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The Nyquist formula quanti�es the thermal noise driven 
uctuations of voltage across a resistance
in equilibrium. We deal here with the case of a resistance driven out of equilibrium by putting it in
contact with two thermostats at di�erent temperatures. We reach a non-equilibrium steady state
where a heat 
ux is 
owing through the resistance. Our measurements demonstrate anyway that
a simple extension of the Nyquist formula to the non uniform temperature �eld describes with an
excellent precision the thermal noise. For a metallic ohmic material, the 
uctuations are actually
equivalent to those of a resistance in equilibrium with a single thermostat at the mean temperature
between the hot and cold sources.

I. INTRODUCTION

With the Fluctuation-Dissipation Theorem (FDT),
statistical physics o�ers a powerful tool to describe the

uctuations of an observable of a system in equilib-
rium [1]. For example, applications of the FDT to the
Brownian motion of micrometer sized systems include
micro-rheology measurements with optical tweezers [2, 3],
or the calibration of the sti�ness of atomic force mi-
croscopy probes [4]. For electrical systems, the FDT is
expressed by the celebrated Nyquist formula [5], describ-
ing the Johnson voltage noise [6] across a resistance R at
temperature T :

SV =
hV 2i
�f

= 4kBTR (1)

with SV the Power Spectrum Density (PSD) of the volt-
age V across the resistance, �f the frequency bandwidth,
kB the Boltzmann constant and h:i stands for the statis-
tical average.

In non equilibrium situations however, such a relation
between 
uctuations and dissipation is not granted, and
excess noise is usually expected to be observed with re-
spect to an equilibrium state [7{23]. We will focus here
on the case where the system is in a Non-Equilibrium
Steady State (NESS), because it is submitted to a con-
stant heat 
ux. This is the case for example of a conduc-
tor submitted to a large temperature gradient, or of a
resonator whose extremity are receiving an external ra-
diation. In this latter case, contradictory observations
have been made: in a experiment by L. Conti and collab-
orators [7, 8], an excess of thermal noise has been mea-
sured, while in a similar experiment in our group [24],
lower 
uctuations than those expected from the system
average temperature have been observed.

To give further insights into these puzzling physical
phenomena, we explore in this article the thermal 
uc-
tuation in such a NESS, focusing on the simple example
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of voltage noise across an electrical resistance. In a �rst
part, we present the simple extension of the Nyquist for-
mula that could be applied to this system. In the fol-
lowing parts, we describe the experimental setup and the
results of the thermal noise measurements. The last sec-
tion concludes this work by a discussion on the results.

II. EXTENDED NYQUIST FORMULA

To introduce our approach, let us �rst discuss the case
of two resistances R1 and R2 connected in series, each
being in equilibrium with a di�erent thermostat at tem-
perature T1 and T2 respectively. The PSD of the voltage
noise across each resistance is described by the Nyquist
formula (eq. 1). The voltage across the total resistance
R = R1 +R2 is V = V1 + V2, where we neglect the resis-
tance of the conductor linking the two dipoles. Voltage

uctuations V1 and V2 are statistically uncorrelated, thus
the measured PSD should write:

SV =
h(V1 + V2)2i

�f
= SV1 + SV2 = 4kB(T1R1 + T2R2)

(2)
The voltage noise is thus proportional to the sum of the
products between temperature and resistance. The fact
that there are two thermostats is decoupled here from the
thermal noise analysis, since the heat 
ux between them
only takes place in a conductor with negligible resistance.
If we consider a similar case where N resistances Rn in
equilibrium at temperature Tn are connected in series,
we will simply derive the following formula:

SV = 4kB

NX
n=1

TnRn (3)

Let us now consider the continuum limit of this ap-
proach, where each segment dx of the resistor is at a
local temperature T (x). Under this hypothesis of local
equilibrium, a possible extension of eq. 3 is:

SV = 4kB

Z L

x=0

T (x)�
�
T (x)

�
dx (4)
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where we suppose that the resistance is distributed in one
dimension (along x, from x = 0 to x = L), with a linear
resistivity �(T ):

R =

Z L

x=0

�
�
T (x)

�
dx (5)

This description is however not granted, since now each
segment is submitted to a heat 
ux, thus equilibrium laws
may not apply to this NESS. The goal of our experiments
is to test this extended Nyquist formula, using a resistor
in contact with two di�erent thermostats at each of its
extremities.

In the following, instead of comparing directly the mea-
sured PSD SV to eq. 4, we will characterise the amplitude
of thermal noise by T 
uc, de�ned with:

T 
uc :=
SV

4kBR
(6)

T 
uc is the e�ective temperature one would infer from
measuring both the amplitude of the thermal noise and
the value of the resistance, regardless of its equilibrium
state. At equilibrium, this should be the thermostat tem-
perature. Out of equilibrium, if the extended Nyquist
formula is valid, we expect that

T 
uc =
1

R

Z L

x=0

T (x)�
�
T (x)

�
dx (7)

In other words, we expect T 
uc to be the temperature
�eld averaged with a weight proportional to the local re-
sistivity. Although the systems are very di�erent (purely
dissipative versus resonant system), this formula extends
to electrical observables our work on the mechanical ther-
mal noise of a micro-cantilever in a NESS [24]. K. Ko-
mori and collaborators came independently to a similar
expression for the thermal noise of a generic mechanical
system in a NESS [25].

III. MEASURING THE THERMAL NOISE OF A
RESISTOR IN A THERMAL GRADIENT

In the experiments, we measure the voltage 
uctua-
tions using a home made ultra low noise ampli�er [26, 27],
featuring a voltage noise of only 10�18 V2=Hz, 
at down
to 10 Hz (see Fig. 5). This is equivalent to the ther-
mal noise of a 60 
 resistance at room temperature. Its
current noise is negligible in our experiments (order of
magnitude: 10�30 A2=Hz). Though we will subtract the
ampli�er noise spectrum from our measured PSD, having
a reasonable signal to noise ratio implies using resistances
greater than a few 100 
.

Ideally, we would like to mesure the voltage 
uctua-
tions across a resistance as sketched in Fig.1. However,
to avoid having local thermostats along the resistance
(which would bring us close to the equilibrium case of
eq. 3), we would like to avoid any material not part of

FIG. 1. Principle of the experiment: we measure the thermal
noise driven voltage 
uctuation across a resistance submitted
to a temperature di�erence. The signal is ampli�ed with a
low noise voltage ampli�er (gain G = 103) and acquired at
6 kHz with a 24 bits data acquisition card (NI PXI 4461).

the resistance to be in contact with it. We may not use
a standard �lm resistor for instance, where most of the
dipole is made of an insulating ceramic. We therefore
choose to work with a resistive wire, where electrical and
thermal conductivities are mainly due to the electronic
transport. The material, length L and diameter D of this
resistive wire need to accommodate the following criteria:

1. The total resistance R = 4�vL=�D
2 is greater than

a few 100 
 (with �v the volume resistivity).

2. The heat 
ux by conduction within the resistance
is much greater than that due to radiation.

3. The heat 
ux by conduction within the resistance
is much greater than that with the surrounding at-
mosphere.

A. Resistance criterium

To meet the �rst criterium, we need a long and thin
wire of high electrical resistivity. If we choose for example
Ni-Fe alloys (among the worst metallic conductors), their
bulk resistivity is around �v = 5� 10�7 
m. Thus a wire
of diameter D = 25�m will need to be at least L = 30 cm
long to reach R = 300 
.

B. Negligible radiation criterium

Let us estimate the balance between conduction and
radiation in a cylindrical wire bridging a cold thermostat
at temperature Tc with a hot one at temperature Th =
Tc + �T . The equation governing the temperature �eld
is derived by an analysis along the wire of the heat 
uxes
J� by conduction and J� emitted by radiation. The �rst



3

follows the Fourier law:

J� = ���
4
D2@xT (8)

with � the thermal conductivity. We neglect any varia-
tion of � with T for this estimation of the e�ect of radia-
tion. As for J�, we suppose that the resistor is exchang-
ing thermal photons with a half space at temperature Tc,
and a second half space at temperature Th. For a element
of length dx, we thus write

J� = e�(T 4 � T 4
� )�Ddx (9)

with � = 5:67� 10�8 Wm�2K�4 the Stephan-
Boltzmann constant, e the emissivity of the material,
and T� = (T 4

c =2 + T 4
h=2)1=4. The temperature pro�le

is a balance between the 
uxes for the element dx:

�
�

4
D2@2

xT = e�(T 4 � T 4
� )�D (10)

1

T�
@2
xT =

4e�T 3
�

�D
(
T 4

T 4
�

� 1) (11)

We de�ne the characteristic length L� by

L� =

s
�D

4e�T 3
�

(12)

Normalising temperatures by T� (� = T=T�) and posi-
tions by L (X = x=L), we end up with the following
adimensional equation:

@2
X� = �2(�4 � 1) (13)

with � = L=L�. Heat conduction will thus dominate if
� � 1, and radiation will dictate the temperature �eld
otherwise.

The second criterium thus favours long and thin
wires, of low thermal conductivity. Given the Wiede-
mann{Franz law for metallic material stating that ther-
mal and electrical conductivities are proportional [28, 29],
the two �rst criteria are exactly antinomic ! For Ni-Fe
alloys for example, the thermal conductivity is around
� = 20 Wm�1K�1, using e = 1 (worst case correspond-
ing to black body emission), T� = 350 K and D = 25�m,
we compute L� = 7 mm, which is much smaller than
L = 30 cm imposed by the �rst criterium. A naive ge-
ometry is thus not compatible with the phenomenon we
want to probe, and we must look at some alternative
design.

High thermal conductivity and strong electrical resis-
tance are not achievable with a linear geometry. Our
design compensates this incompatibility by using small
resistances in parallel for heat 
uxes but in series for the
electrical resistance. This is achieved by wrapping the re-
sistive wire around two cylindrical thermostats (M2 brass
screws, 2r � 1:6 mm in diameter), only l = 3 mm appart
(axis distance). With N � 30 loops, we end up with the
required 30 cm length. To avoid electrical shortcuts, the

FIG. 2. Sketch of the experimental setup (a), equivalent elec-
trical circuit (b) and temperature pro�le in the resistance (c).
The resistance is a resistive wire (in blue) wrapped about 30
times around 2 brass screws (in yellow), which are part of the
2 thermostats (in gray at T0 and red at T0 + �T ). Pt1000
thermistances are placed inside the thermostats to measure
their temperature. A foil heater (in brown) is used to tune
�T . The voltage V is measured across the whole resistance,
but their thermal 
uxes are in parallel in each free standing
part of the wire.

resistive wire is coated with a thin insulating layer. Ther-
mal conducting grease on the brass screws ensure good
thermal contact between the resistance and the thermo-
stat. The resulting electrical system, sketched in Fig. 2,
is the series of resistances R = N(Rc + Rf + Rh + Rf ),
where the three subscripts stand for the part of the resis-
tive wire in contact with the cold thermostat (c), the hot
one (h), and the free standing part bridging the two (f).
Rc and Rh share the same length lc = lh = �r � 2:5 mm,
comparable to that of Rf : lf = l = 3 mm.

As illustrated in Fig. 3, numerically solving eq. 13
for Rf in this speci�c case (l = 3 mm, D = 25�m,
� = 20 Wm�1K�1, e = 1) shows that deviations to the
purely conductive temperature pro�le are below 1 %. To
estimate if the thermal photon bath can be considered as
a local thermostat, we can also compare the conduction
heat 
ux per unit surface j� = ��@xT to that of emitted
radiations j� = e�T 4 . In �gure Fig. 3(c), we observe
that this ratio j�=j� is at most a few percent, and even
much smaller for the largest �T .

As for thermal noise measurements, each of the N
loops around the thermostats has an equivalent contribu-
tion both for the total resistance (R = NRloop) and the
total voltage PSD (SV = NSVloop

), hence T 
uc de�ned
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FIG. 3. Simulated temperature pro�le (a), deviation to the
purely conductive case (b), and ratio between radiation and
conduction heat 
uxes (c), for various �T , with eq. 13
using the following parameters: l = 3 mm, D = 25�m,
� = 20 Wm�1K�1, e = 1, and Tc = 295 K. In this speci�c
geometry, radiation is negligible versus conduction.

by eq. 6 is the same for one loop or the full resistance.
Finally, the extended Nyquist Formula in this geometry
is equivalent to:

T 
uc =
1

Rloop

Z Lloop

x=0

T (x)�
�
T (x)

�
dx (14)

=
RcTc +RhTh + 2RfT


uc
f

Rc +Rh + 2Rf
(15)

with

T 
uc
f =

1

Rf

Z l

x=0

T (x)�
�
T (x)

�
dx (16)

To the �rst order in �T , we can neglect the variation of
� and � with temperature, hence the temperature pro�le
is linear (T (x) = Tc+�Tx=L) and eqs. 15 and 16 simply
becomes:

T 
uc = T 
uc
f = Tc +

�T

2
(17)

C. Negligible convection criterium

We now estimate the balance between conduction in-
side the resistive wire and heat 
owing to or from the
surrounding atmosphere. This air layer is con�ned in our
setup between two horizontal plates (the thermostats),
the hotter one being on top. This con�guration is sta-
ble with respect to convection, the temperature will thus
be linear in space in the medium around the resistance.
As detailed in the previous paragraph, to the �rst order
in �T the temperature pro�le due to conduction is also
linear in space inside the resistance. The temperatures
being equal at the same position, no net heat exchange
with the environment is thus happening.

Let us anyway model this heat exchange Ja if a di�er-
ence were to appear between the resistance temperature
T (x) and the air temperature Ta, by introducing the heat
exchange coe�cient h [30]:

Ja = h(T � Ta)�Ddx (18)

where we considered a small element of length dx, as
for radiation. For free convection at the vertical surface
of a solid in contact with air around room temperature,
the order of magnitude is h � 10 Wm�2K�1 [30]. For
a stationary solution, the balance between the 
uxes for
the element dx writes:

�
�

4
D2@2

xT = h(T � Ta)�D (19)

@2
xT =

4h

�D
(T � Ta) (20)

The characteristic length La for this equation is

La =

r
�D

4h
� 4 mm (21)

If signi�cative temperature di�erences between the air
and the resistive wire were to be present, the charac-
teristic length La over which the pro�le T (x) would be
impacted is thus larger than the wire actual free stand-
ing length l = 3 mm. Again, thanks to the sample design,
heat exchanges with air can thus be neglected, and the
resistive wire environment cannot be considered as a local
thermostat.
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IV. MEASUREMENT RESULTS

A. Experimental setup and measurement of
temperature coe�cient

Guided by the design considerations above, our sample
is made of a wire of Ni70Fe30 [31], of diameterD = 25�m
and length around L = 30 cm. The wire is electrically in-
sulated by a thin Polyimide layer (thickness 3:5�m). Its
total resistance at room temperature is R = 295 
. It is
wrapped approximately 30 times around the two brass
screws that act as thermostats. Each screw is half buried
(along its length) in a thick aluminium plate whose tem-
perature is controlled: the low temperature thermostat is
in contact with a one square meter large metallic plate at
room temperature, and the high temperature thermostat
is heated by a foil electrical resistance (sketch on Fig. 2).
Pt1000 temperature sensors are placed inside the alu-
minium plates, as close as possible to the brass screws,
to measure Tc and Th = Tc + �T . We checked that the
temperature was uniform within 0:2 K in each thermo-
stat. The mid point between these two readings gives an
estimation of the average temperature of the resistance:

Tm :=
Tc + Th

2
= Tc +

1

2
�T (22)

290 300 310 320 330
290

300

310

320

330

340

FIG. 4. Resistance of the sample as a function of its uniform
temperature. The dependency is linear: R = R0[1+�(T�T0)]
with � = 4:1 � 10�3 K�1 and R0 = 300:4 
 at T0 = 300 K.

In a �rst set of experiments, we characterise the vari-
ation of resistance (hence resistivity) with temperature.
To this aim, we thermally shortcut the two thermostats
and insulate them from the environment to reach a uni-
form temperature for all the system. All the readings are
uniform within �T < 1:7 K, as displayed with the hori-
zontal error bars in Fig. 4. We �t the measurement with
a linear law:

R = R0[1 + �(T � T0)] (23)

with � = 4:1� 10�3 K�1 and R0 = 300:4 
 at T0 =
300 K. This law applies as well to resistivity: � = �0[1 +
�(T � T0)].

Using this linear dependency, we can infer an average
value of the temperature of the resistance from its value
when �T 6= 0: let us de�ne T avg by

T avg := T0 +
1

�
(
R

R0
� 1) (24)

Straightforward calculations show indeed that:

T avg =
1

L

Z L

x=0

T (x)dx (25)

To the �rst order in �T , T (x) being linear in space,
we have T avg = Tm (with Tm de�ned by eq. 22). In
the measurements, we will thus be able to compare the
amplitude of thermal noise, measured with T 
uc, with
two independent measurements of the mean temperature
of the system (Tm and T avg).

B. Thermal noise

101 102 103

1

2

3

4

5
6
7
8

FIG. 5. Power Spectrum Density (PSD) of voltage 
uctua-
tions across the resistor for various �T . The ampli�er voltage
noise (lower curve) has been subtracted from the displayed
spectra. The noise is white from a few Hz to 2 kHz, and in-
creases with �T . The thin lines correspond to the measured
spectra, while the thick dashed lines are the mean value of
the spectra on this frequency interval.

The statistical properties on the voltage 
uctuations
are illustrated in Figs. 6 and 5, where we plot the Proba-
bility Distribution Function (PDF) of the signal, and its
Power Spectrum Density (PSD).
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In Fig. 5, we plot the power spectrum density of the
voltage signals, acquired during a minute long acquisition
at 6 kHz for various �T . The ampli�er voltage noise
has been subtracted from the displayed PSD. Except for
a peak corresponding to line frequency, the spectra are

at in the 5 Hz to 2 kHz bandwidth displayed here. At
higher frequencies, the ampli�er input capacitance starts
short-cutting the resistance and �ltering the signal. At
lower frequencies, the ampli�er 1=f noise can be an issue.
We therefore restrict ourselves to the displayed frequency
range, and exclude the 50 Hz peak to compute the mean
value of the plateau. The statistical uncertainty on its
value is then around 0:3 %.

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

103

104

105

106

FIG. 6. Probability Distribution Function (PDF) of voltage

uctuations across the resistor for various �T . Each PDF
correspond to a minute long acquisition at 6 kHz, �ltered (AC
+ notch �lter at 50 Hz). The dashed lines are centered normal
distribution �ts of the experimental PDF: no deviation from
gaussian noise can be detected. The variance of the signal
increases with �T .

The statistical properties on the voltage 
uctuations
are also illustrated in Fig. 6, where we plot the Probabil-
ity Distribution Function (PDF) of the signal, for various
�T . To avoid artefacts from slow drifts in the temper-
ature of the sample or to the ampli�er noise (low fre-
quency, line frequency), the PDF are computed from the
signal digitally �ltered with a high pass �lter at 0:3 Hz,
and a notch �lter with a 2 Hz stop band around 50 Hz.
For all observables and all probed �T , the noise is per-
fectly white: its PDF is gaussian (skewness lower than
6� 10�3, excess kurtosis lower than 10�2), and its PSD is

at. Its variance, or its power spectrum density plateau,
hence T 
uc, is thus enough to describe the voltage 
uc-
tuations.

In �gure 7, we �nally report the measured values for
T 
uc as a function of �T . We compare to the two esti-
mation of the average temperature of the resistance Tm

and T avg. Experimental uncertainties are around 1 K:

0 20 40 60 80 100 120
280

300

320

340

360

380

400

420

FIG. 7. Temperatures Tm (mean of the two thermostats),
T avg (spacial average) and T 
uc (from noise amplitude) as
a function of the imposed temperature di�erence �T . The
proximity of the three measurements gives credit to the simple
extension of the Nyquist formula in this NESS.

they correspond mainly to the statistical uncertainty for
T 
uc, to the uncertainty in � for T avg, and to tempera-
ture stability for Tm. Within those error bars, all three
temperatures stand very close, and give credit to the sim-
ple extension of the Nyquist Formula of eq. 7.

V. DISCUSSION AND CONCLUSIONS

Taking into account the experimental results, to the
�rst order in �T , our approach seems very reasonable.
Let us evaluate in the following lines if higher order e�ects
could be present in our system.

The Wiedemann-Franz law for metals states that ther-
mal and electrical conductivities are proportional [28, 29],
which may be written in our case as:

�(T )�(T ) = �0�0 (26)

As illustrated by the measurements, the resistance has a
noticeable variation on the temperature range we probe.
Thus thermal conductivity present a similar variation,
meaning that the temperature gradient is not uniform in
space, even with negligible radiation losses. Evaluating
T 
uc analytically from eq. 7 seems thus non trivial in the
general case.

However, neglecting radiation, let us write that the
heat 
ux is constant:

J� =
�

4
D2�(T )@xT (27)
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Combining eqs. 26 and 27, we have �(T ) = A@xT , where
A is a constant. Integrating this equation from x = 0 to
L, we immediately get A = R=�T , hence:

�(T ) =
R

�T
@xT (28)

Let us now report this expression of the resistivity in the
extended Nyquist prediction of eq. 16:

T 
uc
f =

1

Rf

Z l

x=0

T (x)�
�
T (x)

�
dx (29)

=
1

�T

Z l

x=0

T (x)@xT (x)dx (30)

= Tc +
1

2
�T = Tm (31)

Under quite broad hypothesis (constant heat 
ux, Wiede-
mann{Franz law), the result is surprisingly simple: the
amplitude of thermal noise corresponds to a temperature
exactly at the mid-point between the two thermostats.
Note that this result is valid even if the temperature �eld
is non linear, and the resistivity non uniform.

In our experiment, this formula applies only to the free
standings parts of the resistive wire, thus to T 
uc

f . For
the actual measurement, using eq. 15 and injecting the
temperature dependence of Rh = Rc(1 + ��T ), we get
to the second order in �T :

T 
uc = Tc +
1

2
�T +

Rc
4(Rc +Rf )

��T 2 (32)

In our con�guration, the ratio Rc=4(Rc + Rf ) can be
evaluated by lc=4(lc + lf ) � 0:1. The quadratic term is

then only a 5 K correction at the end of the explored �T
range. Other e�ects of similar amplitude but opposite
direction (such as the contribution of the few centimeters
of the resistive wire between the wrapped part and the
connector to the ampli�er, mainly at room temperature)
make this contribution inobservable in our system.

To summarise our work, we have presented in this ar-
ticle an extension of the Nyquist formula to a resistance
bridging two thermostats at di�erent temperatures. On
the basis of reasonable hypotheses we have analytically
shown that the thermal noise in this NESS is equiva-
lent to that of a resistance in equilibrium at the mean
temperature between the two thermostats. Within an
experimental accuracy of a few percent, we then demon-
strated that this extended Nyquist Formula is valid in
our setup. Beyond the results presented in this article,
we probed a commercial resistor of 640 k
 (�lm resistor
with ceramic substrate) and reached exactly the same
conclusion. From a more general perspective, the ther-
mal 
uctuations are adequately described by the average
of the temperature �eld weighted by the local dissipation.
Beyond electrical observables, we expect this approach to
hold in other expressions of the 
uctuation-dissipation
theorem.
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