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Hard spheres dynamics: weak vs strong collisions

Denis Serre

École Normale Supérieure de Lyon∗

Abstract

We consider the motion of a finite though large number N of hard spheres in the whole space

Rn. Particles move freely until they experience elastic collisions. We use our recent theory of

Compensated Integrability in order to estimate how much the particles are deviated by collisions.

Our result, which is expressed in terms of hodographs, tells us that only O(N2) collisions are

significant.

1 The dynamical model of spheres

We consider a set of N identical spheres of radius a> 0 moving in the whole space Rn. The coordinate

in the physical space R1+n is denoted x = (t,y) where t is the time and y ∈Rn the position. In practice

n = 3 and N is of the size of the Avogadro number, but the analysis below is valid in every space

dimension and for any cardinality. We may think of the spheres as particles Pα (1 ≤ α ≤ N) of mass

m > 0, though it is not essential for our purpose. Since our estimates below do not depend on this

parameter, we normalize it to m = 1.

The velocity vα ∈ Rn of Pα remains constant between two consecutive collisions. In particular,

the trajectory of a particle is a polygonal chain. A collision between two particles Pα,β occurs when

their centers yα,β approach to a distance 2a :

|yβ − yα|= 2a.

In terms of the velocities vα,β and v′α,β before and after the collision, “approach” is expressed by the

inequalities

(1) (vβ − vα) · (yβ− yα)< 0, (v′β − v′α) · (yβ− yα)> 0.

We shall make use of the following properties of collisions:

• The combined momentum is conserved:

(2) v′α + v′β = vα + vβ.
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• The collisions are friction-less, meaning that the jump of velocity is orthogonal to the common

tangent space to the particles:

(3) v′α − vα = vβ − v′β ‖ yβ − yα.

• The energy, which is only of kinetic nature, is conserved along the collision:

(4) |v′α|2 + |v′β|2 = |vα|2 + |vβ|2.

Two important quantities emerge from the considerations above, namely the total mass M =Nm=
N and the total energy

E = ∑
α

1

2
|vα(t)|2 ≡ ∑

α

1

2
|vα(0)|2,

which do not depend on the instant at which they are computed. They are therefore determined by the

initial data and we see them as a priori given. A third conserved quantity is the total momentum

Q = ∑
α

vα(t)≡ ∑
α

vα(0),

which satisfies |Q | ≤
√

2ME . It allows us to define a mean velocity w := Q
M

. Our results shall be

expressed in terms of the root mean square and standard deviation of the velocity distribution

v̄ :=

√
2E

M
, v :=

√
v̄2 −|w|2 .

These are constants of the motion.

1.1 State of the art

For generic initial data, hard spheres dynamics is well defined globally in time, and every collision

involves exactly two particles; see Alexander’s Master thesis [1], or Theorem 4.2.1 of [5]. The ques-

tion of finiteness of the number of collisions was raised by Ya. Sinai [12] and solved by Vaserstein

[13], whose work was simplified by Illner [6, 7]. Their proofs argue by contradiction and therefore

do not yield an explicit upper bound for the number of collisions. The only known bound was found

recently by Burago & al. [2], in the form

#{collisions} ≤ (32N3/2)N2

.

On the opposite side, Burdzy & Duarte [4] exhibit an initial configuration of N hard spheres for which

the number of collisions in the whole history is larger than 1
27

N3. This lower bound is soon improved

by Burago & Ivanov [3] in 2⌊
N
2 ⌋ where ⌊·⌋ is the floor function.

The number of collisions can thus be extremely large. Nevertheless, our Theorem 1.1 provides

a realistic bound O(ε−1N2) for those collisions that have a significant impact on the short-time dy-

namics, in the sense that |v′− v| ≥ εv̄ for a given threshold ε > 0. This solves a question raised in

[3]:
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It seems that, if the number of collisions is large, then the overwhelming number of col-

lisions are inessential in the sense that they result in almost zero exchange of momenta,

energy, and directions of velocities of balls. We will think about it tomorrow.

1.2 Main result

At a collision between two particles, each one experiences a jump of velocity δv := v′ − v ; the

trajectory of the center of each sphere experiences a kink. Because of the conservation of momentum,

the jumps of both particles compensate each other. We shall measure whether a collision is weak or

significant, in terms of the ratio |δv|/v̄. Our motivation is that at a macroscopic level, where a flow is

described by thermodynamical variables, it is expected that the pressure be related with the number

of significant collisions.

In what follows, a universal constant cn is a finite number which may depend upon the space

dimension n, but does not upon the initial configuration. The same notation cn occurs in various

places, but the constant may differ from one line to another.

Theorem 1.1 Consider N hard spheres moving in the physical space Rn. Let v̄ be the root mean

square velocity of the system. Let us assume (generic) that the collision set is finite on every band

(0,τ)×Rn, and that the motion involves only binary collisions.

There exists a universal constant such that the following inequality holds true

(5) ∑
kinks

(
v̄ |v′− v|+ |v∧ v′|

)
≤ cnN2v̄2,

where the sum runs over the particles and the collisions they experience.

The inequality above tells us that if we neglect the weak collisions, for which either |v′− v| << v̄

or |v∧ v′| << v̄2, then in average: – a given particle will experience O(N) collisions, – two given

particles will collide together O(1) many times. These big O involve only universal constants.

A slight improvement of (5) can be obtained by applying these estimates to the flow measured

in the inertial frame in which the mean velocity (a constant of the motion) vanishes. In term of the

standard deviation v, we have the following Galilean-invariant estimate.

(6) ∑
kinks

|v′− v| ≤ cnN2v.

Interpretation. Given a particle Pα (for α ∈ [[1,N]]), we may consider its hodograph, which is the

curve parametrized by t 7→ vα(t). For cosmetic reasons, we prefer to consider the graph translated by

w, denoted Hα, which is the hodograph when we use the inertial frame in which the mean velocity

vanishes. Because the map t 7→ vα(t)−w is piecewise constant, Hα is actually defined as the polygonal

chain passing through the consecutive values of vα −w. Each Hα has a length ℓ(Hα). It sweeps also

an area A(Hα) about the origin. Our estimate can be recast as

(7) ∑
α

ℓ(Hα)≤ cnN2v, ∑
α

A(Hα)≤ cnN2vv̄.
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In particular ℓ(Hα) and A(Hα) are finite for every α. The length of a typical hodograph is an O(Nv),
and the area sweapt is an O(Nvv̄). This gives us an information about how much the particles paths

can become random as N →+∞.

Comments.

• These estimates are independent of the radius a of the particles. This was predictible, since a

motion of particles of size a yields a similar motion with particle size a′ by a change of scale.

The number of collisions remains the same.

• The estimates are also independent of the space dimension, apart for the constants cn.

• In a previous version of this paper, we presented the weaker estimate

∑
kinks

v̄2 |v′− v|2 + |v∧ v′|2√
(v̄2 + |v|2)(v̄2 + |v′|2)

≤ cnN2v̄2.

The improvement in (5) relies upon an explicit calculation of determinantal masses (see Section

4.2), which replaces a coarse lower bound.

• The quantity |v∧ v′| can be rewritten |v| · |v′|sinθ where θ is the angle by which the trajectory

is deviated.

• Inequality (7.1) is sharp in the sense that there exists an initial configuration for which v = 1

and ∑α ℓ(Hα) = N2. Just consider N = 2p particles along a line, with initial velocities ±1, p

particles moving to the left and the other p to the right.

• Since ℓ(Hα) is finite, every particle Pα admits limit velocities vα± as t →±∞, and we have the

estimate

(8)
N

∑
α=1

|vα±− vα(0)| ≤ cnN2v.

Contrary to (7.1), it is unlikely that (8) be sharp.

Open questions. 1) A more natural context arises when the spheres evolve in a bounded domain

Ω with impermeable wall. As far as we know, the finiteness of the set of collisions on finite time

intervals is still an open question. At least, it is known that a single particle can bounce infinitely

many times at the boundary ∂Ω in finite time. A natural question is therefore to estimate the number

and strengths of the collisions in a given compact subdomain K. The best that we could expect is that

1

|J| ∑
inJ×K

|v′− v|
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be uniformly bounded in terms of dist(K,∂Ω), N and v̄, when the length of the time interval J is larger

than the characteristic time diamΩ/v̄. So far, we did not succeed to adapt our method, or to establish

such a bound. The analogous question arises for a space-periodic flow and remains open as well. 2)

(Courtesy of L. Saint-Raymond) The construction of the mass-momentum tensor (Section 2) depends

heavily on our assumption that the particles are spheres. What can be said of the dynamics of more

general solids ? One might consider identical rigid convex bodies.

Plan of the paper. The central object of this paper is the mass-momentum tensor associated with

the motion. Its construction, done in Section 2, is more involved than that for flows obeying the Euler

or the Boltzmann equations (see [10]). Nevertheless the idea is the same, the entries representing the

distribution of mass, momentum and stress. The tensor is a positive semi-definite symmetric matrix of

size 1+n, whose entries are bounded measures supported by a graph. The conservation of mass and

momentum is expressed by the row-wise identity DivT = 0. One striking feature in this construction

is the introduction of massless virtual particles (collitons) whose role is to carry the interchange of

momentum between colliding spheres. The short Section 3 recalls the principles of Compensated

Integrability for divergence-controlled positive tensors, as developped in our former papers [10, 11].

Section 4 is an improvement of the theory when such tensors are supported by graphs ; this is where

we introduce the concept of determinantal mass at the nodes. With this tool in hands, the proof of

Theorem 1.1 becomes rather short and is carried out in Section 5. We apply the extended version

of Compensated Integrability to a combination of the mass-momentum tensor and an appropriate

parametrized complement.

Acknowledgement. I am indebted to Laure Saint-Raymond and Reinhard Illner for valuable dis-

cussions and their help in gathering the relevant literature. Étienne Ghys remarked that my results can

be rephrased in terms of hodographs.

2 The mass-momentum tensor

From now on, we denote d = 1+n the time-space dimension. If J is a line or a segment, we denote

δJ the one-dimensional Lebesgue measure along J. We recall that for a distribution f , positive homo-

geneity of a given degree κ can be defined either by duality, or by the Euler identity (x ·∇) f = κ f .

The Lebesgue measure over a k-dimensional linear subspace of Rd is homogeneous of degree k−d ;

for instance Ld has degree 0 (obvious), while δ0 has degree −d. If L is a line, or a semi-line from the

origin, its one-dimensional Lebesgue measure δL has degree 1−d.

If S is a d ×d symmetric tensor over an open domain of Rn, whose entries are distributions, the

row-wise divergence DivS is the vector field whose entries are the distributions

d

∑
β=1

∂βSαβ, α = 1, . . . ,d.
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If Q ∈ Rd \{0}, and η = Q
|Q| , then for every line L = x̄+Rη, we form the symmetric tensor

SQ,L := Q⊗ηδL.

In other words

〈Sab,φ〉= Qaηb

∫
R

φ(x̄+ sη)ds, ∀φ ∈CK(R
1+n),

where x̄ is an arbitrary point on the line L. When the context makes it clear, we write SQ instead.

Lemma 2.1 One has

DivSQ,L = 0.

Proof

If φ is a test function, then

〈DivSQ,L,φ〉=−〈SQ,L,∇φ〉=−Q

∫
R

η ·∇φ(x̄+ sη)ds =−Q

∫
R

d

ds
φ(x̄+ sη)ds = 0.

2.1 Single particle

We begin by considering a single particle P of unit mass, whose constant velocity is v ∈ Rn. The

trajectory t 7→ (t,y(t)) of the center of mass in the physical space R1+n is a line L, whose direction is

ξ =
V

|V | , where V :=

(
1

v

)
.

We define the mass-momentum tensor of P to be SV . According to Lemma 2.1, it is divergence-free.

2.2 Multi-line configuration

When L is replaced by a semi-infinite line L+ = x̄+R+η, the tensor

SQ+ := Q⊗ηδL+

is no longer divergence-free. The calculation above yields

(9) 〈DivSQ+,φ〉= φ(x̄)Q,

which is recast in distributional terms as

DivSQ+ = Qδx̄ .
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Now, if finitely many vectors Q1,Q2, . . . are given, together with a point x̄ ∈ Rd , we may form the

converging semi-lines L+
j = x̄+R+Q j and define a symmetric tensor

Smulti := ∑
j

SQ j+.

Then (9) tells us that Smulti is divergence-free whenever

(10) ∑
j

Q j = 0.

Application to 1-D dynamics. When n = 1, we may simplify the hard sphere model by setting

a = 0. At a binary collision, the particles meet at some point x̄ ∈ R1+1, with incoming velocities v,w
and outgoing ones v′,w′. Let us choose

(11) V1 =−
(

1

v

)
, V2 =−

(
1

w

)
, V3 =

(
1

v′

)
, V4 =

(
1

w′

)
.

Then the positive semi-definite tensor

T := SV1++SV2++SV3++SV4+

associated with this pair of particles is divergence-free ; the compatibility condition (10) is ensured

by the conservation of mass and momentum through the collision. The support of T is the union of

the trajectories.

2.3 Binary collisions (n ≥ 2)

When n ≥ 2 instead, the radius a must be positive, in order that collisions take place.

Let two particles Pi and Pj collide at some time t∗. The trajectory of Pi displays a kink at a point

x̄i = (t∗, ȳi), and that of Pj does at x̄ j = (t∗, ȳ j) at the same instant t∗. We have |ȳ j − ȳi| = 2a. Let us

define V1, . . . ,V4 as in (11). Locally, the trajectories are made of segments of the semi-lines

L+
1 = x̄i +R+V1, L+

2 = x̄ j +R+V2, L+
3 = x̄i +R+V3, L+

4 = x̄ j +R+V4.

Because the lines do not meet at a single point, the tensor S = SV1+ + SV2+ + SV3+ + SV4+ is not

divergence-free. We have instead

DivS = (V1 +V3)δxi
+(V2 +V4)δx j

= (V1 +V3)(δxi
−δx j

).

In order to recover a divergence-free tensor, we introduce the vector Q

Q =

(
0

q

)
, q = v′− v = w−w′.
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Because of (3), the segment C = [x̄i, x̄ j] has direction Q. In the neighbourhood of the collision, we

can define the tensor

T = SV1++SV2++SV3++SV4++SQ,C.

Each of the five terms in the sum above is divergence-free away from either x̄i or x̄ j. At x̄i, DivT is a

sum of three Dirac masses, whose weight is

(12) V1 +V3 −Q =

(−1+1−0

−v+ v′−q

)
= 0,

where the minus sign in front of Q comes from the fact that Q is oriented from x j to xi. A similar

identity holds true at x̄ j, with now a plus sign in front of Q. We conclude that

DivT = 0.

We may interpret the contribution SQ,C = Q⊗ηδC as that of a virtual particle. This particle is

massless, because the first component of Q vanishes. It carries the momentum which is exchanged

instantaneously between Pi and Pj. We suggest the name colliton for this object.

2.4 The complete construction

Assuming again that only binary collisions occur, we consider the union of trajectories of the centers

of the N particles. Each trajectory is a polygonal chain whose kinks occur where and when the particle

suffers a collision. We define the mass-momentum tensor T of the configuration as the sum of the

following contributions:

• For each segment J of a trajectory between two consecutive collisions, the tensor

SV,J =V ⊗ξδJ , V =

(
1

v

)
, ξ =

V

|V | ,

where v is the particle velocity along J.

• For each binary collision, the corresponding colliton, as described in the previous paragraph.

The mass-momentum tensor T is a divergence-free symmetric positive semi-definite tensor. We

point out that its support is a graph, a one-dimensional object in R1+n. Thus T vanishes almost

everywhere in the Lebesgue sense. The support can be equiped with the positive measure Tr T , with

respect to which T is rank-1 almost everywhere.

Finiteness. Because the particles are finitely many, and the collisions are finitely many in every

band Hτ = (0,τ)×Rn by assumption, the restriction of the entries of T to Hτ are finite measures.

This property is an essential hypothesis in Compensated Integrability (Theorem 3.1 below). Remark

however that we do not have a practical bound of the total mass of T in Hτ, because we do not control

efficiently the number and the strength of the collitons.
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3 Compensated integrability

We shall make use of our recent theory of Compensated Integrability for divergence-controlled posi-

tive symmetric tensors, for which we refer to [10, 11]. The appropriate version is given in the theorem

below. Let U ⊂Rd be an open set. Let S be a distribution over U that takes values in the cone Sym+
d .

By positiveness, the entries Sab are locally finite measures. We say that S is divergence-controlled

if these entries, as well as the coordinates of DivS, are finite measures. We recall that a divergence-

controlled tensor admits a normal trace S~ν along the boundary ∂U , which a priori belongs to the dual

space of Lip(∂U).
We denote ‖µ‖ for the total mass of a (vector-valued) bounded measure µ,

‖µ‖= 〈|µ|,1〉.

This notation is used below in two distinct contexts, whether µ is a measure over a (1+n)-dimensional

slab H = (t−, t+)×Rn, or a measure over Rn.

Theorem 3.1 Let H = (t−, t+)×Rn be a slab in R×Rn, and S be symmetric positive semi-definite

tensor defined over H. We assume that S is divergence-controlled1 in H. Finally we assume that the

normal traces S~et at the initial and final times t = t± are themselves bounded measures.

Then the measure (detS)
1

n+1 actually belongs to L1+ 1
n (H) and we have

(13)

∫
H
(detS)

1
n dydt ≤ cn (‖S~et(t−)‖+‖S~et(t+)‖+‖DivS‖)1+ 1

n ,

where cn is a finite constant independent of S and H.

Remarks.

• The additional assumption that the normal traces are bounded measures is equivalent to saying

that the extension S̃ by 01+n away from H enjoys the property that Div S̃ is a bounded measure.

We then have the formula

Div S̃ = D̃ivS−S~et(t−)⊗δt=t− +S~et(t+)⊗δt=t+ ,

where the first term in the right-hand side is again the extension by zero of DivS away from H.

• This theorem is useless when S is rank-1 almost everywhere, because then (detS)
1
d ≡ 0 and the

estimate (13) is trivial. The goal of the next section is to improve the statement when the tensor

is supported by a graph.

1Mind that DivS involves time and space derivatives.
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4 Tensors supported by a graph

Let G be a non-oriented graph included in H, with straight edges. Let S be a tensor of the form

(14) S = ∑
J

aJηJ ⊗ηJδJ,

where the sum runs over the edges. The unit vector ±ηJ is the direction of J, and aJ > 0 is a weight

on the edge. We already know that

DivS = ∑
w

m(w)δw

where the sum runs over the vertices and the weight is given by

m(w) = ∑
J∼w

aJηJ.

This sum runs over the edges around the vertex w, with ηJ oriented outward.

The tensor S is positive semi-definite, its entries being locally finite measures. The divergence is

a finite measure too, as well as the normal traces at t = t±. For instance

S~et(t−) =
′

∑aJηJδxJ−

where the sum runs over the set of edges that meet the hyperplane t = t−, and (t−,xJ−) is the inter-

section of this space with J.

When applying Theorem 3.1, we have therefore a good control of the right-hand side. But as

mentionned above, the estimate is useless because the left-hand side vanishes identically, due to

(detS)
1
d ≡ 0. We shall see below that something can be gained at those vertices where m(w) = 0 (S is

locally divergence-free), provided that the set of directions {ηJ : J ∼ w} span Rd .

4.1 Minkowski potentials

To begin with, we recall that if U ⊂ Rd is a convex open subset and θ ∈W 2,d−1(U) is given, then the

cofactor matrix Λθ := D̂2θ of the Hessian is symmetric, integrable and divergence-free. If in addition

θ is convex, then this tensor is positive semi-definite. Because of the formula

det R̂ = (detR)d−1

for d ×d matrices, the expression ∫
U
(detΛθ)

1
d−1 dx

which is at stake in Compensated Integrability equals

∫
U

detD2θdx = vold(∇θ(U)).
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The Sobolev regularity of the potential can actually be lowered, and one shows that every convex

θ yields a non-negative divergence-free tensor Λθ. Of special interest is the case where θ is posi-

tively homogeneous of degree 1 (for instance, θ might be a norm) ; see [11]. Then Λθ is positively

homogeneous of degree 1−d,

Λθ = µθ

(
x

|x|

)
x⊗ x

|x|d+1
,

where µθ is some positive finite measure over the unit sphere Sd−1. This measure satisfies the relation
∫

Sd−1

eµθ(e) = 0.

When θ ∈W
2,d−1
loc , µθ is just an integrable function.

Conversely, if µ is a positive measure over Sd−1, one may form the positive symmetric tensor

(15) Λ = µ

(
x

|x|

)
x⊗ x

|x|d+1
.

In other words, for every test function φ ∈ CK(R
d)), we have

〈Λab,φ〉=
∫ ∞

0
dr

∫
Sd−1

ωaωbφ(rω)µ(ω).

The tensor Λ turns out to be divergence-free if and only if

(16)

∫
Sd−1

eµ(e) = 0.

The problem of whether there exists a convex potential θ, positively homogeneous of degree 1, such

that Λ = Λθ received a positive answer, given by Pogorelov [9]. The solution exists and is unique, up

to the addition of a linear form. When the support of µ spans Rd , this problem is equivalent to that

of Minkowski, which asks for a convex body whose Gaussian curvature (here µ) is prescribed as a

function of the unit normal. For this reason, we call θ the Minkowski potential of Λ (or of µ).

The special case where µ is a finite sum of Dirac masses is precisely that solved by Minkowski

himself [8] ; then the body is a convex polytope. We shall use only this case below.

4.2 Determinantal mass at a vertex

Definition 4.1 Let θ : Rd →R be a convex function, positively homogeneous of degree one. Then the

determinantal mass of Λθ at the origin is the volume of the convex body enclosed by the boundary

∇θ(Sd−1). It is denoted Dm(Λθ;0).
If a divergence-controlled positive semi-definite tensor S coincides with Λθ in a neighbourhood

of the origin, we define again Dm(S;0) := Dm(Λθ;0). Finally, using translations, we define the

determinantal mass Dm(S;x∗) of a tensor S at an arbitrary point x∗ ∈ Rd , provided S coincides

locally with Λθ(·− x∗).

11



The definition above applies in particular to the following situation. Let S be a divergence-

controlled positive semi-definite symmetric tensor over a band H, and suppose that in a neighbour-

hood U of some point x∗, it is of the form (14) for finitely many edges attached to the vertex x∗.

Assume also that S is divergence-free in this neighbourhood, that is m(x∗) = 0.

Up to a translation, we may assume x∗ = 0. Then S is locally homogeneous of degree 1−d, and

the equation m(0) = 0 just says that S fulfills condition (16). By Pogorelov’s theorem, it can therefore

be parametrized locally as S = Λθ for some convex function, positively homogeneous of degree 1. In

particular θ is not smooth at the origin.

We use the determinantal mass as follows. Let us smooth out θ in a ball B such that 2B ⊂ U .

The resulting convex potential ξ is C∞ in B and coincides with θ in the corona 2B\B. The associated

tensor Λξ is C∞ in B and coincides with Λθ in 2B \B. Thus we may form the divergence-controlled

tensor S̃ such that S̃ = S in H \B and S̃ = Λξ in 2B. We have Div S̃ = DivS because on the one hand

S̃ = S away from B, and on the other hand both of them vanish in 2B. Besides, the normal traces at

t = t± coincide. When applying (13) to S̃, the right-hand side is therefore unchanged. However, the

left-hand side gains the contribution

∫
B
(detΛξ)

1
d−1 dydt =

∫
B

detD2ξdydt = vol(∇ξ(B)).

Because ∇ξ ≡ ∇θ over ∂B, the latter quantity is precisely the determinantal mass of S at the vertex.

Applying Estimate (13) to S̃, we obtain

∫
H
(detS)

1
n dydt +Dm(S;x∗) =

∫
H
(det S̃)

1
n dydt

≤ cn

(
‖S̃~et(t−)‖+‖S̃~et(t+)‖+‖Div S̃‖

)1+ 1
n

= cn (‖S~et(t−)‖+‖S~et(t+)‖+‖DivS‖)1+ 1
n .

More generally, applying the construction described above at every vertex where S is graph-like

and divergence-free, we obtain the following improvement of Theorem 3.1.

Theorem 4.1 Let H = (t−, t+)×Rn be a slab in R×Rn, and S be a symmetric, positive semi-definite

tensor defined over H. We assume that S is divergence-controlled and that the normal traces S~et at

the initial and final times t = t± are bounded measures too.

Then we have

(17)

∫
H
(detS)

1
n dydt +∑Dm(S;x∗)≤ cn (‖S~et(t−)‖+‖S~et(t+)‖+‖DivS‖)1+ 1

n ,

where the summation extends over the vertices x∗ ∈ H about which S is of the form (14) and is

divergence-free.

Remarks.
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• The calculation above suggests to redefine (detS)
1

d−1 as the sum of an absolutely continuous

part, the one at stake in Theorem 3.1, and a singular one, made of Dirac masses Dm(S;x∗)δx∗

at every point x∗ where S is graph-like and divergence-free.

• The map S 7→ Dm(S;x∗) is homogeneous of degree d
d−1

, invariant under the action of the

orthogonal group: if R is a rotation and S is given by (14), then Dm(S;x∗) = Dm(SR;x∗), where

SR is defined by rotating each of the ηJ’s and keeping x∗ and aJ unchanged.

• There is nothing special in the choice of a slab. Theorem 4.1 has a version in an arbitrary

bounded open domain Ω ⊂ Rd .

4.3 Calculations of determinantal masses

When Λ is given as in (15), we do not know of a closed form of Dm(Λ;0) in terms of the measure

µ. We shall use only simple cases where the Minkowski potential and the determinantal mass can be

calculated explicitly. We present below two useful situations.

4.3.1 The planar case

When d = 2 (that is n = 1), our closed formula uses the linearity of the operator θ 7→ D̂2θ.

Proposition 4.1 (d = 2) Let µ be a positive measure over the unit circle S1 satisfying the constraint

(16). Let Λ be the divergence-free tensor defined over R2 by (15). Then the Minkowski potential of Λ
is given by

θ(x) = |x| p

(
x

|x|

)
,

where p is a 2π-periodic solution of p+ p′′ = µ (the derivatives are taken with respect to angle).

The determinantal mass of Λ at the origin is given by

(18) Dm(Λ;0) =
1

8

∫ 2π

0

∫ 2π

0
µ(s1)µ(s2)sin |s2− s1|ds1ds2.

We point out that (16), which writes here

∫ 2π

0
µ(s)sinsds =

∫ 2π

0
µ(s)cossds = 0,

is precisely the solvability condition of p+ p′′ = µ in the realm of periodic functions.

We shall use the following consequence of Proposition 4.1.
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Corollary 4.1 Let V,W,Z ∈ R2 be given, such that V +W + Z = 0. For some x∗ ∈ R2, and three

converging lines of directions V,W and Z, we consider the divergence-free tensor

Λ := SV +SW +SZ.

We have

(19) Dm(Λ;x∗) =
1

4
|det(V,W)|.

Mind that this expression is symmetric in V,W,Z. For instance,

det(V,Z) = det(V,−V −W ) =−det(V,W).

Actually, if we label V,W,Z in the trigonometric order, with arguments 0 ≤ α < β < γ < 2π, the

measure µ is given by

µ = |V |δα + |W |δβ + |Z|δγ,

and the formula (18) gives

Dm(Λ;x∗) =
1

4
(|V | · |W | sin(β−α)+ |W | · |Z| sin(γ−β)+ |Z| · |V | sin(γ−α))

=
1

4
(|det(V,W )|+ |det(W,Z)|− |det(Z,V )|) = 1

4
|det(V,W)|,

where we have used β−α, γ−β ∈ (0,π) and γ−α ∈ (π,2π).

Proof (of Proposition 4.1.)

Let θ be the Minkowski potential of Λ and p be its restriction to the unit circle. An elementary

calculation yields

Λ = D̂2θ =

(
θ,22 −θ,12

−θ,12 θ,11

)
= (p+ p′′)

x⊗ x

|x|3 ,

whence the differential equation p+ p′′ = µ. As mentionned above, there exists a 2π-periodic solution

p because of the constraints (16) which express the divergence-freeness of Λ. The solution is unique

up to the addition of asin+bcos ; in terms of θ, this means uniqueness up to the addition of a linear

form. The image of ∇θ is the curve

φ 7−→
(

p(φ)cosφ− p′(φ)sinφ

p(φ)sinφ+ p′(φ)cosφ

)
.

The mass Dm(Λ;0), being the area enclosed by this curve, equals

Dm(Λ;0) =
1

2

∫ 2π

0
θ,1dθ,2 =

1

2

∫ 2π

0
(pcosφ− p′ sinφ)(p+ p′′)cosφdφ

=
1

2

∫ 2π

0
(pcosφ− p′ sinφ)µcosφdφ.

14



Let us define

λ(φ) :=

∫ φ

0
µ(s)cossds,

which is periodic because of (16). Then

Dm(Λ;0) =
1

2

∫ 2π

0
(pcosφ− p′ sinφ)λ′dφ =

1

2

∫ 2π

0
(p+ p′′)λsinφdφ =

1

2

∫ 2π

0
µλsinφdφ

=
1

2

∫ 2π

0
dφ

∫ φ

0
µ(φ)µ(s)sinφcossds.

Using again (16), this gives

Dm(Λ;0) =−1

2

∫ 2π

0
dφ

∫ 2π

φ
µ(φ)µ(s)sinφcossds.

With Fubini, this yields

Dm(Λ;0) =−1

2

∫ 2π

0

∫ s

0
µ(φ)µ(s)sinφcossdφds

relabel.
== −1

2

∫ 2π

0

∫ φ

0
µ(φ)µ(s)sinscosφdsdφ.

Combining the formulæ above, we obtain

Dm(Λ;0) =
1

4

∫ 2π

0
dφ

∫ φ

0
µ(φ)µ(s)sin(φ− s)ds,

which by symmetrization, yields (18).

4.3.2 Direct sums

We continue our study of tensors of the form (14), say centered at the origin. We suppose here that

the set of vectors ηJ can be split into two subsets, orthogonal to each other: Rd = E−⊕⊥ E+, and

each ηJ is either in E− or in E+ = E⊥
− . Up to a rotation, we may always assume that E− = Rp ×{0}

and E+ = {0}×Rq with p+q = d. Our tensor writes therefore blockwise

(20) S =

(
S−⊗δx+=0 0

0 δx−=0 ⊗S+

)
.

The tensors S± are defined over open subsets of E± and inherit the divergence-freeness. They are

actually of a form similar to (14), though in either Rp or Rq instead of Rd . Each of both admits a

Minkowski potential:

S− = D̂2
−θ−, S+ = D̂2

+θ+

where θ± is a convex function of x±, positively homogeneous of degree 1. The derivative D− (resp.

D+) acts over the coordinates in E− (resp. E+).
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Lemma 4.1 We assume Dm(S−,0),Dm(S+,0) > 0. The Minkowski potential of the divergence-free

tensor S given in (20) is

θ(x−,x+) = a−θ−(x−)+a+θ+(x+)

where

(21) a− = (Dm(S−,0))
− q

d−1 (Dm(S+,0))
q−1
d−1 , a+ = (Dm(S−,0))

p−1
d−1 (Dm(S+,0))

− p
d−1 .

Corollary 4.2 The determinantal masses of S,S− and S+ satisfy the relation

(22) Dm(S,0) = (Dm(S−,0))
p−1
d−1 (Dm(S+,0))

q−1
d−1 .

Proof

We look for a potential θ given as a linear combination of θ− and θ+, where we have to identify

the coefficients a±.

Because the calculation of determinantal masses requires an approximation procedure (to smooth

out the vertex singularity of the potential), we begin by considering smooth convex functions ξ± over

Rp and Rq, instead of θ±. We have easily

̂a−ξ−+a+ξ+ =

(
a

p−1
− a

q
+(detD2

+ξ+)D̂
2
−ξ− 0

0 a
p
−a

q−1
+ (detD2

−ξ−)D̂2
+ξ+

)
.

When ξ− converges uniformly to θ−, detD2
−ξ− tends towards the mesure Dm(S−;0)δx−=0 while

D̂2
−ξ− tends to S−. Passing to the limit, we infer

̂a−θ−+a+θ+ =

(
a

p−1
− a

q
+Dm(S+;0)S−⊗δx+=0 0

0 a
p
−a

q−1
+ Dm(S−;0)δx−=0 ⊗S+

)
.

We recover the tensor S by chosing the solution (a−,a+) of the system

a
p−1
− a

q
+Dm(S+;0) = 1, a

p
−a

q−1
+ Dm(S−;0) = 1.

This gives us the formulæ (21).

Finally, the body enclosed by the image of ∇(a−θ−+a+θ+) is the Cartesian product of the bodies

enclosed by the images of a±∇±θ± respectively. In terms of volumes, we have therefore

Dm(S;0) = a
p
−a

q
+Dm(S−,0) ·Dm(S+;0),

which gives the relation (22).
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Remarks.

• Formula (22) is a rather natural generalization of the identity detM = detM−× detM+ for a

block-diagonal matrix.

• The procedure above can be generalized to the situation where Rd is split into an arbitrary

number of orthogonal subspaces whose union contains the ηJ’s.

• The orthogonality between E− and E+ is not an essential ingredient, because it is always pos-

sible to make a linear change of variables which maps isometrically E− over Rp ×{0} and E+

over {0}×Rd , and to modify T accordingly (see [10]). The general formula (22) will however

contain a factor reflecting the angle between E− and E+.

The simplest example of a direct sum is given by the potential

θabs(x) =
d

∑
1

|x j|=: ‖x‖1.

The corresponding tensor is diagonal

Λabs = 2
d

∑
1

~e j ⊗~e j δR~e j
= 2




δx̂1=0

. . .

δx̂d=0


 ,

where as usual x̂ j = (x, . . . ,x j−1,x j+1, . . . ,xd) ∈ Rd−1. We have immediately

(23) Dm(Λabs;0) = 2d,

which suggests to adopt the convention that

(24) (δx̂1=0 · · ·δx̂d=0)
1

d−1 = δ0,

This extends the well-known formula, when d = 2, that δx2=0δx1=0 = δ0.

5 Proof of Theorem 1.1

The physical domain is Rn. We consider the generic case where the collisions form a discrete set and

are only pairwise. We assume without loss of generality that there is no collision at initial time. We

denote T the mass-momentum tensor constructed in Section 2.

To begin with, we choose a time τ > 0 at which there is no collision and we set Hτ = (0,τ)×Rn.
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A complement to the mass-momentum tensor. Let K be a kink of a trajectory, happening at a point

x∗ ∈ Hτ. The incoming/outgoing velocities of the particle under consideration being v,v′ respectively,

with v′ 6= v, we complete the free family

V =

(
1

v

)
, V ′ =

(
1

v′

)

into a basis (V,V ′,z2, . . . ,zn) of R1+n. Here (z2, . . . ,zn) is some orthonormal basis of Span(V,V ′)⊥.

We define the positive semi-definite tensor

SK =
n

∑
j=2

z j ⊗ z jδσ j
,

where σ j := (x∗− εKz j,x
∗+ εKz j) is a segment of direction z j. Mind that the vectors z j do depend

on the kink, even if it is not explicit in our notation. The lengths εK > 0 are small enough that the

corresponding segments are contained in Hτ, do not overlap and do not intersect the support of T

away from K. Because the number of collisions is finite in Hτ, the entries of S are finite measures.

We form an auxiliary tensor

T ′ = T +S, S := ∑
kinks in Hτ

bKSK,

where the positive numbers bK will be chosen later. It is positive semi-definite, supported by a graph,

yet it is not divergence-free, since DivT ′ = ∑bKDivSK 6= 0. Because DivSK is a sum of Dirac masses

at the end points x∗± εz j, we have instead

‖DivT ′‖= 2(n−1) ∑
kinks in Hτ

bK.

At initial and final time, T ′ coincides with T , and therefore we have

‖T ′
0•(t = 0)‖= ∑

√
1+ |v(0)|2

where the sum runs over the particles. We infer

‖T ′
0•(t = 0)‖ ≤ ∑

(
1+

|v(0)|2
2

)
≤ M+E = N

(
1+

1

2
v̄2

)
.

Likewise we have ‖T ′
0•(t = τ)‖ ≤ M+E. Since T ′ is a finite measure, we are therefore in position to

apply Compensated Integrability to T ′ in Hτ.

The left-hand side of (17) involves the integral of (detT ′)
1
n , which vanishes identically, and the

determinantal masses at the kinks of the trajectories. A kink K at a point x∗ involve the three vectors
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V,V ′ and Q =V −V ′. A combination of Corollaries 4.1, 4.2 and of formula (23) yields the following

calculation (here we have p = 2 and q = n−1):

Dm(T ′;x∗) = 2n−3b
n−1

n

K |V ∧V ′| 1
n

Writing (17) for the tensor T ′, we obtain

∑
kinks in Hτ

b
n−1

n

K |V ∧V ′| 1
n ≤ cn


2(M+E)+2(n−1) ∑

kinks in Hτ

bK




1+ 1
n

for another universal constant, still denoted cn.

We now introduce auxiliary parameters λ > 0 and βK > 0, and we set bK = λβ
n

n−1

K . We infer

∑
kinks in Hτ

βK|V ∧V ′| 1
n ≤ cnλ

1
n−1


M+E +λ(n−1) ∑

kinks in Hτ

β
n

n−1

K




1+ 1
n

.

Choosing

λ := (M+E)


 ∑

kinks in Hτ

β
n

n−1

K




−1

,

we infer

∑
kinks in Hτ

βK|V ∧V ′| 1
n ≤ cn(M+E)

2
n‖~β‖

ℓ
n

n−1
.

The above inequality is valid for every choice of positive parameters βK . Since the left-hand side is a

scalar product 〈~β,~D〉, and the dual space of ℓ
n

n−1 is ℓn, it tells us that

‖~D‖ℓn ≤ cn(M+E)
2
n .

In other words, we have

∑
kinks in Hτ

|V ∧V ′| ≤ cn(M+E)2.

Since

|V ∧V ′|=
√
|v′− v|2 + |v∧ v′|2 ,

we obtain our first estimate

∑
kinks in Hτ

√
|v′− v|2 + |v∧ v′|2 ≤ cn(M+E)2.

Remarking that the right-hand side does not depend upon the time length τ, we actually have

(25) ∑
kinks in H∞

√
|v′− v|2 + |v∧ v′|2 ≤ cn(M+E)2,

where now the sum extends over all the history.
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Using the scaling. Equation (25) is not acceptable from a physical point of view. It lacks homogene-

ity: One should not add a mass and an energy (right-hand side) or two different powers of velocities

(left-hand side). To overcome this flaw, we notice that from a given flow, one can construct a one-

parameter family of flows, by changing the time scale. This trick was used already in the context of

the Euler equations of a compressible fluid, see [10].

We consider particles of same radius a. If µ > 0 is given, a trajectory t 7→ X(t) in the original flow

F1 gives rise to a trajectory t 7→ Xµ(t) := X(µt) in the new flow Fµ. The velocity is vµ(t) = µv(µt).
The flow parameters become

Mµ = M, Eµ = µ2E, v̄µ = µv̄.

Applying (25) to Fµ results in a parametrized inequality

∑
kinks in H∞

√
µ2|v′− v|2 +µ4|v∧ v′|2 ≤ cn(M+µ2E)2, ∀µ > 0.

Choosing µ2 = M/2E = v̄−2, we obtain

∑
kinks in H∞

√
v̄2|v′− v|2 + |v∧ v′|2 ≤ cnM2v̄ 2.

This is equivalent to (5) because of

a+b

2
≤
√

a2 +b2 ≤ a+b

for positive numbers. This ends the proof of Theorem 1.1.
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