [5, 6, 7, 9, 10, 11, 12, 38, 41, 42, 43], which are simply the (semi)groupoid algebras RG in the
specific case where G is an ample groupoid and R is a discrete ring. By definition, RG is the sectional
algebra of the coordinate projection bundle π : R × G → G. Note that R is discrete if and only if π is a
local homeomorphism.

So we should regard the étale bundles as the “discrete ones” ones, which will be of special interest in
further results as well. Moreover, we may specify:

Proposition 5.2. Let π : Λ → Γ be a continuous rigid semigroupoid homomorphism, where Γ is an
étale semigroupoid. Consider the graph structure on Λ given by sΛ = sΓ ◦π and rΛ = rΓ ◦π, which is
compatible with the semigroupoid structure of Λ because π is rigid. Then the following are equivalent:

(1) Λ is étale (with the graph structure (sΛ, rΛ));
(2) π is a local homeomorphism.

Proof. By Lemma 5.1, the source map of Λ, sΛ = sΓ ◦π, is a local homeomorphism if and only if π is a
local homeomorphism, and similarly for rΛ. This proves the equivalence (1) ⇐⇒ (2). �

Note that if R is a (possibly non-commutative) unital discrete ring then, as long as 0 6= 1 in R, the
locally R-unital étale semigroupoids are precisely the ample (i.e., zero-dimensional) ones. Our first main
theorem follows below.

Theorem 5.3. Let R be a unital topological ring and π : Λ → Γ be a continuous R-bundle. Assume that
Γ and E are locally R-normal étale semigroupoids. Then there exists a unique R-bimodule homorphism
T : A(π) ⊗R R RE → A(π × E) given on pure tensors by

(5.4) T (α⊗ f)(γ, e) = (α(γ)f(e), e)

for all α ∈ A(π), RE and (γ, π) ∈ Γ× E.

(a) If R is commutative and π−1(γ) is symmetric for all γ ∈ Γ, then T is an R-algebra homomor-
phism.

(b) If Γ and E are ample and π is a local homeomorphism (i.e., Λ is étale as in Proposition 5.2),
then T is surjective.

(c) If R is discrete and E is ample and Hausdorff, then T is injective.
(d) If R is a field, then T is injective.

Remark. (1) The isomorphism T of the theorem above actually preserves several other module
structures of A(π × E) and A(π) ⊗R R RE. For example, A(π × E) has a canonical left A(π)-
module structure as follows: Each section F ∈ A(π × E) is of the form F (γ, e) = (F (γ, e), e) for
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some unique function F : Γ× E → Λ. Given α ∈ A(π), set

(α ∗ F )(γ, e) =
∑

γ1γ2=γ

(α(γ1)F (γ2, e), e).

On the other hand, A(π) ⊗R R RE has a canonical left A(π)-module structure as well. Similarly,
both A(π×E) and A(π) ⊗R RRE have rightRE-module structures, and T is a (A(π), RE)-bimodule
homomorphism as well.

(2) Suppose that R is a commutative ring, A = ⊕g∈GAg is a G-graded symmetric R-algebra and
B = ⊕h∈HBh is an H-graded symmetric R-algebra, where G and H are semigroupoids.

Then the tensor product A ⊗R R B, regarded as a symmetric R-algebra, is (G ×H)-graded,
with homogeneous components (A ⊗R R B)(g,h) = Ag ⊗R R Bh.

In particular, under the same conditions as in item (a), suppose that c : Γ → G and d : E → H
are semigroupoid gradings. Then A(π) is G-graded and RE is H-graded, so the tensor product
A(π) ⊗R R RE is (G×H)-graded as above. On the other hand, we have a semigroupoid grading
c× d : Γ× E → G×H , which induces a (G×H)-grading on A(π × E).

In this case, the homomorphism T of Theorem 5.3 above is a (G×H)-graded homomorphism.
(3) If R is discrete (possibly non-commutative), π is a local homeomorphism and Γ and E are ample,

with E Hausdorff, then T as above is an isomorphism, and thus induces an R-algebra structure
on the tensor product A(π) ⊗R R RE. However the product is not given by “entrywise product of
pure tensors” (i.e., in general we may have (α ⊗ f)(β ⊗ g) 6= (α ∗ β)⊗ (f ∗ g)).

(4) Similarly, an obvious variation of the theorem above yields an R-bimodule homomorphism
RE ⊗R RA(π) → A(π×E). If R is discrete, π is a local homeomorphism, Γ and E are ample and E

is Hausdorff, then we obtain R-bimodule isomorphisms A(π) ⊗R RRE
∼= A(π×E) ∼= RE ⊗R RA(π).

However the isomorphism between the tensor products is not simply “inversion of pure tensors”
(i.e., it is not given by α⊗ f 7→ f ⊗ α)

Proof of Theorem 5.3. Although the existence and uniqueness of the map T as in Equation (5.4) follows
immediately from the universal property of tensor products with respect to R-balanced maps, it is still
necessary to check that for each (α, f) ∈ A(π)×RE, the map T (α⊗ f) : Γ× E → Λ× E is an element of
A(π × E).

It is clear that T (α⊗ f) is a section of π× E, so the main issue is to prove that it is a combination of
sections of π × E which are “continuously and compactly supported on Hausdorff subsets of Γ× E”.

If V ⊆ Γ and W ⊆ E are open and Hausdorff in Γ and E, respectively, α ∈ Cc(V, π) and f ∈ Cc(W,R),
then we have T (α⊗f) ∈ Cc(V ×W,π×E), which belongs to A(π×E). As A(π) is generated by the union
of all sets Cc(V, π) for V Hausdorff, and similarly for RE, we may take arbitrary linear combinations and
conclude that T (α⊗ f) ∈ A(π × E) for arbitrary α and f .

(a) If we assume that R is commutative and π−1(γ) is a symmetric R-bimodule for each γ, it readily
follows from all relevant definitions that T (α⊗ f)T (β⊗ g) = T (αβ⊗ fg) for all α, β ∈ A(π) and
f, g ∈ AR(E), so T is an algebra homomorphism.

(b) We assume that Γ and E are ample and that π is a local homeomorphism. By Lemma 2.9, it is
enough to prove that any F ∈ Cc(V ×W,π × E) where V and W are open bisections of Γ and
E, respectively, belongs to the image of T .

Consider the restriction F |V ×W , which is a continuous map. As F is a section of π ⊗ E,
then (π ⊗ E) ◦ F |V×W = idV ×W , so by Lemma 5.1, F |V×W is a local homeomorphism, and in
particular it is an open map. Consider the compact K ..= supp(F ) ∩ (V ×W ), and let F be the
composition of F |V with the projection Λ × E → Λ. Then F is a continuous, open map from
V ×W to Λ, with image the open set F (V ×W ).

The set F (K) is compact in Λ, and so it may be covered by finitely many open subsets
A1, . . . , An of Λ on which π is injective. Since F is continuous, then the sets F−1(Ai) form a
cover of K. We then consider a finer finite cover by “boxes” of the form Vj ×Wj , j = 1, . . . ,m,
where Vj ⊆ V and Wj ⊆ W are compact-open (here is where we use that Γ and E are ample).
In fact, as V and W are Hausdorff then these sets Vj and Wj sets are clopen in V and W ,
respectively. Taking appropriate intersections and differences (which preserve clopen sets) of the
boxes Vj ×Wj , and rewriting them as disjoint unions of smaller boxes, we may moreover assume
that these boxes Vj ×Wj are pairwise disjoint (this is the same procedure as when one proves



SECTIONAL ALGEBRAS OF SEMIGROUPOID BUNDLES 17

that boxes form a semiring of subsets of V ×W , so we ommit the details). Of course, we may
also assume that Wj 6= ∅ for each j.

We now prove that for each j, the value of F inside Vj ×Wj depends only on the first entry,
i.e., that if (γ, e0), (γ, e1) ∈ Vj ×Wj , then F (γ, e0) = F (γ, e1). Indeed, first choose i such that
Vj ×Wj ⊆ π−1(Ai). Then π(F (γ, e0)) = γ = π(F (γ, e1)), because F is a section of π × E. Since
π is injective on Ai, which contains F (Vj ×Wj), then F (γ, e0) = F (γ, e1).

Thus we define, for each j, the maps fj : Vj → Λ as fj(γ) = F (γ, e), where e is an arbitrary
element of Wj . Then fj is continuous on the compact-open set Vj . We extend fj as zero on Γ\Vj ,
and so fj ∈ Cc(Vj , π) ⊆ A(π). Similarly, as Wj is also compact-open, then the characteristic
function 1Wj

of Wj , from E to R, belongs to RE.
Now let us prove that F =

∑
j T (fj ⊗ 1Wj

), or equivalently that

(5.5) F (γ, e) =
∑

j

fj(γ)1Wj
(e) for all (γ, e) ∈ Γ× E.

There are two cases to consider:
• If (γ, e) does not belong to any of the sets Vj ×Wj , then in particular it does not belong to
K, so both sides of Equation (5.5) are zero.

• If (γ, e) belongs to Vj ×Wj for some j, then in fact such j is unique since the sets Vj ×Wj

are pairwise disjoint. In this case the equality of Equation (5.5) follows by definition of fj.
Therefore, T is surjective.

(c) We now assume that R is discrete and E is ample and Hausdorff, and prove that T is injective.
As R is discrete and E is ample and Hausdorff, then RE is generated as a left R-module by

functions 1W , where W ⊆ E is a compact-open subset of E. Thus every element of A(π)⊗AR(E)
is a sum of the form

∑n
i=1 αi ⊗ 1Wi

, where αi ∈ AR(π) and the Wi are compact-open subsets of
E. In fact, we may also assume that such sets Wi are pairwise disjoint, by taking appropriate
intersections and set differences among them, similarly to how we did in the previous item.

More formally, as the sets Wi are clopen, then there exists a finite refinement B = {Bj : j} of
{W1, . . . ,Wn} by nonempty, pairwise disjoint clopen subsets. This refinement B will have the
following properties:

• For any i and j, Bj ∩Wi 6= ∅ if and only if Bj ⊆Wi;
• More generally, for any i and j and any e ∈ Bj , we have e ∈Wi if and only if Bj ⊆Wi;
• For any i, Wi is the disjoint union of all Bj contained in Wi. In symbols, Wi = ⊔j:Bj⊆Wi

Bj .
For example, given a subset P of {1, . . . , n}, let BP =

⋂
i∈P Wi \

⋃
i6∈P Wi. The family B ={

BP : P ∈ 2{1,...,n}
}
\ {∅} has at most 2n elements and the desired properties.

In any case, we can rewrite 1Wi
=
∑

B∈B:B⊆Wi
1B, and so

n∑

i=1

αi ⊗ 1Wi
=
∑

B∈B




∑

i:B⊆Wi

αi



 ⊗ 1B.

We may now prove that T is injective. Suppose that x ∈ kerT . The argument above shows
that we can write x as a sum x =

∑n
i=1 αi ⊗ 1Wi

, where the sets W1, . . . ,Wn are nonempty and
pairwise disjoint. Let j be fixed and choose an arbitrary e ∈ Wj . Since the sets W1, . . . ,Wn are
pairwise disjoint, then for all γ ∈ Γ,

(0, e) = T (x)(γ, e) = (

n∑

i=1

αi(γ)1Wi
(e), e) = (αj(γ), e),

hence αj = 0 for each j, and thus x =
∑n

i=1 0⊗ 1Wi
= 0. Therefore T is injective.

(d) We now assume that R is a field, and prove that T is injective in this case.
Let x ∈ kerT . Then x may be written as x =

∑n
i=1 αi ⊗ fi, where the elements αi are

linearly independent with respect to the right R-vector space structure of A(π) (e.g. elements of
a prescribed basis). Then for all e ∈ E and all γ ∈ Γ we have

(0, e) = T (x)(γ, e) = (

n∑

i=1

αi(γ)fi(e), e)
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so 0 =
∑n

i=1 αifi(e) in A(π), for each e ∈ E. As the αi are linearly independent then f1(e) =
· · · = fn(e) = 0, for each e ∈ E. Thus f1 = · · · = fn = 0, so x = 0. Therefore T is injective. �

The theorem above may be seen as a simultaneous generalization to both Proposition 4.1 and Theorem
4.3 of [38].

Corollary 5.6. Let R and be a discrete commutative ring and A an R-algebra. Then given any ample
Hausdorff semigroupoid Γ, the semigroupoid algebra AΓ is isomorphic as an R-bimodule to A ⊗R R (RΓ).
If R is commutative and A is a symmetric R-algebra then this isomorphism is both an R-algebra and an
A-algebra isomorphism.

Proof. By definition, AΓ is the sectional algebra of the bundle A×Γ → Γ given by the second coordinate
projection. In fact, we may consider the “trivial bundle” πA : A → {1} to the one-element group, which
satisfies A(πA) ∼= A. The coordinate projection bundle A×Γ → Γ ∼= {1}×Γ may be obviously identified
with πA × Γ. Theorem 5.3 yields an explicit isomorphism of R-bimodules/R-algebra/A-algebra in each
relevant case

AΓ ∼= A(πA × Γ) ∼= A(πA) ⊗R R (RΓ) ∼= A ⊗R R (RΓ). �

Corollary 5.7. Let Γ1 and Γ2 be ample semigroupoids, R be a discrete unital ring, and A be a discrete
R-algebra. Suppose that at least one of the following conditions holds:

(I) Γ2 is Hausdorff.
(II) R is a field.

Then A(Γ1 × Γ2) is isomorphic as an R-bimodule to (AΓ1) ⊗R R (RΓ2). If R is commutative, these
symmetric algebras are isomorphic.

Even in the case of groupoids and commutative rings, this already yields a generalization of [38,
Theorem 4.3], since only Γ2 is required to be Hausdorff.

Proof. By definition, AΓ1 is the sectional algebra of the second-coordinate projection bundle π1 : A×Γ1 →
Γ1, and similarly A(Γ1×Γ2) is the sectional algebra of the second and third coordinate projection bundle
A × Γ1 × Γ2 → Γ1 × Γ2, which actually is the same as π1 × Γ2. Under either of the Conditions (I) or
(II), Theorem 5.3 yields explicit isomorphisms

A(Γ1 × Γ2) = A(π1 × Γ2) ∼= A(π1) ⊗R R (RΓ2) = (AΓ1) ⊗R R (RΓ2). �

5.2. Sectional algebras of semidirect product bundles as naïve crossed products.

Definition 5.8. A ∧-preaction θ of an étale inverse semigroupoid S on a continuous R-bundle π : Λ → Γ
consists of two ∧-preactions θΓ and θΛ of S on Γ and Λ, respectively, satisfying:

(i) for all s ∈ S, π ◦ θΛs = θΓs ◦ π;
(ii) θΛ preserves all of the relevant R-bimodule structure, in the sense that if s ∈ S and a ∈ dom(θΓs ),

then θΛs restricts to an R-bimodule isomorphism from π−1(a) onto π−1(θΓs (a)).

This in particular means that:

(iii) dom(θΛs ) = π−1(dom(θΓs ));
(iv) π(θΛs (a)) = θΓs (π(a)), in the sense that either side is defined if and only if the other one is defined,

in which case they coincide;
(v) dom(θΛs ) + dom(θΛs ) ⊆ dom(θΛs ).

We say that θ is continuous if both θΓ and θΛ are continuous, and similarly for open/associative.

Remark. The statement in (ii) is sensible because of (i). More precisely, (i) alone already implies that
for all s ∈ S and a ∈ dom(θΓs ) we have θΛs (π

−1(a)) = π−1(θΓs (a)), so that θΛs already restricts to a
bijection from π−1(a) onto π−1(θΓs (a)), which are R-bimodules. Thus it makes sense to require this
bijection to be an R-bimodule homomorphism.

We may omit superscripts and write simply θ for either θΛ or θΓ, whenever there is no risk of confusion.

• Convention: From now on and until the end of this subsection, we fix a continuous, open and
associative ∧-preaction θ of an étale, locally R-normal inverse semigroupoid S on a continuous
R-bundle π : Λ → Γ, where Γ is étale and locally R-normal, and moreover we assume that S⋉ Γ
is open as a subset of S× Γ.

With this, we may perform two procedures:
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• First construct the semidirect products S⋉Λ and S⋉Γ, induce a new R-bundle S⋉π : S⋉Λ → S⋉Γ
and take its sectional algebra A(S⋉ π);

• First construct the sectional algebra A(π), induce a ∧-preaction of S on A(π) and then consider
the naïve crossed product A(π)⋊ S.

The current goal is to prove that, under appropriate technical conditions, these two procedures yield
isomorphic algebras. In other words, “sectional algebras” intertwine “semidirect products” and “naïve
crossed products”.

Semidirect product bundles. Consider the semidirect products S ⋉ Λ and S ⋉ Γ. Since S ⋉ Γ is
an open subset of S × Γ then θΓ is an open ∧-preaction and S ⋉ Γ is an étale semigroupoid. (See the
discussion succeeding [14, Proposition 3.10].)

We thus define the new R-bundle

S⋉ π : S⋉ Λ → S⋉ Γ, (S⋉ π)(s, x) = (s, π(x)).

where, for all (s, γ) ∈ S⋉ Γ, the preimage

(S⋉ π)−1(s, γ) = {s} × π−1(γ)

carries the R-bimodule structure induced by that of π−1(γ).

The induced ∧-preaction on A(π). As we are assuming that S⋉ Γ is open in S×X , then for every
s ∈ S the set

dom(θs) = {a ∈ Γ : (s, a) ∈ S⋉ Γ} ,

is open in Γ.
Consider the sectional algebra A(π). We define a ∧-preaction Θ of S on A(π) by setting, for all s ∈ S,

(i) dom(Θs) =
⋃{

Cc(V, π) : V Hausforff, V ⊆ dom(θΓs )
}
;

(ii)

Θs(f)(γ) =

{
θΛs (f(θ

Γ
s∗(γ))), if γ ∈ dom(θΓs∗),

0γ , otherwise,

whenever f ∈ dom(Θs).

Lemma 5.9. If θ is associative then Θ is associative.

Proof. To determine the associativity of Θ we need to verify that

(5.10) [Θ∗
t (fΘt(g))h] (a) = [Θ∗

t (fΘt(gh))] (a)

for all a ∈ Γ, whenever supp(f) ⊆ dom(θs), supp(g) ⊆ dom(θt) and supp(h) ⊆ ran(θu), where stu is
defined in S.

If a 6∈ dom(θt) then both sides of Equation (5.10) are equal to 0t, so we assume a ∈ dom(θt). On one
hand, a straightforward usage of the definition of the product of A(π) yields

[Θ∗
t (fΘt(g))h] (a)

=
∑

{θ∗t (f(d)θt(g(θ
∗
t (e)))h(c) : bc = a, b ∈ dom(θt), de = θt(b), d ∈ dom(θs), e ∈ ran(θt)}

=
∑

{θ∗t (f(d)θt(g(θ
∗
t (e)))h(c) : θt∗(de)c = a, d ∈ dom(θs), e ∈ ran(θt)} , ,(5.11)

where the last equality follows from de = θt(b). On the other hand, a similar computation gives us

Θ∗
t (fΘt(gh))(a) =

∑
{θ∗t (f(x)θt(g(z)h(w))) : xy = θt(a), x ∈ dom(θs), zw = θt∗(y), z ∈ dom(θt)}

=
∑

{θ∗t (f(d)θt(g(θt∗(e))h(c))) : dθt(θt∗(e)c) = θt(a), d ∈ dom(θs), e ∈ ran(θt)} ,(5.12)

where the last equality follows from the substitutions d = x, w = c, y = θt(dw) and z = θt∗(e). As
θΛ is associative, then the respective terms of each of the sums in (5.11) and (5.12) are equal. As θΓ

is associative, the conditions “dθt(θt∗(e)c) = θt(a)” and “θt∗(de)c = a” are equivalent. Therefore the
elements in (5.11) and (5.12) are equal, so Θ is associative. �

If Γ is Hausdorff and has a proper multiplication, and we consider the sectional algebra A(π) with the
topology of compact-open convergence, then the ∧-preaction Θ of S on A(π) is continuous.

We are now ready to state our second main theorem.
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Theorem 5.13. Suppose that θ = (θΓ, θΛ) is a continuous, associative ∧-preaction of an inverse semi-
groupoid S on a continuous R-bundle π : Λ → Γ, where both S and Γ are étale and locally R-normal, and
that S⋉ Γ is open in S× Γ. Suppose, moreover, that one of the following conditions holds:

(I) S is discrete; In this case we regard the sectional algebra A(π) as a discrete algebra.
(II) Γ and S are Hausdorff, and the product map of Γ is proper; In this case we consider A(π) as a

topological algebra with the compact-open topology.

Then the sectional algebra A(S⋉ π) is isomorphic to the naïve crossed product S⋆A(π).

Proof. Let us describe the main idea of the proof. An element of A(idS ×π) is a function from S ⋉ Γ
to S ⋉ Λ which preserves the first coordinate, so it may be regarded simply as a function f from S ⋉ Γ
to Λ which satisfies π(f(s, t)) = t. On the other hand, by Definition 3.2, an element from S⋆A(π) is a
function from S to A(π), i.e., to a set of functions from Γ to Λ.

In other words, we see A(idS ×π) as a subset of the function space ΛS⋉Γ, and S⋆A(π) as a subset of

the function space
(
ΛΓ
)S

. Thus the desired isomorphism is just a translation of the fact that, for sets

X,Y, Z, XY×Z and
(
XY

)Z
are in natural bijection.

We define Φ: A(S⋉ π) → S⋆A(π) as follows: Given a section f = f1 × f2 : S⋉ Γ → S⋉ Λ of S× π,
define Φ(f) : S → A(π) as

Φ(f)(s)(γ) =

{
f2(s, γ), if γ ∈ dom(θs),

0γ , otherwise.
.

A priori, it is not immediate that Φ is well-defined, as we first need to guarantee that Φ(f)(s) ∈ A(π)
for all s ∈ S, and then that Φ(f) ∈ S⋆A(π). This is where the additional hypotheses come into play.

The verification that Φ(f)(s) ∈ A(π) for all s ∈ S can be done without any additional hypotheses. In
fact, it is enough to assume that f is a generating element of A(S⋉ π) (taking

A basic open set of S⋉ Γ has the form U × V , where U ∈ B(S) and V ∈ B(Γ) are open bisections (in
particular, Hausdorff). Suppose that f ∈ Cc(U × V, S⋉ π). For all s ∈ S we have

Φ(f)(s)(γ) =

{
f(s, γ), if γ ∈ V,

0γ , otherwise,

so Φ(f)(s) is continuous and compactly supported on V , i.e., Φ(f)(s) ∈ Cc(V, π) ⊆ A(π).

(I) If S is discrete and A(π) is regarded as a discrete algebra, continuity of Φ(f) : S → A(π) is trivial.
(II) The second case is more interesting, where S is not necessarily discrete and A(π) is endowed with

the compact-open topology. In this case we slightly improve the definition of Φ: If f ∈ A(S⋉π),
first we extend f to a function from S×Γ to S×Λ by setting f(s, γ) = (s, 0γ) even if γ 6∈ dom(θs).
This extension of f is continuous, because f is compactly supported on the open subset S⋉Γ of
the Hausdorff space S× Γ, and the zero map γ 7→ 0γ is continuous from Γ to Λ.

With this notation we have f2(s, γ) = 0γ whenever γ 6∈ dom(θs), and Φ(f)(s)(γ) = f2(s, γ)
for all f ∈ A(S⋉ π), s ∈ S and γ ∈ Γ.

We may now proceed to prove that Φ(f) is continuous. Let s0 ∈ S be fixed and consider a pre-
basic open subset [K,V ] of Φ(f)(s0), i.e., K ⊆ Γ is compact, V ⊆ Λ is open, and Φ(f)(s0)(K) ⊆
V .

This means that for every k ∈ K, we have f2(s0, k) ∈ V . As f2 is continuous, there are
open neighbourhood Ak and Uk of s0 and k, respectively, such that f2(Ak × Uk) ⊆ V . As K is
compact we may consider a finite subcover {U1, . . . , Un} of the Uk (where we write Ui and Ai

instead of Uki
and Aki

), so let A = A1 ∩ · · · ∩ An. We may now verify that Φ(f)(s)(K) ⊆ V
whenever s ∈ A. Indeed, if s ∈ A and k ∈ K, then k ∈ Ki for some i, so

Φ(f)(s)(k) = f2(s, k) ∈ f2(A×Ki) ⊆ V,

as desired.

In the other direction, we define Ψ: S⋆A(π) → A(S⋉ π) as

Ψ(f)(s, γ) = (s, f(s)(γ))

Again, we need to verify that Ψ is well-defined, which needs to be done separately in the cases under
consideration.
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(I) First assume that S is discrete. Then supp(f) is finite. Up to taking the finite decomposition
f =

∑
s∈supp(f) f1{s} and working on each term separately, we may assume that supp(f) = {s}

for some s ∈ S. Again up to taking a finite decomposition and working on each term, we may
moreover assume that there exists an open Hausdorff Vs such that f(s) ∈ Cc(V, π) for some
open Hausdorff subset V of Γ with V ⊆ dom(θΓs ), because f(s) ∈ dom(Θs). Then Ψ(f) ∈
Cc({s} × V, S⋉ π).

(II) Assume now that Γ and S are Hausdorff and A(π) is endowed with the compact-open topology.
We shall prove that Ψ(f) is continuous. Suppose (si, ai) → (s, a). A basic neighbourhood of
Ψ(f)(s, a) has the form A×V , where A and V are neighbourhoods of s and f(s)(a), respectively.

Choose any compact neighbourhood K of a such that f(s)(K) ⊆ V . Since f is continuous
and si → s, then f(si) → f(s) in the compact-open topology, so f(si)(K) ⊆ V for all i large
enough. Moreover, si → s, so si ∈ A for all i large enough as well. Since ai → a, then ai ∈ K
for all i large enough.

We then have, for large i,

Ψ(f)(si, ai) = (si, f(si)(ai)) ∈ A× f(si)(K) ⊆ A× V.

It is straightforward enough to verify that Ψ and Φ are inverses to one another, and that Ψ is an
algebra homomorphism. �

5.3. Smash products. Smash products are one of the main constructions in the theory of Hopf algebras.
They were used by Cohen and Montgomery in [13] to obtain a dictionary (commonly called the “duality
theorem”) between the theory of rings graded by finite groups and crossed products, which allows one to
relate the graded theory of a ring with its non-graded theory – e.g. by comparing graded and non-graded
Jacobson radicals. The definition of smash products may be readily carried over to the case of infinite
groups, as done in [4, Definition 2.1], [28, p. 301].

A different generalization of smash products to the case of infinite groups was considered by Quinn
in [37] (and also appears in [34, §7]). As proven in [37, Lemma 2.1], “Quinn’s smash product” contains
the usual smash product as an essential ideal. We should also remark that there are other general-
izations of smash products to different settings, for example in [31, Definition 5.4] in the context of
“R-semicategories” (which are the semigroupoid analogues of a category enriched over the category of
modules over a commutative ring R.)

In this section we will review the usual definition of a smash product of graded algebras. Moreover,
the theory will be slightly extended to the context of groupoid graded algebras. Let R be a fixed ring
(possibly non-unital and non-commutative).

Suppose that an R-algebra A = ⊕g∈GAg is graded over a discrete groupoid G. Denote by pg : A→ Ag

the projection of A onto the homogeneous component Ag.

Definition 5.14. The smash product A#G is the set of formal sums
∑

g∈G agδg, where ag belongs to∑
{Ah : s(h) = r(g)}.
The R-bimodule structure of A#G is the entrywise one, and the product is the bilinear and balanced

extension of the rule

(aδg)(bδh) =

{
apgh−1(b)δh, if s(g) = s(h)

0, otherwise.

If a product gh is defined in G, write Agδh = {aδh : a ∈ Ag}. Note that, as an R-bimodule, A#G
decomposes as an inner direct sum A#G = ⊕(g,h)∈G(2)Agδh.

The definition above is a clear extension of the usual definition of smash products of group-graded
rings ([1, 2B]), regarded as Z-algebras, since groups are simply groupoids with a single vertex.

For completeness, we prove that this indeed gives a G-graded algebra structure to A#G.

Proposition 5.15. With the structure above, A#G becomes a G-graded algebra, with homogeneous
components (A#G)g =

∑
h {Agδh : h ∈ G, r(h) = s(g)}.

Proof. The only non-trivial part of A#G being an algebra is the associativity of the product. Consider
elements of the form ag′δg, bh′δh and ck′δk, where g′g, h′h and k′k are defined in G, ag′ ∈ Ag′ , bh′ ∈ Ah′

and ck′ ∈ Ak′ .
We use the definition of the product to see that

• (ag′δgbh′δh)(ck′δk) = 0 whenever gh−1 is not defined, or if gh−1 is defined but gk−1 is not;
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• (ag′δg)(bh′δhck′δk) = 0 whenever hk−1 is not defined, or if hk−1 is defined but gk−1 is not.

Simple computations in G show that the conditions written above are equivalent, so we may assume that
all products gh−1, gk−1 and hk−1 are defined. In this case we have

(ag′δgbh′δh)(ck′δk) = (ag′pgh−1(bh′)phk−1(ck′)δk

and
(ag′δg)(bh′δhck′δk) = agpgk−1(bh′phk−1(ck′))δk.

If hk−1 6= k′ then both terms above are zero. We thus may assume hk−1 = k′, then these terms are
respectively

(ag′pgh−1(bh′)ck′δk and (ag′δg)(bh′δhck′δk) = agpgk−1(bh′ck′)δk.

Note that h′ 6= gh−1 if and only if h′k′ 6= gk−1, and in this case both terms are zero (because bh′ck′ ∈
Ah′k′ .

In the last case, we have h′ = gh−1 and h′k′ = gk−1, in which case both terms are simply ag′bh′ck′ .
As for A#G being graded, it should be clear that A#G = ⊕g∈G(A#G)g .
Let us prove that (A#G)g(A#G)h ⊆ (A#G)gh whenever (g, h) ∈ G(2). For this, it is enough to

consider elements of the form agδm ∈ (A#G)g and ahδn ∈ (A#G)h, where gm, hn and mn−1 are
defined in G. Then

(agδm)(ahδn) = agpmn−1(ah)δn.

Since ah belongs to the homogeneous component Ah, this product is zero whenever mn−1 6= h. On the
other hand, if mn−1 = h then this product is agahδn, which belongs to AgAhδn ⊆ Aghδn ⊆ (A#G)gh. �

We may also be slightly more formal and define A#G as the set of finitely supported functions
α : G → A, satisfying α(g) ∈

∑
h {Ah : s(h) = r(g)} for all g ∈ G. The R-bimodule structure is the

pointwise one, and the product is given by

αβ(g) =
∑

h:s(h)=s(g)

α(h)phg−1 (β(g)).

Now suppose that Γ is a semigroupoid, graded by the groupoid G via a homomorphism d : Γ → G. We
may perform a construction analogous to a semidirect product as follows: Let U(G) be the underlying
set of the groupoid G. Consider the action of left multiplication of G on U(G): For all g ∈ G and
all h ∈ U(G) with s(g) = r(h), define g · h = gh ∈ U(G). We may compose this action with the
homomorphism d : Γ → G and obtain an “action” of Γ on U(G) (where by an action of a semigroupoid
Γ we mean simply a homomorphism from Γ to the semigroup of partial bijections of U(G)). We then
define the skew product Γ#dG ..= Γ⋉ U(G) just as in Definition 1.10. Namely,

Γ#dG = {(γ, g) ∈ Γ×G : s(d(γ)) = r(g)} ,

with source and range maps s, r : Γ#dG→ Γ(0) ×G

s(γ, g) = (s(γ), g), and r(γ, g) = (r(γ), d(γ)g)

and product

(γ1, g1)(γ2, g2) = (γ1γ2, g2) whenever s(γ1) = r(γ2) and g1 = d(γ2)g2.

Then Γ#dG is a semigroupoid, graded by G via d̃(γ, g) = d(γ).
Now suppose that π : Λ → Γ is an R-bundle, and Γ is G-graded via d : Γ → G. Then Λ is also

G-graded, via d ◦ π, so we may construct the new bundle

π#dG : Λ#π◦dG→ Γ#dG, (π#G)(λ, g) = (π(λ), g)

which is G-graded via d̃.
We thus obtain the wide generalization of [1, Theorem 3.4].

Theorem 5.16. Let π : Λ → Γ be a continuous R-bundle, where R is a unital topological groupoid and
Γ is locally R-unital, and suppose that Γ is graded over a discrete groupoid G via a homomorphism
d : Γ → G.

Then there exists a G-graded isomorphism of algebras

T : A(π)#G→ A(π#dG)
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given by

(5.17) T (αδg)(γ, h) =

{
(α(γ), g), if g = h,

(0γ , h), otherwise,

for all g ∈ G, all α ∈
∑

k {A(π)k : s(k) = r(g)}, and all (γ, h) ∈ Γ#dG.

Proof. The argument is essentially the same as the one in Theorem 5.13. Namely, an element of A(π#dG)
is simply a function from (a subset of) Γ×G to Λ×G which preserves the second coordinate, so it may
be seen simply as a function from (a subset of) Γ×G to Λ, i.e., an element of the function space ΛΓ×G.

On the other hand, an element of A(π)#G is a function α from G to A(π), which is a subset of the
function space ΛΓ, i.e., α ∈ (ΛΓ)G.

The natural function T given in Equation (5.17) is simply a realization of the natural isomorphism of
hom-sets (ΛΓ)G → ΛΓ×G in the category of sets and functions, and is readily verified to be a surjective
G-graded homomorphism. The inverse of T is given similarly, with appropriate extensions by zero, as in
Theorem 5.13. �

5.4. Quotients and sectional algebras. The last construction we consider are quotients. Namely, we
will prove that “quotients and sectional algebras commute”, in the sense that if a bundle π/∼ is a quotient
of a bundle π, then the sectional algebra A(π/∼) is a quotient of A(π) (in a natural manner). Moreover,
up to technical conditions we may determine precisely the ideal I yielding the natural isomorphism
A(π)/I ∼= A(π/∼).

We start by recalling the relevant definitions and elementary results.

Final topologies. Let (X, τX) be a topological space, Y a set and f : X → Y a function. The final
topology τf induced by f is the finest topology on Y which makes f is continuous. Explicitly, τf consists
of all subsets U of Y such that f−1(U) ∈ τX .

Continuous functions from (Y, τf ) may be determined as follows: If (Z, τZ) is any topological space
and g : Y → Z is any function, then g is continuous from (Y, τf ) to (Z, τZ) if and only if the composite
g ◦ f is continuous from (X, τX) to (Z, τZ). Thus we may determine continuous functions from (Y, τf )
simply in terms of continuous functions from (X, τX). We may restate this in terms of commutative
diagrams: given a commutative diagram

(X, τ)

(Y, τf )

(Z, τZ),f

h

g

the function h is continuous if and only if g is continuous.
The following special case will be of particular interest, as it allows us to verify continuity of functions

more easily: Suppose that (X, τX) and (Y, τY ) are two topological spaces and f : X → Y is surjective,
continuous and open (with respect to τX and τY ). Then τY = τf , i.e., the original topology of Y is
actually the final topology induced by f .

Open equivalence relations. Let R be an equivalence relation on a topological space X . We denote
by pR : X → X/R the canonical projection map. We will always endow X/R with the final topology
induced by pR, and call the topological space X/R thus obtained the quotient topological space.

Note that the R-equivalence class of an element x ∈ X is p−1
R (pR(x)), and more generally the R-

saturation of a subset A of X is p−1
R (pR(A)) (the set of all elements of X which are R-equivalent to some

element of A).
We say that R is open if the saturation of every open subset of X is open, or equivalently if pX is

an open map. Open equivalences are useful since they behave well with respect to products: Indeed, if
R is open, then the product map (pR × pR) : X × X → (X/R) × (X/R) is surjective, continuous and
open (where we endow (X/R) × (X/R) with the product topology), and so the product topology of
(X/R)× (X/R) is the final topology induced by pR × pR

Locally trivial equivalence relations. A class of equivalence relations which will be of great interest
to us are the locally trivial ones. Let us say that an equivalence relation R on a topological space X is
locally trivial if X admits a basis of open subsets U for which if x, y ∈ U and (x, y) ∈ R, then x = y. In
simpler words, “U is locally the identity”.
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The following are equivalent: (1) R is locally trivial; (2) the diagonal ∆X = {(x, x) : x ∈ X} is
contained in the interior of R, as a subset of X ×X ; and (3) the quotient map pR : X → X/R is locally
injective. If R is open, (3) may be substituted by (3’) the quotient map pR is a local homeomorphism.

Open rigid congruences and quotients of topological semigroupoids. If Λ is a semigroupoid,
then a rigid congruence on Λ is an equivalence relation ∼ on Λ which furthermore satisfies:

(1) If x ∼ y, then s(x) = s(y) and r(x) = r(y);
(2) If x1 ∼ y1, x2 ∼ y2 and s(x1) = r(x2), then x1x2 ∼ y1y2.

These properties imply that the quotient Λ/∼ has a canonical semigroupoid structure as follows: Let
us denote by x the ∼-class of an element x ∈ Λ. The vertex space (Λ/∼)(0) is simply the initial vertex
space Λ(0). The source and range maps of Λ/∼ are given by s(x) = s(x) and r(x) = r(x), and products
are determined by x · y = xy.

If Λ is a topological semigroupoid and ∼ is an open rigid congruence on Λ, then the quotient semi-
groupoid Λ/∼ is also a topological semigroupoid, where we endow the vertex space (Λ/∼)(0) = Λ(0) with
its original topology. The requirement of ∼ being open is essential to ensure that the product map of
Λ/∼ is open. See [14, Proposition 4.6] for details.

Furthermore, if Λ is étale, then Λ/∼ is étale as well. More precisely, if U is any open bisection of Λ,
then p∼(U) is an open bisection of Λ/∼ and p∼ restricts to a homeomorphism from U onto p∼(U). This
in turn implies that if Λ is locally R-normal, where R is a given unital topological ring, then Λ/∼ is also
locally R-normal.

Quotients of R-bundles. Let π : Λ → Γ be a continuous R-bundle, where R is a unital topological
ring, Γ is étale and locally R-normal.

Definition 5.18. A bundle congruence ∼ on π consists of two open rigid congruences ∼Γ and ∼Λ on Γ
and Λ, respectively, such that

(i) π is a (∼Λ,∼Γ)- morphism, in the sense that if x ∼Λ y in Λ then π(x) ∼Γ π(y) in Γ.
(ii) The R-bimodule structure on the fibers of π is respected by ∼Λ, in the sense that if x1 ∼Λ x2,

y1 ∼Λ y2, π(x1) = π(y1) and π(x2) = π(y2), then x1 + y1 ∼Λ y1 + y2, and similarly for the left
and right actions of R.

(iii) If x, y ∈ Λ and π(x) ∼Γ π(y), then there exists y′ ∈ Λ such that y ∼Λ y
′ and π(x) = π(y′).

We shall drop the subscripts and denote either ∼Λ or ∼Γ simply by ∼ whenever no confusion arises.

We may thus construct a new quotient bundle π/∼ as follows: Consider the quotient semigroupoids
Λ/∼ and Γ/∼. Denote by pΛ : Λ → Λ/∼ (and similarly pΓ) the quotient map. By Property (i) above,
the map pΓ ◦ π : Λ → Γ/∼ factors uniquely through Λ/∼, i.e, there exists a unique semigroupoid
homomorphism π/∼ : Λ/∼→ Γ/∼ such that the following diagram commutes:

Λ Γ

Λ/∼ Γ/∼

π

pΛ pΓ

π/∼
.

As pΓ ◦ π is continuous, then π/∼ is also continuous.
For each α ∈ Γ/∼, we have (π/∼)−1(α) = pΛ(π

−1(p−1
Γ (α))), and its additive structure is determined

as follows: Any two elements of (π/∼)−1(α) may be written as pΛ(x) and pΛ(y), where pΓ(π(x)) ∼Γ π(y).
By Property (iii), choose y′ ∈ Λ such that π(x) = π(y′) and y ∼Λ x, and define

pΛ(x) + pΛ(y) = pΛ(x+ y′).

Property (ii) guarantees that this addition depends only on the classes pΛ(x) and pΛ(y), and not on
any of the representatives x, y, or y′. Left and right multiplication by R on (π/∼)−1(x) are determined
similarly, as rpΛ(x) = pΛ(rx) and pΛ(x)r = pΛ(xr) for all r ∈ R and x ∈ Λ.

One can easily verify that this indeed determines an R-bundle structure for π/∼, which actually
follows from the following more general fact: For all x ∈ Λ, Property (iii) implies that the restriction of
pΛ to π−1(π(x)) is surjective onto (π/∼)−1(pΓ(π(x))) and is an R-bimodule homomorphism.

We finish by noting that pΓ : Γ → Γ/∼ is a surjective local homeomorphism, so Γ/∼ is locally
R-normal.



SECTIONAL ALGEBRAS OF SEMIGROUPOID BUNDLES 25

We may now prove our main theorem.

Theorem 5.19. Let π : Λ → Γ be a continuous R-bundle, where Γ is an étale locally R-normal semi-
groupoid. Let ∼ be a bundle congruence on π.

Then the map

(5.20) T : A(π) → A(π/∼), T (α)(x) =
∑

γ∈x

pΛ(α(γ))

determines an R-algebra homomorphism.
Moreover. if ∼Λ is locally trivial, then T is surjective.

Remark. • If d : Γ → G is a grading of Γ by a discrete semigroupoid G which factors through
Γ/∼, then the homomorphism above is graded.

• If π is a local homeomorphism, then ∼Λ is locally trivial. Indeed, in this case, every x ∈ Λ admits
a neighbourhood U such that π restricts to a homeomorphism from U onto an open bisection
π(U) of Γ. If y ∈ U and x ∼Λ y, then π(x) ∼Γ π(y). Since ∼Γ is rigid and both π(x) and π(y)
belong to the same bisection π(U), then x = y. Since π is injective on U then x = y. Therefore
πΛ is injective on U .

Proof of Theorem 5.19. We first need to prove that T is well-defined. First note that as ∼Γ is rigid, then
any of its equivalence classes α is contained in s

−1(s(γ))∩ r
−1(s(γ)), where γ is any representative of α.

Thus the sum in Equation (5.20) is actually finite, as we already know that for any α ∈ A(π), and any
γ ∈ Γ, the set

{
a ∈ s

−1(s(γ)) : α(a) 6= 0
}

is finite.
The function T (α) is a section of π/∼, but we still need to verify that it belongs to A(π). For this, it

is enough to assume that α ∈ Cc(V, π), where V is an open bisection of Γ. In this case, the diagram

V Λ

pΛ(V ) Λ/∼

α

pΓ pΛ

T (f)

commutes, and pΓ restricts to a homeomorphism from V onto pΓ(V ), thus T (α) ∈ Cc(pΓ(V ), π/∼). As
T preserves addition, it is a well-defined map from A(π) to A(π/∼).

Suppose now that ∼Λ is locally trivial, so that pΛ is a local homeomorphism, and let us prove
that T is surjective.

A basic open subset of Γ/∼ has the form pΓ(V ) for some open bisection V of Γ. Thus it is enough,
by Lemma 2.9, to prove that every F ∈ Cc(pΓ(V ), π/∼) belongs to the image of T .

The main idea we employ to find a preimage of F is that if pΛ were invertible, we could simply define
α = p−1

Λ ◦ F ◦ pΓ on V and zero everywhere else, which would be a preimage of F . However pΛ is only a
local homeomorphism, so we need to perform this procedure locally.

Consider the compact K ..= supp(F )∩ pΓ(V ). As F is continuous on pΓ(V ) then F (K) is compact in
Λ/∼. As pΓ is a surjective local homeomorphism, there exist open subsets U1, . . . , Un of Λ such that pΛ
restricts to a homeomorphism from Ui to pλ(Ui) for each i, and F (K) ⊆

⋃n
i=1.

As V is a bisection and ∼Γ is rigid, then pΓ restricts to a homeomorphism from V to pΓ(V ), and in
particular p−1

Γ (K) ∩ V is compact.
Let f1, . . . , fn : V → R be a partition of unity of p−1

Γ (K) ∩ V subordinate to p−1
Γ (F−1(pΛ(Ui))) ∩ V ,

i = 1, . . . , n. As usual we may assume that each fi has compact support.
Define αi : p

−1
Γ (F−1(pΓ(Ui))) ∩ V → Λ as the pointwise product

αi = fi(pΓ|
−1
Ui

◦ F ◦ pΓ)

and extend αi as zero everywhere else of Γ. Then αi is a section of π, and continuously and compactly
supported on p−1

Γ (F−1(pΓ(Ui))) ∩ V , i.e., αi ∈ Cc(p
−1
Γ (F−1(pΓ(Ui))) ∩ V, π).

We may now verify that F = T (
∑n

i=1 αi). Indeed, both F and T (
∑n

i=1 αi) are zero outside of pΓ(V ),
so we only need to verify that F (pΓ(v)) = T (

∑n
i=1 αi)(pΓ(v)) for each v ∈ V .

Note that, since each αi is zero outside of V and ∼Γ is rigid, then in fact each v ∈ V is the only
element of Γ which is ∼Γ-equivalent to v, and on which α is possibly nonzero, so

T (αi)(pΓ(v)) = pΛ(αi(v)) = fi(v)F (pΓ(v))
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Summing over i we obtain

T (
n∑

i=1

αi)(pΓ(v)) =
n∑

i=1

fi(v)F (pΓ(v))

Since pΓ is a homeomorphism from V to pΓ(V ) then v 6∈ p−1(K) if and only if pΓ(v) 6∈ K, in which case
we obtain F (pΓ(v)) = 0, so

T (

n∑

i=1

αi)(pΓ(v)) = 0 = F (pΓ(v)).

Otherwise we have v ∈ p−1
Γ (K), on which f1, . . . , fn are a partition of unity, so

T (

n∑

i=1

αi)(pΓ(v)) =

(
n∑

i=1

fi(v)

)
F (pΓ(v)) = F (pΓ(v)).

In any case, we conclude that F = T (
∑n

i=1 αi). �

We now want to connect the map T above to (non-naïve) crossed products of inverse semigroups, and
for this we will need to determine the kernel of T more precisely. On one hand, the kernel of T is, by
definition,

kerT =




α ∈ A(π) : ∀γ ∈ Γ,
∑

δ∼γ

α(δ) ∼ 0




 .

We may realize the intuitive idea that if two sections α, β ∈ A(π) “are the same up to ∼Γ and ∼Λ-
equivalence classes”, then they define the same element of A(π/∼) as follows: suppose that α, β ∈ A(π)
satisfy the following property: There exists a bijection ϕ : suppβ → suppα such that γ ∼Γ ϕ(γ) and
α(γ) ∼Λ β(ϕ(γ)) for all γ ∈ Γ. Then T (α) = T (β), so α− β ∈ ker(T ).

We may formalize how β above may be constructed from α as follows: Suppose that

• α ∈ Cc(V, π) for some open Hausdorff set V .
• W is an open subset of Γ;
• ϕ : W → V is a homeomorphism such that γ ∼Γ ϕ(γ) for all γ ∈ W ;
• A and B are open subsets of Λ such that α(V ) ⊆ A; and
• ψ : A→ B is a homeomorphism such that x ∼Λ ψ(x) for all x ∈ A, and such that π ◦ψ ◦α ◦ϕ =
idW .

Define ψαϕ : Γ → Λ as
ψαϕ = ψ ◦ α ◦ ϕ on W and 0 on Λ \W.

Definition 5.21. We say that ψαϕ is the section conjugate to α (via ϕ and ψ).

Note that ψαϕ is indeed a section of π, and it is zero outside W and continuous on W . However ψαϕ
does not necessarily belong to Cc(W,π), since it might not be zero outside of a compact contained in W .

So in order to guarantee that ψαϕ ∈ Cc(W,π), we need to ensure that ψ takes zeroes to zeroes; This
is the case, for example, if the “zero-set” 0(Γ) = {0γ : γ ∈ Γ} is ∼Λ-saturated; That is, if x ∼ 0γ for
some γ ∈ Γ, then x = 0π(x). This is equivalent to state that ∼Λ restricts to the identity relation on each
R-bimodule π−1(γ).

Theorem 5.22. Let π : Λ → Γ, ∼ and T be as in Theorem 5.19. Suppose moreover that π is a local
homeomorphism, and that 0(Γ) is ∼Λ-saturated.

Then the kernel of T is generated as an additive group by the set K of all sections of the form α−ψαϕ,
where ψαϕ is conjugate to α as in Definition 5.21.

The determination of kerT above has some interesting consequences. For example, as ∼Γ is an open
equivalence relation on Γ, then ∼Γ is actually an étale principal groupoid, when endowed with the
subspace topology coming from Γ× Γ. The map ϕ as in the definition of conjugate sections is nothing
more than an element of the “full semigroup” (of open bisections) of ∼Λ, and similarly for ∼Γ (assuming
that π is a local homeomorphism). This semigroup is considered, for example, in the non-commutative
Stone Duality of Lawson and Lenz (see [27])..

Thus kerT may be seen as version of the “coboundary group” Bϕ =
{
f − f ◦ ϕ−1 : f ∈ C(X,Z)

}

associated to a self-homeomorphism ϕ of a compact Hausdorff space X . This group plays a prominent
role in the work of Giordano-Putnam-Skau on the structure of Cantor minimal systems (see [21, 22].
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This determination of ker(T ) will also allow us to recover the main theorem of [5] (see Corollary 5.23).

Proof of Theorem 5.22. Let us denote by 〈K〉 the additive group generated by K. On one hand, it is
easy to check that every element of K belongs to ker(T ), so 〈K〉 ⊆ ker(T ), and we just need to prove
the reverse inclusion.

An element α of kerT may be written as a sum α =
∑n

i=1 αi, where αi ∈ Cc(Vi, π) for certain
bisections Vi ∈ B(Γ). We thus proceed by induction on n in order to prove that α ∈ K.

• First suppose that n = 1. This means that α(v) ∼ 0v for all v ∈ V , and thus α = 0 because 0(Γ)
is saturated. Thus α ∈ 〈K〉 trivially.

• Suppose the result holds for n and let us prove it for n+ 1.
Suppose that α =

∑n
i=1 αi + β ∈ ker(T ), where αi ∈ Cc(Vi, π) and β ∈ Cc(V, π) for certain

bisections Vi, V of Γ.
Since π is a local homeomorphism and π ◦ 0 = idΓ, then the zero section 0 is a local homeo-

morphism as well, and in particular it is an open map. The zero set 0(Γ) is thus open in Λ, and
since β is continuous on V we obtain

suppβ ∩ V = {v ∈ V : β(v) 6= 0} .

Let v ∈ suppβ ∩ V . Then β(v) 6= 0, so T (β)(pΓ(v)) 6= 0 as well because 0(Γ) is saturated.
However

∑n
i=1 αi+β ∈ ker(T ), so there exists i ∈ {1, . . . , n} and vi ∈ Γ such that pΓ(vi) = pΓ(v)

and αi(vi) 6= 0. In particular, vi ∈ Vi.
The map pΓ : Γ → Γ/∼Γ is a local homeomorphism and pΓ(v) = pΓ(vi), so there exist

neighbourhoods W of v and Wi of vi, contained in V and Vi, respectively, such that pΓ restricts
to homeomorphisms on W and on U with the same image in Γ/∼Γ.

U

W

pΓ(W ) = pΓ(Wi),φ

pΓ

pΓ

Both arrows labelled as pΓ above are homeomorphisms of their domains, so φ = (pΓ)|
−1
W ◦ (pΓ)|U

defines a homeomorphism U →W making the diagram above commute.
As α is an open function on V , consider the open set A ..= α(V ) of Λ.
Now consider the points x = αi(vi) and y = β(v) of Λ. We have π(x) = vi and π(y) = v,

which are ∼Γ-equivalent. Property (iii) in the definition of a bundle congruence implies that there
exists y′ ∈ Λ such that y′ ∼Λ y = β(v), and π(y′) = π(x) = vi. Again using that π is a local
homeomorphism and making U and W smaller if necessary, we may find a neighbourhood B of
y′ such that π restricts to a homeomorphism from B to U , and such that pΛ is a homeomorphism
from B onto pΛ(α(V ))

In short, we have the commutative diagram (with solid lines)

B A pΛ(A)

U W pΓ(W )

π
ϕ

β

pΛ

π/∼
pΓ

pΓ

pΛ

y′ α(v) pΛ(α(v))

vi v pΓ(v)

π
ϕ β

pΛ

π/∼
pΓ

pΓ

pΛ

where all sets in the left diagram are open in Γ, Λ, Γ/∼ or Λ/∼ accordingly, and all arrows
are homeomorphisms between their sources and ranges. If we define ψ : A → B to be the
unique function which, when placed in the dashed space above, makes the resulting diagram
commutative, then the commutativity of this diagram means precisely that ϕ and ψ satisfy the
necessary conditions as in the definition of conjugate sections.

The idea is now to perform this procedure locally, with the usage of partitions of unity, which
will slightly modify the diagram above.
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We thus perform the procedure above for all v ∈ supp(β) ∩ V and use its compactness in
order to find a finite collection of tuples of sets (Uj,Wj , Aj , Bj), j = 1, . . . , N , which makes the
analogous diagram as the one above commutative, and such that

– suppβ ∩ V ⊆
⋃N

j=1Wj ;
– For each j, Wj ⊆ V and Uj ⊆ Vi for some i.
Let {fj : j = 1, . . . , N} be a partition of unity of supp(β) ∩ V subordinate to W1, . . . ,WN .

We may break down β as β =
∑N

j=1 fjβ, where each section fjβ is supported on Wj , i.e.,
fjβ ∈ Cc(Wj , π).

Given j, Let fjAj = (fjβj)(Wj) and fjBj = {fj(ϕ(π(b)))b : b ∈ Bj}. Then fjAj and fjBj

are also open in Λ, and the following diagram (with solid arrows) commutes:

fjBj fjAj pΛ(fjAj)

Uj Wj pΓ(Wj)

π
ϕ

β

pΛ

π/∼
pΓ

pΓ

pΛ

where all sets are open in Γ, Λ, Γ/∼ or Λ/∼, and all arrows are homeomorphisms. Let ψj : fjAj →
fjBj be the homeomorphism associated to the dashed arrow above making the diagram commute.
Then ϕj and ψj satisfy the required conditions to define the conjugate section ψj(fjβ)φj . This
conjugate section, in turn, will belong to some Cc(Vi, π), (namely, just cchoose i such that
Uj ⊆ Vi).

We may thus rewrite
n∑

i=1

αi + β =

n∑

i=1

αi +

N∑

j=1

ψj(fjβ)ϕj +

n∑

j=1

[(fjβ) − (ψj(fjβ)ϕj)] .

The last term of the right-hand side belongs to 〈K〉, and in particular to kerT . The remainder
terms of the right-hand sides are may be rewritten as a sum, with at most n elements, of elements
of Cc(Vi, π), i = 1, . . . , n. Namely, for each j choose I(j) such that Uj ⊆ VI(j). Then

n∑

i=1

αi +

N∑

j=1

ψj(fjβ)ϕj =

n∑

i=1


αi +

∑

j:I(j)=i

ψj(fjβ)ϕj




Since this also belong to ker(T ), the induction hypothesis implies that it belogns to 〈K〉, so we
conclude that

∑n
i=1 αi + β ∈ 〈K〉, as desired.

�

We may now apply the previous theorems to obtain a far-reaching generalization of [5, Theorem 5.10].
First a matter of notation: if S is a discrete inverse semigroupoid with a ∧-preaction on an algebra A,
and s ∈ S and a ∈ dom(θs) we define the element δsa of the naïve crossed product S⋆A as the function
which takes s to a and all other elements of S to 0.

We may adapt the notion of crossed product of [18], and call the “classical” crossed product of S and A
the quotient of S⋆A by the ideal generated by terms of the form δsa− δta, where a ∈ dom(θs)∩dom(θt)
and s ≤ t.

Corollary 5.23. Let S be a discrete inverse semigroupoid, G be an ample groupoid, R a discrete unital
ring, A a discrete R-algebra, and θ : S y G a continuous, associative and open ∧-preaction of S on G.

Consider the semidirect product semigroupoid S⋉G, and let G (S ⋉G) be its initial groupoid, i.e., the
quotient of S ⋉ G by the relation

(s1, g1) ∼ (s2, g2) ⇐⇒ g1 = g2 and there exists u ≤ s1, s2 such that g1 ∈ dom(θu).

(This is also called the groupoid of germs of the ∧-preaction θ.)
Let Θ be the ∧-preaction of S on AG induced by θ: given s ∈ S, set

dom(Θs) = {f ∈ AG : f = 0 outside dom(θs)} ,
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and define Θs(f) = f ◦ θ−1
s on ran(θs) and 0 everywhere else.

Then A(G (S⋉G)) is isomorphic to the quotient of S⋆(AG) by the ideal generated by sections δsa−δta,
where a ∈ dom(Θs) ∩ dom(Θt) and s ≤ t.

Proof. Consider the bundles π : A× G → G and ξ : A× (S ⋉ G) → S ⋉ G given by the obvious coordinate
projections.

The ∧-preaction of S on G “extends” naturally to a ∧-preaction of S on A × G, also denoted by θ,
given by θs(a, g) = (a, θs(g)) whenever the right-hand side makes sense.

In this manner, we may identify A × (S ⋉ G) with S ⋉ (A × G), and ξ with S ⋉ π. We thus obtain,
from Theorem 5.13, an explicit isomorphism

S⋆AG ∼= A(ξ)

Now we need to take care of quotients. We already have a relation ∼ on S ⋉ G, so consider the
associated relation (again denoted ∼) on S⋉ (A× G) as

(s1, a1, g1) ∼ (s2, a2, g2) ⇐⇒ a1 = a2 and (s1, g1) ∼ (s2, g2)

The only non-trivial property of Definition 5.18 is (iii), which is proven as follows: If x = (s1, a1, g1) and
y = (s2, a2, g2) have equivalent images under ξ, then (s1, g1) ∼ (s2, g2), so y′ = (s1, a2, g1) has the same
image as x under ξ, and it is equivalent to y.

Then S ⋉ (A × G)/∼ is isomorphic, in the obvious manner, to A × (S ⋉ G)/∼= A × G (S ⋉ G), and
the quotient bundle ξ/∼ : A× G (S ⋉ G) → G (S ⋉ G) is the coordinate projection. By Theorem 5.19, we
obtain an explicit surjective homomorphism

T : S⋆AG ∼= A(ξ) → A(ξ/∼) = A(G (S ⋉ G).

We use the explicit description of kerT given by Theorem 5.22: Two basic open sets V ′ and W ′ of
S ⋉ G will have the forms

V ′ = {s} × V and W ′ = {t} ×W

for certain s, t and compact-open Hausdorff V ⊆ dom(θs), W ⊆ dom(θt).
A homeomorphism ϕ′ from W ′ to V ′ is of the form (t, g) 7→ (s, ϕ(g)) for some homeomorphism

ϕ : W → V . However, if ϕ′ preserves ∼-classes then ϕ is actually the identify, which means that W = V ,
and for every g ∈ V there is ug ≤ s, t with g in its domain. As G is ample, we may divide V into finitely
many disjoint compact-open V1, . . . , Vn, an find u1, . . . , un smaller than s and t, with Vi ⊆ dom(θ(ui)).
Moreover, A is discrete, so we may divide each Vi further and assume that the section α, seen as a
function from S ⋉ G to A, is constant ai on Vi and zero everywhere else.

Similarly, the function ψ, defined on appropriate domains, is of the form ψ(r, s, g) = (r, t, g). So
ψαϕ(t, g) = (ai, t, g) on {t} × Vi.

We now see α and ψαϕ as elements of S⋆AG, i.e., as functions from S to AG, as in Theorem 5.13.
Under this realization, it follows that Ui ⊆ dom(θui

), so ai1Ui
∈ dom(Θui

) (the function ai1Ui
, from G

to A, takes Ui to ai and G \ Ui to 0). Therefore we obtain

α− ψαϕ =
n∑

i=1

δs(ai1Ui
)− δt(ai1Ui

) =

(
n∑

i=1

δs(ai1Ui
)− δui

(ai1Ui
)

)
+

(
n∑

i=1

δui
(ai1Ui

)− δt(ai1Ui
)

)
.

Since ui ≤ s, t then each term in each sum above belongs to the desired generating set. �
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