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Abstract

In 1973 B.Josephson received Nobel Prize for discovering a new
fundamental effect concerning a Josephson junction, – a system of two
superconductors separated by a very narrow dielectric: there could ex-
ist a supercurrent tunneling through this junction. We will discuss the
model of the overdamped Josephson junction, which is given by a fam-
ily of first order non-linear ordinary differential equations on two-torus
depending on three parameters: a fixed parameter ω (the frequency); a
pair of variable parameters (B,A) that are called respectively the ab-
scissa, and the ordinate. It is important to study the rotation number
of the system as a function ρ = ρ(B,A) and to describe the phase-lock
areas: its level sets Lr = {ρ = r} with non-empty interiors. They
were studied by V.M.Buchstaber, O.V.Karpov, S.I.Tertychnyi, who
observed in 2010 that the phase-lock areas exist only for integer values
of the rotation number. It is known that each phase-lock area is a gar-
land of infinitely many bounded domains going to infinity in the verti-
cal direction; each two subsequent domains are separated by one point,
which is called constriction (provided that it does not lie in the abscissa
axis). Those points of intersection of the boundary ∂Lr of the phase-
lock area Lr with the line Λr = {B = rω} (which is called its axis)
that are not constrictions are called simple intersections. It is known
that our family of dynamical systems is related to appropriate fam-
ily of double confluent Heun equations with the same parameters via
Buchtaber–Tertychnyi construction. Simple intersections correspond
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to some of those parameter values for which the corresponding ”conju-
gate” double confluent Heun equation has a polynomial solution (fol-
lows from results of a joint paper of V.M.Buchstaber and S.I.Tertychnyi
and a joint paper of V.M.Buchstaber and the author). There is a con-
jecture stating that all the constrictions of every phase-lock area Lr

lie in its axis Λr. This conjecture was studied and partially proved
in a joint paper of the author with V.A.Kleptsyn, D.A.Filimonov and
I.V.Schurov. Another conjecture states that for any two subsequent
constrictions in Lr with positive ordinates the interval between them
also lies in Lr. In this paper we present new results partially confirm-
ing both conjectures. The main result states that the phase-lock area
Lr contains the infinite interval of the axis Λr issued upwards from the
point of intersection ∂Lr∩Λr with the biggest possible ordinate that is
not a constriction. The proof is done by studying the complexification
of the system under question, which is the projectivization of a family
of systems of second order linear equations with two irregular non-
resonant singular points at zero and at infinity. We obtain new results
on the transition matrix between appropriate canonical solution bases
of the linear system; on its behavior as a function of parameters. A
key result, which implies the main result of the paper, states that the
off-diagonal terms of the transition matrix are both non-zero at each
constriction. We reduce the above conjectures on constrictions to the
conjecture on negativity of the ratio of the latter off-diagonal terms at
each constriction.
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1 Introduction

1.1 Phase-lock areas in Josephson effect: history, main con-
jectures and main results

We study the family

dφ

dt
= − sinφ+B +A cosωt, ω > 0, B ≥ 0. (1.1)

of nonlinear equations, which arises in several models in physics, mechanics
and geometry. Our main motivation is that it describes the overdamped
model of the Josephson junction (RSJ - model) in superconductivity, see
[24, 33, 28, 4, 29]. It arises in planimeters, see [18, 19]. Here ω is a fixed
constant, and (B,A) are the parameters. Set

τ = ωt, l =
B

ω
, µ =

A

2ω
.

The variable change t 7→ τ transforms (1.1) to a non-autonomous ordinary
differential equation on the two-torus T2 = S1×S1 with coordinates (φ, τ) ∈
R2/2πZ2:

φ̇ =
dφ

dτ
= −sinφ

ω
+ l + 2µ cos τ. (1.2)

The graphs of its solutions are the orbits of the vector field{
φ̇ = − sinφ

ω + l + 2µ cos τ

τ̇ = 1
(1.3)
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on T2. The rotation number of its flow, see [1, p. 104], is a function ρ(B,A)
of parameters1:

ρ(B,A;ω) = lim
k→+∞

φ(2πk)

2πk
.

Here φ(τ) is a general R-valued solution of the first equation in (1.3) whose
parameter is the initial condition for τ = 0. Recall that the rotation number
is independent on the choice of the initial condition, see [1, p.104]. The
parameter B is called abscissa, and A is called the ordinate. Recall the
following well-known definition.

Definition 1.1 (cf. [20, definition 1.1]) The r-th phase-lock area is the level
set

Lr = {ρ(B,A) = r} ⊂ R2,

provided that it has a non-empty interior.

Remark 1.2 : phase-lock areas and Arnold tongues. H.Poincaré
introduced the rotation number of a circle diffeomorphism. The rotation
number of the flow of the field (1.3) on T2 equals (modulo Z) the rota-
tion number of the circle diffeomorphism given by its time 2π flow mapping
restricted to the cross-section S1

φ×{0}. In Arnold family of circle diffeomor-

phisms x 7→ x+ b+ a sinx, x ∈ S1 = R/2πZ the behavior of its phase-lock
areas for small a demonstrates the tongues effect discovered by V.I. Arnold
[1, p. 110]. That is why the phase-lock areas became “Arnold tongues”, see
[20, definition 1.1].

Recall that the rotation number has physical meaning of the mean volt-
age over a long time interval. The phase-lock areas of the family (1.2) were
studied by V.M.Buchstaber, O.V.Karpov, S.I.Tertychnyi et al, see [6]–[16],
[26], [20] and references therein. It is known that the following statements
hold:

1) Phase-lock areas exist only for integer values of the rotation number
(a “quantization effect” observed in [11] and later also proved in [22, 21]).

2) The boundary of the r-th phase-lock area consists of two analytic
curves, which are the graphs of two functions B = gr,±(A) (see [12]; this
fact was later explained by A.V.Klimenko via symmetry, see [26]).

1There is a misprint, missing 2π in the denominator, in analogous formulas in previous
papers of the author with co-authors: [20, formula (2.2)], [7, the formula after (1.16)].

4



3) The latter functions have Bessel asymptotics{
gr,−(s) = rω − Jr(− s

ω ) +O( ln |s|s )

gr,+(s) = rω + Jr(− s
ω ) +O( ln |s|s )

, as s→∞ (1.4)

(observed and proved on physical level in [30], see also [27, chapter 5], [4,
section 11.1], [10]; proved mathematically in [26]).

4) Each phase-lock area is a garland of infinitely many bounded domains
going to infinity in the vertical direction. In this chain each two subsequent
domains are separated by one point. This follows from the above statement
3). Those of the latter separation points that lie in the horizontal B-axis are
calculated explicitly, and we call them the growth points, see [12, corollary
3]. The other separation points, which lie outside the horizontal B-axis, are
called the constrictions.

5) For every r ∈ Z the r-th phase-lock area is symmetric to the −r-th
one with respect to the vertical A-axis.

6) Every phase-lock area is symmetric with respect to the horizontal
B-axis. See Figures 1–5 below.

Definition 1.3 For every r ∈ Z and ω > 0 we consider the vertical line

Λr = {B = ωr} ⊂ R2
(B,A)

and we will call it the axis of the phase-lock area Lr.

Numerical experiences made by V.M.Buchstaber, S.I.Tertychnyi, V.A.Kleptsyn,
D.A.Filimonov, I.V.Schurov led to the following conjecture, which was stated
and partially investigated in [20], see also [7, section 5].

Conjecture 1.4 ([20, experimental fact A], [7, conjecture 5.17]). The up-
per part L+

r = Lr ∩ {A ≥ 0} of each phase-lock area Lr is a garland of in-
finitely many connected components separated by constrictions Ar,1,Ar,2 . . .
lying in its axis Λr = {B = rω} and ordered by their ordinates A, see the
figures below.

Remark 1.5 Conjecture 1.4 was proved in [20] for ω ≥ 1. It was proved
in the same paper that for every ω > 0 all the constrictions of every phase-
lock area Lr have abscissas B = ωl, l ∈ Z, l ≡ r(mod2), l ∈ [0, r]. It is
known that the zero phase-lock area L0 contains the whole A-axis Λ0, and
all its constrictions lie in Λ0; each point of the intersection ∂L0 ∩ Λ0 is a
constriction. This follows from symmetry of the phase-lock area L0 with
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Figure 1: Phase-lock areas and their constrictions for ω = 2. The abscissa
is B, the ordinate is A. Figure taken from [7, fig. 1a)]

respect to its axis Λ0 and the fact that the interval (−1, 1) of the B-axis is
contained in Int(Lr), see [7, proposition 5.22]. The two above statements
together imply that for r = ±1,±2 all the constrictions of the phase-lock
area Lr lie in its axis Λr = {B = rω}. But it is not known whether the
latter statement holds for every r ∈ Z \ {0}.

Conjecture 1.6 [7, conjecture 5.19] [Ar,j ,Ar,j+1] ⊂ Lr for every r ∈ Z
and j ∈ N.

Conjecture 1.7 (see also [7, conjecture 5.26]) Each phase-lock area Lr with
r ∈ N lies on the right from the axis Λr−1: that is, B|Lr > (l − 1)ω.

The main results of the present paper are Theorems 1.8 and 1.12 stated
below, which are partial results towards confirmation of Conjectures 1.4 and
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Figure 2: Phase-lock areas and their constrictions for ω = 1. The abscissa
is B, the ordinate is A. Figure taken from [7, fig. 1b)]

1.6.

Theorem 1.8 For every ω > 0 and every constriction (B0, A0) there exists
a punctured neighborhood U = U(A0) ⊂ R such that the punctured interval
B0 × (U \ {A0}) ⊂ B0 ×R either lies entirely in the interior of a phase-lock
area (then the constriction is called positive), or lies entirely outside the
union of the phase-lock areas (then the constriction is called negative), see
Fig.6.

To state the second theorem, let us introduce the following definition.

Definition 1.9 A simple intersection is a point of intersection of the bound-
ary ∂Lr with the axis Λr that is not a constriction. The simple intersection
with the maximal ordinate A will be called the higher simple intersection
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Figure 3: Phase-lock areas and their constrictions for ω = 0.7. Figure taken
from [14, p. 331], see also [7, fig. 1c)].

and denoted by Pr. Set

Sr = {ωr} × [A(Pr),+∞) ⊂ Λr :

this is the vertical ray in Λr issued from the point Pr in the direction of
increasing of the coordinate A. See Fig.7.

Conjecture 1.10 For every r ∈ Z\{0} the simple intersection with positive
ordinate is unique.

Remark 1.11 There are no simple intersections for r = 0, since the inter-
section ∂L0 ∩ Λ0 consists only of constrictions, see Remark 1.5. For every
r ∈ Z\{0} the ordinates of the simple intersections in Λr lying in the upper
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Figure 4: Phase-lock areas and their constrictions for ω = 0.5. Figure taken
from [7, fig. 1d)]

half-plane belong to the collection of roots of a known polynomial of degree
|r|. This follows from results of [13, section 3] and [7, theorem 1.15]. This
together with symmetry implies that for every given r ∈ Z\{0} the number
of the corresponding simple intersections is finite.

Theorem 1.12 For every ω > 0 and every r ∈ Z \ {0} the corresponding
simple intersections exist and do not lie in the B-axis; thus Pr and Sr are
well-defined. The ray Sr is contained in the phase-lock area Lr.

Conjecture 1.13 All the constrictions are positive.

Conjecture 1.14 The intersection L+
r ∩ Λr coincides with Sr for every

r ∈ Z \ {0}.
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Figure 5: Phase-lock areas and their constrictions for ω = 0.3. Figure taken
from [7, fig. 1e)]

Remark 1.15 Conjecture 1.14 obviously implies Conjecture 1.10. In Sec-
tion 4 we show that any of Conjectures 1.14, 1.13 implies Conjectures 1.4
and 1.6, and we will discuss the relations between different conjectures in
more details.

Theorem 1.12 will be deduced from Theorem 1.8 and the result of paper
[26]. For the proof of Theorem 1.8 we complexify equation (1.1) and write
it in the new complex variables

Φ = eiφ, z = eiτ = eiωt,

set

l =
B

ω
, µ =

A

2ω
, λ =

(
1

2ω

)2

− µ2. (1.5)
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Figure 6: Positive and (conjecturally non-existing) negative constrictions.
The shaded domains are phase-lock areas

The complexified equation (1.1) becomes the Riccati equation

dΦ

dz
= z−2((lz + µ(z2 + 1))Φ− z

2iω
(Φ2 − 1)). (1.6)

The latter is the projectivization of the following linear equation on a vector
function (u, v), Φ = v

u :{
u′ = z−2(−(lz + µ(1 + z2))u+ z

2iωv)

v′ = 1
2iωzu

: (1.7)

each solution Φ(z) of equation (1.6) is a ratio v
u of components of a solution

of equation (1.7) and vice versa. See [6, sect. 3.2]. The above reduction to
a linear system was obtained in slightly different terms in [9, 14, 18, 22].

After substitution E(z) = eµzv(z) system (1.7) becomes equivalent to
the following special double confluent Heun equation:

z2E′′ + ((l + 1)z + µ(1− z2))E′ + (λ− µ(l + 1)z)E = 0. (1.8)
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Figure 7: The higher simple intersection Pr and the corresponding ray Sr

Equation (1.8) belongs to the well-known class of double confluent Heun
equations, see [32, formula (3.1.15)]. The reduction to equations (1.8) was
obtained by V.M.Buchstaber and S.I.Tertychnyi [13, 14, 34, 35], who studied
equations (1.8) and obtained many important results on their polynomial
and entire solutions and symmetries in loc. cit. and in [15, 16, 17]). The
complete description of equations (1.8) having entire solutions was started
in [14] and finished in [6]. The description of their monodromy eigenvalues
was obtained in the joint paper [7] of V.M.Buchstaber and the author as
an explicit analytic transcendental equation relating one monodromy eigen-
value and the parameters. The following theorem was also proved in [7]. It
concerns the ”conjugate” double confluent Heun equations

z2E′′ + ((−l + 1)z + µ(1− z2))E′ + (λ+ µ(l − 1)z)E = 0 (1.9)

obtained from (1.8) by changing sign at the parameter l.
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Theorem 1.16 [7, theorem 1.15]. Let ω > 0, (B,A) ∈ R2, B,A > 0,
l = B

ω , µ = A
2ω , λ = 1

4ω2−µ2, ρ = ρ(B,A). The ”conjugate” double confluent
Heun equation (1.9) corresponding to the above λ, µ and l has a polynomial
solution, if and only if l, ρ ∈ Z, ρ ≡ l(mod2Z), 0 ≤ ρ ≤ l, the point
(B,A) lies in the boundary of a phase-lock area and is not a constriction. In
other terms, the points (B,A) ∈ R2

+ corresponding to equations (1.9) with
polynomial solutions lie in boundaries of phase-lock areas and are exactly
those their intersection points with the lines {B = mω}, m ≡ ρ(mod2Z),
0 ≤ ρ ≤ m that are not constrictions. (For example, the statement of the
theorem holds for simple intersections.)

System (1.7) is a holomorphic linear differential equation on the Riemann
sphere with two irregular non-resonant singular points of Poincaré rank 1
(pole of order 2) at zero and at infinity. The classical Stokes phenomena
theory [2, 23, 3, 25, 31] yields canonical bases of its solutions at 0 and at ∞
in two appropriate sectors S± containing the punctured closed half-planes
{± Im z ≥ 0}\{0} and not containing the opposite imaginary semiaxes iR∓.
In each sector we have two canonical solution bases: one comes from zero,
and the other one comes from infinity. The classical Stokes matrices at zero
(infinity) compare appropriately normalized sectorial bases at zero (infinity)
on components of the intersection S+∩S−. It is well-known that the Stokes
matrices are triangular and unipotent; their triangular elements c0 and c1
are called the Stokes multipliers. In Subsection 2.2 we show that the Stoker
multipliers ”at zero” are real, whenever l ∈ Z.

The statement of Theorem 1.8 deals with a constriction (B0, A0), set
l = B0

ω ∈ Z, and says that its appropriate punctured neighborhood U in
the line {B = lω} either entirely lies in a phase-lock area, or entirely lies
outside the union of the phase-lock areas. Inclusion into a phase-lock area is
equivalent to the statement that the monodromy operator of system (1.7),
which is unimodular, has trace with modulus no less than 2. The trace
of monodromy under question equals 2 + c0c1, by the classical formula ex-
pressing the monodromy via the formal monodromy (which is trivial, since
l = B0

ω ∈ Z) and the Stokes matrices. To prove Theorem 1.8, we have
to show that the product c0c1 has constant sign on appropriate punctured
neighborhood U . The proof of this statement is based on studying of two
appropriately normalized canonical solution bases and the transition matrix
comparing them: the base on S+ coming from zero, and the base on S− com-
ing from infinity. The idea to study a transition matrix between canonical
bases at zero and at infinity was suggested by V.M.Buchstaber.

We compare appropriate solution bases ”at zero” on S+ and ”at in-
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finity” on S− that are given by two fundamental solution matrices W+(z)
and Ŵ−(z) respectively. On the positive real semiaxis R+ ⊂ S+ ∩ S− the
transition between these bases is defined by a constant matrix Q:

W+(z) = Ŵ−(z)Q.

We show that one can normalize the bases W+ and Ŵ− under question so
that Q be an involution, and we prove a formula relating the coefficients of
the matrix Q and the Stokes multipliers. The key Lemma 2.11 says that the
off-diagonal terms of the transition matrix are both non-zero at (B0, A0).
The latter formula and inequality together will imply that the ratio c1

c0
is a

function analytic and nonvanishing on a neighborhood of the point (B0, A0)
in the line {B = B0}. This will imply constance of sign of their product
c0c1 on the punctured neighborhood.

In Section 4 we state Conjecture 4.3 saying that the ratio of the off-
diagonal elements of the transition matrix Q is negative at each constriction
(B0, A0) with B0 ≥ 0, A0 > 0. We show that Conjecture 4.3 would im-
ply Conjectures 1.4 and 1.6 and discuss further relations between different
conjectures.

In Section 5 we present additional technical results on the coefficients
of the transition matrix Q, which will be used further on. The main result
of Section 5 (Theorem 5.1) states that the upper triangular element of the
matrix Q is purely imaginary, whenever l ∈ Z≥0 and A > 0.

Remark 1.17 Very recently Yulia Bibilo suggested a new approach to
study the model of Josephson effect: to include system (1.7) into a general
family of two-dimensional linear systems with two irregular singularities at
zero and infinity and study isomonodromic conditions in the general family.
Using this method, she have shown that an infinite collection of constrictions
can be described as poles of Bessel solution of Painleve 3 equation with a
special choice of parameters [5].

Convention 1.18 In what follows, whenever the contrary is not specified,
we consider that l = B

ω ≥ 0 and µ = A
2ω > 0: it suffices to treat the case of

non-negative l and positive µ, by symmetry of the portrait of the phase-lock
areas.

14



2 Linearization. Stokes and transition matrices
and their relation to the rotation number

Here we study family (1.7) of linear systems equivalent to equations (1.1).
In Subsection 2.1 we recall what are their formal normal forms, canonical
sectorial solution bases and Stokes matrices and multipliers. In Subsection
2.2 we show that the Stokes multipliers are real. In Subsection 2.3 we re-
call results on symmetries of equation (1.8) and existence of its polynomial
and entire solutions. In Subsection 2.4 we introduce the transition matrix
between appropriate sectorial bases at zero and at infinity and prove a pre-
liminary formula relating its coefficients to the Stokes multipliers.

2.1 Preliminaries: canonical solution bases, Stokes and tran-
sition matrices

All the results presented in this subsection are particular cases of classical
results contained in [2, 23, 3, 25, 31].

Definition 2.1 Two germs at 0 of linear systems of type

ẇ =
A(z)

zk+1
w, w ∈ Cn,

are analytically (formally) equivalent, if there exists a linear variable change
w = H(z)w̃ with H(z) being a holomorphic invertible matrix function (re-
spectively, a formal invertible matrix power series in z) that transforms one
equation to the other.

The germs at zero and at infinity of linear system (1.7) are both formally
equivalent to the germ of the diagonal system{

ũ′ = −z−2(lz + µ(1 + z2))ũ

ṽ′ = 0,
(2.1)

which will be here called the formal normal form. The formal normal form
has the canonical base in its solution space with the diagonal fundamental
matrix

F (z) =

(
z−leµ(

1
z
−z) 0

0 1

)
. (2.2)

In general, the formal equivalence is not analytic: the normalizing power
series diverges. On the other hand, there exist analytic normalizations on

15



appropriate sectors. Namely, let S+, S− be sectors on the z-axis with vertex
at 0 that contain the closed upper (respectively, lower) half-plane punctured
at 0 so that the closure of the sector S± does not contain the opposite
imaginary semiaxis iR∓, see Fig. 8. In addition we consider that the sector
S± is symmetric to S∓ with respect to the real axis. Set

w = (u, v), w̃ = (ũ, ṽ).

There exist and unique invertible matrix functions H±(z) that are holomor-
phic on the sectors S± and C∞ on their closures S± ⊂ C punctured at ∞,
H±(0) = Id, such that the variable change w = H±(z)w̃ transforms system
(1.7) to its formal normal form (2.1) (the Sectorial Normalization Theorem).

 0

S
   +

S
     −

Σ                     Σ
    0                     1

Figure 8: The sectors S± defining the Stokes matrices.

The canonical base ”at zero” of system (1.7) in each sector S± is given
by the fundamental matrix

W±(z) = H±(z)F (z), F (z) =

(
z−leµ(

1
z
−z) 0

0 1

)
. (2.3)

In the definition of the above fundamental matrices we consider that the
holomorphic branch of the fundamental matrix F (z) of the formal normal
form in S− is obtained from that in S+ by counterclockwise analytic exten-
sion. We introduce yet another fundamental matrix W+,1(z) = H+(z)F (z)
of solutions of system (1.7) on S+ where the holomorphic branch of the
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matrix F (z) is obtained from that in S− by counterclockwise analytic ex-
tension. Let Σ0 (Σ1) denote the left (respectively, right) component of the
intersection S+ ∩ S−. Over each component Σj we have two fundamental
matrices, W±(z) over Σ0 and W−(z), W+,1(z) over Σ1 that are related by a
constant transition matrix, the Stokes matrix Cj :

W−(z) = W+(z)C0 on Σ0; W+,1(z) = W−(z)C1 on Σ1. (2.4)

It is well-known that the Stokes matrices are triangular and unipotent:

C0 =

(
1 c0
0 1

)
, C1 =

(
1 0
c1 1

)
, (2.5)

whenever µ > 0, which is our case (if µ < 0, then their triangular types
are opposite). Their upper (lower) triangular elements c0, c1 are called the
Stokes multipliers.

Recall that the monodromy operator of a linear differential equation on
the Riemann sphere acts on the space of germs of its solutions at a nonsin-
gular point z0. Namely, fix a closed path α starting at z0 in the complement
to the singular points of the equation. The monodromy operator along the
path α sends each germ to the result of its analytic extension along the
path α. It is completely determined by the homotopy class of the path α in
the complement to the singular points of the equation. Linear system (1.7)
under consideration has exactly two singular points: zero and infinity. By
the monodromy operator of system (1.7) we mean the monodromy operator
along a counterclockwise circuit around zero. The monodromy matrix of
the formal normal form (2.1) in the canonical solution base with a diagonal
fundamental matrix is

MN = diag(e−2πil, 1). (2.6)

Note that it follows from definition that

W+,1(z) = W+(z)MN . (2.7)

Lemma 2.2 [23, p. 35]. The monodromy matrix of system (1.7) in the
sectorial canonical solution base W+ equals

M = MNC
−1
1 C−10 . (2.8)

2.2 Reality of the Stokes multipliers on the axes of phase-
lock areas

Theorem 2.3 The Stokes multipliers c0 and c1 of system (1.7) are real,
whenever l = B

ω ∈ Z.
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Proof System (1.7) admits the symmetry

J : (u, v)(z) 7→ (û, v̂)(z) = (−ū, v̄)(z̄), (2.9)

which induces C-antilinear automorphisms of the spaces of germs of its so-
lutions on R± or equivalently, on Σ0,1. Indeed, the right-hand side of system
(1.7) is the vector (u, v) multiplied by z−2 times an entire matrix function.
The diagonal terms of the latter matrix function are real polynomials, while
the off-diagonal terms are equal to z

2iω . This implies that J is a symmetry
of system (1.7). For every vector function f = (f1, f2)(z) by J∗f we will
denote its image under the transformation J . Note that a vector function
f holomorphic on a sector S± is transformed to the function J∗f holomor-
phic on S∓, since the complex conjugation permutes the sectors S±. Let
fj± = (f1j,±, f2j,±), j = 1, 2, denote the canonical basic sectorial solutions
forming the fundamental matrices W± = (fij,±(z)) in the sectors S±.

Proposition 2.4 One has J∗f1± = −f1∓, whenever l ∈ Z, and J∗f2± =
f2∓ in the general case.

Proof Note that |f1±(z)| = o(|f2±(z)|), as z → 0 along R−, by (2.3)
and since z−le

µ
z → 0; recall that µ > 0, see Convention 1.18. Therefore,

|J∗f1+(z)| = |f1+(z̄)| = o(|f2±(z̄)|), by (2.9). Thus, both J∗f1+ and f1− are
solutions of system (1.7) with the least asymptotics, as z → 0 along R−. It
is classical that a solution of (1.7) with the least asymptotics is unique up to
constant factor (in particular, f1+ = f1− on R−). In our case this follows by
the above asymptotic formula, since the solution space is two-dimensional.
Therefore, J∗f1+ = a1f1−, a1 = const 6= 0. Similarly we get that f2+ is the
solution with the least asymptotics on R+, and J∗f2+ = a2f2−. Let us show
that a1 = −1 and a2 = 1.

The vector function f1± is the product of the scalar function z−leµ(
1
z
−z)

and the first column of the matrix function H±(z), see (2.3). Recall that
H±(z) is C∞-smooth on S± \ {∞} and H±(0) = Id; thus the upper ele-
ment of the latter column tends to 1 and dominates the lower one. Hence,
f11,±(z) ' z−leµ(

1
z
−z), f21,±(z) = o(f11,±(z)), as z → 0 along R−. If l ∈ Z,

then the first component of the vector function J∗f1+ equals −f11,+(z̄) '
−z−leµ(

1
z
−z) ' −f11,−(z). Therefore, a1 = −1. The vector function f2±(z)

equals the second column of the matrix function H±(z), by (2.3). The sec-
ond (lower) component of the latter column tends to 1, as z → 0 along R+,
since H±(0) = Id. The transformation J acts on the second component of
a vector function by conjugation of the image and the preimage. The three
latter statements toghether imply that the second components of the vector
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functions f2−(z) and J∗f2+(z) are asymptotic to each other, as z → 0 along
R+, and hence, a2 = 1. This proves Proposition 2.4. 2

For every z ∈ R− one has f1+(z) = f1−(z) (unipotence and upper trian-
gularity of the Stokes matrix C0), hence,

−f11,±(z) = −f11,∓(z) = −f11,±(z), f21,±(z) = −f21,∓(z) = −f21,±(z),

by Proposition 2.4. Therefore,

f11,±(z) = f11,∓(z) ∈ R, f21,±(z) = f21,∓(z) ∈ iR for z ∈ R−.

Similarly we get that

f12,±(z) = f12,∓(z) ∈ iR, f22,±(z) = f22,∓(z) ∈ R for z ∈ R+, (2.10)

f12,−(z) = −f12,+(z), f21,+(z) = −f21,−(z) for z ∈ R, (2.11)

by Proposition 2.4. One has

f12,−(z) = f12,+(z) + c0f11,+(z) for z ∈ R−,

f21,+(z) = f21,−(z) + c1f22,−(z) for z ∈ R+,

by definition, (2.4), (2.5), (2.7) and since in our case, when l ∈ Z, one has
MN = Id and W+,1 = W+. Substituting (2.11) to the latter formulas one
gets

c0f11,+(z) = −2 Re f12,+(z) ∈ R for z ∈ R−,

c1f22,−(z) = 2 Re f21,+(z) ∈ R for z ∈ R+.

This together with the reality of the values f11,+(z), f22,−(z) for z ∈ R− and
z ∈ R+ respectively and the fact that they do not vanish identically (be-
ing the dominant components of non-identically vanishing vector functions)
implies that c0, c1 ∈ R. Theorem 2.3 is proved. 2

2.3 Symmetries of system (1.7) and solutions of the special
double confluent Heun equation

V.M.Buchstaber and S.I.Tertychnyi have constructed symmetries of double
confluent Heun equation (1.8) [14, 16, 35], see also [17]. The symmetry
# : E(z) 7→ 2ωz−l−1(E′(z−1) − µE(z−1)), which is an involution of its
solution space, was constructed in [35, equations (32), (34)]. It can be
obtained from the symmetry (φ, t) 7→ (π − φ,−t) of the nonlinear equation
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(1.1); the latter symmetry was found in [26]. The symmetry # is equivalent
to the symmetry

I : (u, v)(z) 7→ (û, v̂)(z) = −iz−leµ(
1
z
−z)(−v(z−1), u(z−1)) (2.12)

of system (1.7). The transformation

3 : E(z) 7→ eµ(z+z
−1)E(−z−1) (2.13)

induces an isomorphism of the solution space of the special double confluent
Heun equation (1.8) and that of the ”conjugate” double confluent Heun
equation (1.9). Recall that we consider that l ≥ 0.

As it was shown in [14], equation (1.8) cannot have polynomial solutions,
while (1.9) can have them only for l ∈ N. In [16] Buchstaber and Tertychnyi
have found new nontrivial symmetries of equation (1.8) in the case, when
l ∈ Z≥0 and equation (1.9) does not have polynomial solutions.

The following theorem is a direct consequence of results of papers [14, 20].

Theorem 2.5 A point (B,A) ∈ R≥0 × R+ is a constriction, if and only if
one of the following equivalent statements holds.

1) l = B
ω ∈ Z and system (1.7) is analytically equivalent at 0 to its formal

normal form (2.1).
2) l ∈ Z and c0 = c1 = 0.
3) System (1.7) has trivial monodromy.
4) l ∈ Z and c0 = 0.
5) l ∈ Z and equation (1.8) has an entire solution.

Proof Each one of the statements 1), 2), 3) is equivalent to the state-
ment that (B,A) is a constriction, see [20, proposition 3.2, lemma 3.3]. Its
equivalence with statement 5) was proved in [14, theorems 3.3, 3.5]. It is
clear that statement 2) implies 4). Let us prove the converse: statement
4) implies statement 5), which is equivalent to 2). Condition c0 = 0 (i.e.,
C0 = Id) is equivalent to the statement that the second canonical basic solu-

tions H±(z)

(
0
1

)
of system (1.7) coming from different sectors paste together

and form an entire vector solution (u(z), v(z)), v(z) 6≡ 0, u(z) = 2iωzv′(z).
Hence, in this case equation (1.8) has entire solution E(z) = eµzv(z), thus
statement 5) holds. Theorem 2.5 is proved. 2

Theorem 2.6 [6, theorem 3.10]. Let l ∈ N, B = ωl, A > 0. Let equation
(1.9) have a polynomial solution. Then equation (1.8) has no entire solution;
thus (B,A) is not a constriction.
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Theorem 2.7 Equation (1.9) has a nontrivial polynomial solution, if and
only if l ∈ N, c1 = 0 and c0 6= 0.

Proof Let equation (1.9) have a polynomial solution E(z). Then l ∈ N, see
[13, section 3], and the corresponding equation (1.8) has no entire solution,
by Theorem 2.6. Hence, c0 6= 0, by Theorem 2.5. Let us show that c1 = 0.
Consider the involution

I : (φ, t) 7→ (−φ, t+ π),

which transforms equation (1.1) to the same equation with opposite sign
at B. It induces the ”right bemol” transformation from [16, the formula
after (8)] (see also [14, formula (38)]) sending solutions of equation (1.8) to
solutions of equation (1.9). It also induces the transformation2

Gl : (û, v̂)(z) = zleµ(
1
z
−z)(v(−z), u(−z)), (2.14)

which sends solutions of system (1.7) to those of the same system with op-
posite sign at l; the latter system (1.7), where l is taken with the ”-” sign,
will be referred to, as (1.7)−. And vice versa, the transformation G−l sends
solutions of system (1.7)− to those of (1.7). It transforms canonical secto-
rial basic solutions of (1.7)− in S± (appropriately normalized by constant
factors) to those of (1.7) in S∓ and changes the numeration of the canonical
basic solutions. This follows from definition and (2.3). The polynomial so-
lution E(z) = eµzv(z) of equation (1.9) is constructed from an entire vector
solution h(z) = (u(z), v(z)) of system (1.7)−, and the latter coincides with
the second canonical solution of system (1.7)− in both sectors S±, as in the
proof of Theorem 2.5. Thus, its image G−lh(z), which is holomorphic on C∗,
coincides with the first canonical solution of system (1.7) in both sectors.
Hence, the first basic solutions of system (1.7) coming from different sectors
coincide, and thus, C1 = Id, c1 = 0, by definition and (2.4). Vice versa,
let l ∈ N, c1 = 0 and c0 6= 0. Then the first canonical sectorial solution of
system (1.7) in S+ is invariant under the monodromy operator, by (2.6) and
(2.8), and coincides with that coming from the sector S−. Its image under
the transformation Gl is the second canonical solution of system (1.7)−, the
same in both sectors, and hence, it is holomorphic on C. Let Ê(z) = eµzv(z)
be the corresponding solution of equation (1.9), which is an entire function.
Let us show that it is polynomial. Indeed, in the contrary case the oper-
ator of taking l-th derivative would send it to a non-trivial entire solution

2The transformation −iGl is equivalent to the right bemol transformation from [16,
the formula after (8)]
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of equation (1.8), by [14, lemma 3], which cannot exist since c0 6= 0 and by
Theorem 2.5. Thus, equation (1.9) has a polynomial solution. Theorem 2.7
is proved. 2

2.4 Canonical sectorial solution bases at infinity and the
transition matrix ”zero-infinity”

The involution z 7→ z−1 permutes the sectors S± and S∓, as does the symme-
try with respect to the real axis, by assumption, and it fixes each component
Σ0,1 of their intersection. The symmetry I of system (1.7), see (2.12), in-
duces an isomorphism of the solutions spaces of system (1.7) on the sectors
S± and S∓ and an automorphism of the two-dimensional space of solutions
on the component Σ1.

Definition 2.8 The canonical bases of solutions of system (1.7) in S± ”at
infinity” are those obtained from appripriately normalized canonical solution
bases at the opposite sectors S∓ by the automorphism I; their fundamental
matrices are denoted by Ŵ±(z). In more detail, we set

Ŵ− = I(W+MN ), (2.15)

where the right-hand side is the result of application of the transformation
I to the columns of the fundamental matrix under question.

Proposition 2.9 The canonical bases W+MN and Ŵ− in the space of solu-
tions of system (1.7) in Σ1 are related by the transition matrix Q = Q(B,A)
that is an involution:

W+(z)MN = Ŵ−(z)Q, Q2 = Id. (2.16)

Proof The automorphism I of the solution space of system (1.7) is an invo-
lution, as is #. It permutes the canonical bases with fundamental matrices
W+(z)MN and Ŵ−(z). This implies that the transition matrix Q between
them, which is the matrix of the automorphism in the base Ŵ−(z), is also
an involution. 2

Theorem 2.10 Let l = B
ω ≥ 0. The matrix Q = Q(B,A) from (2.16) has

the form

Q =

(
−a b
−c a

)
. (2.17)
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The coefficients of the matrix Q satisfy the following system of equations:{
a2 = bc+ 1

a(1− e2πil + c0c1) = bc1e
−2πil − cc0

, (2.18)

where c0 = c0(B,A), c1 = c1(B,A) are the Stokes multipliers. One has

b, c 6= 0 whenever (B,A) is a constriction. (2.19)

Theorem 2.10 is proved below. Its proof and the proof of the main results
of the paper are based on the following key lemma.

Lemma 2.11 Let Q = (qij(B,A)) be the same, as in (2.16). If (B,A) is a
constriction, then q12(B,A), q21(B,A) 6= 0.

Proof Let f1 = (f11, f21)(z), f2 = (f12, f22)(z) be the basis of solutions
of system (1.7) with the fundamental matrix W+MN = (fij), and let g1 =
(g11, g21)(z), g2 = (g12, g22)(z) be the basis with the fundamental matrix
Ŵ− = (gij). Let Ej(z) = eµzf2j(z), Êj(z) = eµzg2j(z) be the solutions
of equation (1.8) defined by fj and gj respectively. Recall that in our case,
when (B,A) is a constriction, one has l = B

ω ∈ Z, by Theorem 2.5. Note that

all the functions fj , gj , Ej , Êj are holomorphic on C∗, since the monodromy
of the system (1.7) is trivial, by Theorem 2.5. Suppose the contrary: in the
corresponding matrix Q(B,A) from (2.16) one has q12q21 = 0. We treate
the two following cases separately.

Case 1): q12 = 0. This means that f2 = g2, E2 = Ê2 up to constant
factor. Note that f2(z) is an entire function, and hence, so are E2 and Ê2

(see the proof of Theorem 2.5). On the other hand,

Ê2(z) = #E2(z) = 2ωz−l−1(E′2(z
−1)− µE2(z

−1)),

which follows from the definition of the transformation I, see the beginning
of Subsection 2.3. It is clear that the right-hand side of the latter formula
tends to zero, as z → ∞, since E2 is holomorphic at 0. Finally, Ê2(z) is
an entire function tending to 0, as z → ∞. Therefore, Ê2 = E2 ≡ 0, by
Liouville Theorem, and the basic function f2 is identically equal to zero.
The contradiction thus obtained proves that q12 6= 0.

Case 2): q21 = 0. This means that f1 = cg1, c ≡ const 6= 0, hence
E1 = cÊ1. Note that in our case the Stokes matrices are trivial, by Theorem
2.5, and hence, system (1.7) is analytically equivalent to its formal normal
form. Therefore, the sectorial normalizations H±(z) coincide with one and
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the same matrix function H(z) holomorphic at 0, H(0) = Id. The canonical

basic solution f1(z) is equal to z−leµ(
1
z
−z) times the first column of the

matrix H(z); the upper element of the latter column equals 1 at 0 and the
lower element vanishes at 0. Hence,

E1(z) = eµzf21(z) = z1−le
µ
z h(z), as z → 0, (2.20)

where the function h(z) = z−1H21(z) is holomorphic at 0. On the other
hand,

Ê1(z) = (#E1)(z) = 2ωz−l−1(E′1(z
−1)− µE1(z

−1)) = O(eµz), as z →∞,

by (2.20). This together with (2.20) and the equality E1 = cÊ1 yields that

E1(z) = O(z1−le
µ
z ), as z → 0; E1(z) = O(eµz), as z →∞. (2.21)

The transformation (2.13) sends E1 to the solution E of the other Heun
equation (1.9). We claim that E is a polynomial. Indeed,

E(z) = eµ(z+
1
z
)E1(−z−1),

E(z) = O(zl−1), as z →∞, E(z) = O(1), as z → 0,

by (2.21). Thus, E is an entire function with at most polynomial growth at
infinity, and hence, is a polynomial solution of equation (1.9). Therefore,
equation (1.8) has no entire solution, and the point (B,A) under considera-
tion is not a constriction, by Theorem 2.6. The contradiction thus obtained
proves that q12, q21 6= 0. Lemma 2.11 is proved. 2

Proof of Theorem 2.10. One has

Q2 =

(
q211 + q12q21 q12(q11 + q22)
q21(q11 + q22) q222 + q12q21)

)
= Id,

since Q is an involution. Let us prove that Q has the same type, as in (2.17).
By the above equation, there are two possible cases (we denote a = q22):

a) a = q22 = −q11, a2 + q12q21 = 1;
b) q12 = q21 = 0, q11, q22 = ±1.
Note that the equations of cases a) and b) are analytic in (B,A) ∈ R≥0×

R+. Each one of the equations q12, q21 = 0 does not hold whenever (B,A) is
a constriction (Lemma 2.11). Hence, these equations are both not satisfied
on an open subset of points (B,A) ∈ R≥0 × R+. Therefore, equations of
case a) hold on the latter open subset, and thus, for all (B,A) ∈ R≥0 ×R+,
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by analyticity. This implies that the matrix Q has type (2.17) and satisfies
the first relation in (2.18). Statement (2.19) of Theorem 2.10 follows from
Lemma 2.11. Let us prove the second relation in (2.18). To this end, we
compare the monodromy matrices of system (1.7) in bases (f1, f2), (g1, g2)
represented by the fundamental matrices W+MN and Ŵ− respectively and
write the equation saying that they are conjugated by Q. The monodromy
matrix in the base W+MN equals

M+ = M−1N MNC
−1
1 C−10 MN = C−11 C−10 MN , (2.22)

see (2.8). We consider the monodromy operator under question as acting in
the space of germs of solutions of system (1.7) at the point z = 1: a fixed
point of the involution z 7→ z−1. To calculate the monodromy matrix in
the base (g1, g2), note that its fundamental matrix Ŵ− is obtained from the
matrix W+MN by the substitution z 7→ z−1, permutation of lines, change
of sign of the first line and subsequent multiplication of the whole matrix
by the scalar factor −iz−leµ(

1
z
−z), see (2.12) and (2.15). Permutation of

lines and change of sign of one line do not change the monodromy. The
substitution z 7→ z−1 changes the monodromy to inverse. As z makes one
counterclockwise turn around zero, the latter scalar factor is multiplied by
e−2πil. Finally, the monodromy matrix in the base Ŵ− equals

M̂− = e−2πilM−1+ = e−2πilM−1N C0C1. (2.23)

On the other hand, M̂− = QM+Q
−1, by (2.16). Substituting this formula

and (2.22) to (2.23) and taking into account that Q−1 = Q yields

M+Q = QM̂− = C−11 C−10 MNQ = e−2πilQM−1N C0C1.

For a matrix Q of type (2.17), the latter equation is equivalent to the second
relation in (2.18). Theorem 2.10 is proved. 2

3 Rotation number and trace of monodromy. Proof
of Theorems 1.8 and 1.12

3.1 Trace and phase-lock areas

In what follows we consider the monodromy matrix M of system (1.7) writ-
ten in the base W+, see (2.8). Note that detM = e−2πil. We normalize the
matrix M by the scalar factor eπil to make it unimodular:

M̃ = eπilM = eπilMNC
−1
1 C−10 =

(
e−πil −e−πilc0
−eπilc1 eπil(1 + c0c1)

)
. (3.1)
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Proposition 3.1 The trace of the matrix M̃ is real, that is, eπilc0c1 ∈ R
for all the real parameters (B,A) with A 6= 0.

Proof The projectivization of system (1.7), the Riccati equation (1.6) is the
complex extension of a differential equation on the torus: the product of the
unit circles in space and time variables. This implies that the monodromy
of the Riccati equation along the unit circle in the time variable is an auto-
morphism of the unit disk, and hence, so is the projectivized monodromy of
system (1.7). Hence,

trM̃ = 2 cos(πl) + eπilc0c1 ∈ R. (3.2)

2

Proposition 3.2 A point (B,A) belongs to a phase-lock area, if and only
if

|trM̃ | = |2 cos(πl) + eπilc0c1| ≥ 2; (3.3)

(B,A) belongs to its interior, if and only if the latter inequality is strict.

Proof A point (B,A) belongs to a phase-lock area, if and only if the time
2π flow map of the vector field (1.3), which acts as a diffeomorphism of
the circle S1 = S1

φ × 0, has a fixed point. The latter diffeomorphism is the

restriction to S1 = ∂D1 of a conformal automorphism of the disk D1: the
projectivized monodromy of system (1.7). A conformal automorphism of the
diskD1 represented by a Möbius transformation with unimodular matrix has
a fixed point in ∂D1, if and only if the trace of the latter matrix has module
at least two. This together with formula (3.2) proves the first statement
of the proposition. The module of the trace equals two, if and only if the
Möbius transformation under question is either identity, or parabolic: has a
unique fixed point in ∂D1. The Möbius transformation has one of the two
above types, if and only if the point (B,A) lies in the boundary of a phase-
lock area. This follows from strict monotonicity of the time 2π flow map of
the vector field (1.3) as a function of the parameter B. Namely, if the time
2π flow map S1 → S1 is either identity, or parabolic, then slightly deforming
B to the right or to the left, one can destroy all its fixed points in S1 = ∂D1

and thus, go out of the phase-lock area. Conversely, if the point (B,A) lies
in the boundary of a phase-lock area, then the corresponding above time
2π flow map is either identity, or parabolic, since it is Möbius and can have
obviously neither attracting, nor repelling fixed points. Proposition 3.2 is
proved. 2
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3.2 Behavior of phase-lock areas near constrictions. Proof
of Theorems 1.8 and 1.12

Recall that without loss of generality we consider that B ≥ 0, A > 0.
Proof of Theorem 1.8. The monodromy matrix, the matrix M̃ , see (3.1),
and the Stokes multipliers c0, c1 are analytic functions of the parameters
(B,A) with A 6= 0. Fix a constriction (B0, A0). Then l = B0

ω ∈ Z≥0, and
c0(B0, A0) = c1(B0, A0) = 0, by Theorem 2.5. Consider the restrictions of
the Stokes multiplier functions to the open ray B0 × R+:

sj(t) := cj(B0, A0 + t), j = 0, 1, t > −A0; sj(0) = 0.

Claim 1. The difference |trM̃(B0, A0 + t)| − 2 is non-zero and has one
and the same sign for all t 6= 0 small enough.
Proof The trace under question equals

trM̃(B0, A0 + t) = (−1)l(2 + s0(t)s1(t)).

The functions sj(t) are analytic on the interval (−A0,+∞) and do not vanish
identically: they may vanish only for those t, for which (B0, A0 + t) is a
point of intersection of the line B0 ×R with boundaries of phase-lock areas
(Theorems 2.5, 2.7 and 1.16). The set of the latter intersection points is
discrete, since the boundary of each phase-lock area is the graph of a non-
constant analytic function A = g(B). Consider the coefficients a, b, c in the
matrix Q = Q(B0, A0 + t), see (2.17), which are also analytic functions in
t. In our case, when l ∈ Z, the second relation in (2.18) with cj replaced by
sj(t) takes the form

a(t)s0(t)s1(t) = b(t)s1(t)− c(t)s0(t), b(0), c(0) 6= 0,

by Theorem 2.10. This implies that

s1(t) '
c(0)

b(0)
s0(t), as t→ 0, (3.4)

s0(t)s1(t) '
c(0)

b(0)
s20(t) ' qt2n, q ∈ R, q 6= 0, sign q = sign

c(0)

b(0)
,

(−1)ltrM̃(B0, A0 + t) = 2 + qt2n(1 + o(1)). (3.5)

The latter right-hand side is greater (less) than 2 for all t 6= 0 small enough,
if q > 0 (respectively, q < 0). This proves the claim. 2
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There exists a ε > 0 such that the punctured interval B0× ([A0−ε,A0 +
ε] \ {A0}) either lies entirely in the interior of a phase-lock area, or lies
outside the union of the phase-lock areas. This follows from Proposition 3.2
and the above claim. Theorem 1.8 is proved. 2

Recall that for r ∈ Z by Lr and Λr = {B = ωr} we denote respectively
the r-th phase-lock area and its axis. In the proof of Theorem 1.12 we use
the following immediate corollary of the main result of [26].

Proposition 3.3 For every ω > 0 and every r ∈ Z≥0 there exists an A ∈
R+ that can be chosen arbitrarily large such that (ωr,A) ∈ Int(Lr).

Proof The boundary ∂Lr is a union of two graphs of functions gr,±(A)
with Bessel asymptotics, by the main resulf of [26], see formula (1.4) at
the beginning of the present paper. The functions h±(A) = gr,±(A) − rω
tend to zero roughly like sine function multiplied by A−

1
2 , and h±(A) =

−h∓(A) + o(A−
1
2 ), as A → ∞. In particular, there exists a sequence of

local maxima mk of the function h+, mk → +∞, as k → ∞, such that the

values h+(mk) are positive and asymptotically equivalent to m
− 1

2
k times a

positive constant factor. Thus, for every k large enough the values h±(mk)
are non-zero and have different signs. This implies that (ωr,mk) ∈ Int(Lr).
The proposition is proved. 2

Proof of Theorem 1.12. Let r ∈ N. Let A ∈ R+ be such that P =
(rω,A) ∈ Int(Lr), and let A be bigger than the ordinate of every simple
intersection in Λr = {B = rω} (if any): it exists by Proposition 3.3. Let
I ⊂ Λr denote the maximal interval containing P that is contained in Lr.

Claim 2. The interval I is semi-infinite and bounded from below by a
simple intersection. Simple intersections do not lie in the B-axis.
Proof Suppose the contrary to the first statement of the claim. This
means that either I 6= Λr and I has a boundary point E ∈ ∂Lr that is
not a simple intersection, or I = Λr. This alternative follows from the
fact that the interval I cannot be bounded by a simple intersection from
above, by definition. The second case, when I = Λr, is impossible, since the
intersection Lr ∩ {A = 0} is one point with abscissa

√
r2ω2 + 1 > rω (see

[22, section 3] and [12, corollary 3]), which does not lie in Λr. The latter
statement also implies that if a simple intersection in Λr exists, it does not
lie in the B-axis. Therefore, the first case takes place. The boundary point
E, which is not a simple intersection, is a constriction, by definition. It is a
positive constriction, by Theorem 1.8 and since E is adjacent to the interval
I ⊂ Lr. Therefore, a small segment J of the line {B = ωr} adjacent to
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E from the other side is also contained in Lr. Finally, I ∪ J ⊂ Lr, – a
contradiction to the maximality of the interval I. The claim is proved. 2

Claim 2 implies the inclusion Sr ⊂ I ⊂ Lr and hence, Theorem 1.12. 2

4 Open problems and relations between conjec-
tures

Proposition 4.1 Conjecture 1.14 implies Conjectures 1.13 and 1.7. Con-
jecture 1.7 implies Conjectures 1.4.

Proof Let us show that Conjecture 1.7 implies Conjecture 1.4. Conjecture
1.7 implies that for every r ∈ N all the constrictions of the phase-lock area
Lr have abscissas greater than (r − 1)ω. The latter abscissas are equal to
ωl, l ∈ Z ∩ [0, r], see [20]. Hence, all of them are equal to ωr and thus,
Conjecture 1.4 holds.

Now let us show that Conjecture 1.7 follows from Conjecture 1.14. The
equality L+

r ∩ Λr = Sr given by Conjecture 1.14 implies that the set L+
r ∩

{A < A(Pr)} lies on one side from the axis Λr: either on the right, or
on the left. It should lie on the right, since the intersection of the phase-
lock area Lr with the B-axis is just one growth point with the abscissa
Br =

√
r2ω2 + 1 > ωr (see [22, section 3] and [12, corollary 3]), hence lying

on the right. Finally, the right boundary of the upper phase-lock area L+
r is

a connected curve issued from the point Br to infinity that lies on the right
from the axis Λr, meets Λr at constrictions and Pr and separates Λr from
the other upper phase-lock areas L+

k , k > r. Applying this statement to r
replaced by r − 1 and taking into account symmetry and that L0 contains
the A-axis (by symmetry), we get that Lr lies on the right from the axis
Λr−1. This proves Conjecture 1.7.

Now let us prove that Conjecture 1.13 follows from Conjecture 1.14.
Withour loss of generality we treat only the case of phase-lock areas Lr
with r ∈ N (by symmetry and positivity of all the constrictions in L0,
which also follows from symmetry). By Conjecture 1.14 and the implications
proved above, Conjecture 1.4 holds: for every r ∈ N all the constrictions
of the phase-lock area Lr lie in Λr. Hence, those of them with A > 0
lie in Sr = L+

r ∩ Λr, and thus, all of them are automatically positive, by
connectivity of the ray Sr. This together with symmetry implies Conjecture
1.13. This finishes the proof of the proposition. 2
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Proposition 4.2 For every constriction (B,A) ∈ R≥0 × R+, the ratio of
the triangular terms in the corresponding transition matrix Q from (2.17)
is always real.

The proposition follows from formula (3.4) and reality of the Stokes
multipliers of system (1.7) for l ∈ Z (Theorem 2.3).

Conjecture 4.3 For every constriction (B,A) ∈ R≥0×R+ the ratio of the
above triangular terms is negative, that is, c

b > 0.

Proposition 4.4 Every constriction in R≥0 × R+ with c
b > 0 is positive.

The proposition follows from formulas (3.4), (3.5) and Proposition 3.2.

Definition 4.5 A negative constriction (B0, A0) is called queer, if the germ
at (B0, A0) of the interior of the corresponding phase-lock area lies on one
side from the vertical line {B = B0}, and the origin (0, 0) lies on the different
side.

Conjecture 4.6 (see a stronger conjecture: [7, conjecture 5.30]). There
are no queer constrictions.

Proposition 4.7 Conjecture 4.6 implies Conjecture 1.4.

In the proof of Proposition 4.7 we use the following proposition.

Proposition 4.8 Incorrect constrictions cannot come ”from infinity”. That
is, for every ω0 ∈ R+ and r ∈ N there exists no sequence ωn → ω0 for
which there exists a sequence of constrictions (Bn, An) of the phase-lock ar-
eas Lr = Lr(ωn) with Bn 6= ωnr and An →∞.

Proof Without loss of generality we consider that r ≥ 3, since we already
know that for r = ±1,±2 Conjecture 1.4 holds: all the constrictions of the
phase-lock area Lr lie in Λr, see Remark 1.5. By symmetry, it suffices to
prove the statement of the proposition with An → +∞. For every r′ ∈ N
the higher simple intersection Pr′ ∈ Lr′ ∩ Λr′ has ordinate A(Pr′) bounded
by the maximal root of an explicit family of monic polynomials depending
on the parameter ω, see [13, section 3]. Thus, for any given r′ ∈ N and
ω0 ∈ R+ the value A(Pr′) is locally bounded from above as a function of
ω on a neighborhood of the point ω0, say A(Pr′) < α for r′ = r − 1. On
the other hand, the ray Rα = ωr′ × [α,+∞) ⊂ Sr′ lies in Lr′ , by Theorem
1.12. Therefore, for r′ = r − 1 the ray Rα is disjoint from the phase-lock
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area Lr and lies on the left from the intersection Lr ∩ {A ≥ α} All the
possible ”incorrect” constrictions of the upper phase-lock area L+

r , that is,
the constrictions with abscissas different from ωr have abscissas no greater
than ω(r − 2), see [20] and Remark 1.5. Hence, they should lie on the left
from the line Λr′ = {B = ωr′} containing the ray Rα. Therefore, their
ordinates should be less than α. Indeed, if the ordinate of some ”incorrect”
constriction X ∈ L+

r were greater or equal to α, then X would be separated
from the intersection Lr ∩ {A ≥ α} by the ray Rα. Hence, X would not lie
in Lr, since Lr∩{A ≥ α} is connected (monotonicity of the rotation number
function in B) – a contradiction. Thus, the ”incorrect” constrictions cannot
escape to +∞, as ω → ω0 along some subsequence. This proves Proposition
4.8. 2

Proof of Proposition 4.7. Here we repeat the arguments from [7] pre-
ceding conjecture 5.30. Recall that Conjecture 1.4 was proved in [20] for
ω ≥ 1: for every r ∈ Z all the constrictions of the phase-lock area Lr lie
in its axis Λr. It was also shown in [20] that for arbitrary ω > 0 for every
r ∈ Z the abscissa of each constriction in Lr equals ωl where l ∈ Z ∩ [0, r]
and l ≡ r(mod2). Let us now deform ω from 1 to 0: the phase-lock area
portrait will change continuously in ω. Fix an r ∈ N. Suppose that there
exists a certain ”critical value” ω0 ∈ (0, 1) such that for every ω > ω0 all
the constrictions in Lr lie in Λr, and for ω = ω0 a new constriction (B0, A0)
of the phase-lock area Lr is born and it is ”incorrect”: it does not lie in
Λr. This new constriction can be born only on an axis Λl with 0 < l < r,
l ≡ r(mod2). Note that this is the only possible scenario of appearence of
incorrect constrictions in Lr: they cannot come ”from infinity”, by Proposi-
tion 4.8. Then the boundary of the phase-lock area Lr moves from the right
to the left until it touches the axis Λl for the first time. A point of intersec-
tion ∂Lr∩Λl cannot correspond to Heun equation (1.9) having a polynomial
solution, by Theorem 1.16 and since l < r. Hence, it is a constriction, by
the same theorem. Therefore, for ω = ω0 the axis Λl contains a constriction
(B0, A0) of the phase-lock area Lr and separates Int(Lr) from the origin.
See Fig. 9. Thus, the newly born constriction (B0, A0) is queer. Therefore,
if Conjecture 4.6, which forbids queer constrictions, is true, then we would
obtain a contradiction and this would prove Conjecture 1.4. 2

Proposition 4.9 Conjecture 4.3 implies Conjecture 1.13. Conjecture 1.13
implies Conjecture 4.6. Conjecture 4.6 implies Conjecture 1.4.

Proof The first implication follows from Proposition 4.4 and the symme-
try of the phase-lock area portrait with respect to both coordinate axes.
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Figure 9: A conjecturally impossible scenario of appearense of an ”incorrect”
constriction of a phase-lock area Lr in Λl, 0 < l < r, as ω decreases to the
critical value ω0.

Conjecture 1.13 obviously implies Conjecture 4.6, which in its turn implies
Conjecture 1.4, by Proposition 4.7. 2

5 Upper triangular element and further proper-
ties of the transition matrix Q

Theorem 5.1 Let ω > 0, l ≥ 0, µ > 0, and let

Q = Ŵ−1− (z)W+(z)MN =

(
−a b
−c a

)
be the corresponding transition matrix from (2.16). For every fixed ω > 0
and l ∈ Z for every µ > 0, set (B,A) = (ωl, 2ωµ), one has

b = b(B,A) ∈ iR,

c = c(B,A) ∈ iR whenever (B,A) is a constriction.

For every ω > 0 and l ∈ N the set of those parameter values µ > 0, for
which c = c(B,A) ∈ iR, is discrete.

In the proof of Theorem 5.1 we use the following formula for the deter-
minant of the fundamental solution matrix W+(z).
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Lemma 5.2 For every fundamental matrix W (z) of solutions of system
(1.7) one has

detW (z) = Sz−leµ(
1
z
−z), S ≡ const. (5.1)

The sectorial normalization matrices H±(z), see (2.3), are unimodular:

detH±(z) ≡ 1, (5.2)

detW±(z) ≡ z−leµ(
1
z
−z). (5.3)

Here W±(z) are the canonical sectorial fundamental matrices from (2.3).

Proof The proof of formulas (5.1) and (5.2) is based on the following
Buchstaber–Tertychnyi formula for the Wronskian of Heun equation [14,
proof of theorem 4]: for every two solutions E1 and E2 of equation (1.8)
one has

E′1(z)E2(z)− E′2(z)E1(z) =Wz−l−1eµ(z+
1
z
), W ≡ const. (5.4)

Let us first prove (5.1). Fix any pair of vector solutions fj(z) = (uj(z), vj(z))
of system (1.7), j = 1, 2. Let Ej(z) = eµzvj(z) denote the corresponding
solutions of equation (1.8). One has vj(z) = e−µzEj(z),

uj(z) = 2iωzv′j(z) = 2iωz(e−µzEj(z))
′ = 2iωze−µz(E′j(z)− µEj(z)).

The determinant of the fundamental matrix W (z) of the solutions f1(z) and
f2(z) of system (1.7) equals

detW (z) = u1(z)v2(z)− u2(z)v1(z) = 2iωze−2µz(E′1(z)E2(z)−E′2(z)E1(z))

= Sz−leµ(
1
z
−z), S = 2iωW,

by the latter formula and (5.4). This proves (5.1).
Let us now prove (5.2) and (5.3). Let W±(z) = H±(z)F (z) denote the

canonical sectorial fundamental matrix from (2.3). Its determinant equals

z−leµ(
1
z
−z) up to multiplicative constant, by (5.1), and the same statement

holds for the matrix function F (z):

F (z) = diag(z−leµ(
1
z
−z), 1), detF (z) = z−leµ(

1
z
−z).

Therefore, detH±(z) ≡ const. The latter constant equals one, sinceH±(0) =
Id. Formulas (5.2), (5.3) and Lemma 5.2 are proved. 2
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Proof of Theorem 5.1. Let W+(z), Ŵ−(z) be the fundamental matrices
of solutions of system (1.7) from (2.16),

W+ =

(
f11,+ f12,+
f21,+ f22,+

)
, (5.5)

see the notations from the proof of Theorem 2.3, l ∈ Z. One has MN = Id,
since l ∈ Z, hence W+ = W+MN ,

Ŵ−(z) = I(W+)(z) = −iz−leµ(
1
z
−z)
(
−f21,+ −f22,+
f11,+ f12,+

)
(z−1), (5.6)

by definition,

detW+(z) = f11,+(z)f22,+(z)− f12,+(z)f21,+(z) = z−leµ(
1
z
−z), (5.7)

by (5.3). Therefore,

D(z) = det

(
−f21,+ −f22,+
f11,+ f12,+

)
(z−1)

= (f11,+f22,+ − f12,+f21,+)(z−1) = zleµ(z−
1
z
),

by (5.7). Inverting the matrices in (5.6) yields

Ŵ−1− (z) = izleµ(z−
1
z
)

(
f12,+ f22,+
−f11,+ −f21,+

)
(z−1)D−1(z)

= i

(
f12,+ f22,+
−f11,+ −f21,+

)
(z−1). (5.8)

Calculating the product Q = Ŵ−1− (z)W+(z) for z = 1 ∈ Σ1 by formulas
(5.5) and (5.8) yields

Q =

(
−a b
−c a

)
, b = i(f212,+(1) + f222,+(1)), (5.9)

c = i(f211,+(1) + f221,+(1)), a = −i(f11,+(1)f12,+(1) + f21,+(1)f22,+(1)).

One has b ∈ iR, by (5.9) and since f12,+(z) ∈ iR, f22,+(z) ∈ R, whenever
z ∈ R+, see (2.10). The first statement of Theorem 5.1 is proved. Its second
statement, on the lower triangular element follows from the first statement
and reality of the ratio b

c at each constriction, see Proposition 4.2. Let us

34



prove the third statement of Theorem 5.1. In our case, when l ∈ N, the
second relation in (2.18) takes the form

bc1 − cc0 = ac0c1. (5.10)

Recall that c0 and c1 are the Stokes multipliers, see (2.5), and they are real
for l ∈ Z, by Theorem 2.3. Writing relation (5.10) in the new parameters

β = −ib, γ = −ic, σ =
c1
c0

yields
βσ − γ = −iac1.

Substituting the latter formula to the first equation a2 = bc + 1 in (2.18)
yields

(βσ − γ)2 = −c21a2 = c21(βγ − 1). (5.11)

This yields the following quadratic equation in γ:

γ2 − β(2σ + c21)γ + β2σ2 + c21 = 0, (5.12)

which has a real solution if and only if its discriminant

∆ = β2(2σ + c21)
2 − 4(β2σ2 + c21) = c21(β

2(4σ + c21)− 4)

is non-negative, or equivalently,

∆0 = β2(4σ + c21)− 4 ≥ 0 (5.13)

(whenever c1 6= 0). Note that the coefficients of the transition matrix Q are
analytic functions of the parameters on the complement to the hyperplane
{A = 0}. Therefore, if, to the contrary, the coefficient c were imaginary (or
equivalently, γ ∈ R) on some interval in Λ+

l = {B = lω} ∩ {A > 0}, then γ
would be real on the whole interval Λ+

l , and inequality (5.13) would hold on
Λ+
l , since c1 6≡ 0 on Λ+

l (see Theorems 2.5 and 2.7). But this is impossible:
∆0 < 0 on a neighborhood of a simple intersection point (B,A) ∈ Λ+

l , since
c1 = σ = 0, thus, ∆0 = −4 at this point. Indeed, a simple intersection
corresponds to double confluent Heun equation (1.9) having a polynomial
solution (Theorem 1.16), and hence, c1 = 0 there, by Theorem 2.7. The
contradiction thus obtained implies that c is purely imaginary on a discrete
subset in Λ+

l . Theorem 5.1 is proved. 2

Theorem 5.1 and the above discussion imply the following corollary.
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Corollary 5.3 For every ω > 0, l = B
ω ∈ N and arbitrary µ = A

2ω > 0 one
has

∆0 = β2(4σ + c21)− 4 ≤ 0, where β = −ib, σ =
c1
c0
. (5.14)

Proof If, to the contrary, ∆0 were positive on some interval in Λ+
l , then

the coefficient c would be imaginary there, by the above discussion, – a
contradiction to the last statement of Theorem 5.1. 2
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