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LOCALLY ANALYTIC VECTORS AND OVERCONVERGENT
(¢,7)-MODULES

HUI GAO AND LEO POYETON

ABSTRACT. Let p be a prime, let K be a complete discrete valuation field of characteristic
0 with a perfect residue field of characteristic p, and let Gk be the Galois group. Let 7 be a
fixed uniformizer of K, let K be the extension by adjoining to K a system of compatible
p"-th roots of 7 for all n, and let L be the Galois closure of K. Using these field extensions,
Caruso constructs the (¢, 7)-modules, which classify p-adic Galois representations of Gx. In
this paper, we study locally analytic vectors in some period rings with respect to the p-adic
Lie group Gal(L/K), in the spirit of the work by Berger and Colmez. Using these locally
analytic vectors, and using the classical overconvergent (¢, I')-modules, we can establish the
overconvergence property of the (¢, 7)-modules.

In an upcoming work by one of us, the ideas and results of this paper will be generalized
for an arithmetic family of Galois representations, which in turn will be used to prove a
conjecture of Bellovin on sheaves of Fontaine periods. In a previous joint work by one of us
and Tong Liu, the overconvergence property of (¢, 7)-modules is established when K is a
finite extension of QQp, via a completely different method that does not work for general K
or for arithmetic families.
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1. INTRODUCTION

1.1. Overview and main theorem. Let us first fix some notations that will be used
throughout the paper. Let p be a prime, let k be a perfect field of characteristic p, and let
W (k) be the ring of Witt vectors. Let Ky := W (k)[1/p], and let K be a totally ramified
finite extension of Ky. Write e := [K : Ky]. We fix an algebraic closure K of K and set
Gk = Gal(K/K). Let C, be the p-adic completion of K. Let v, be the valuation on C,
such that v,(p) = 1. For any subfield Y C C), let Oy be its ring of integers.

Notation 1.1.1. Let 7 € K be a uniformizer, and let E(u) € W(k)[u] be the irreducible
polynomial of m over Ky. Define m, € K inductively such that 7o = 7 and (7,11)P = m,.
Define u,, € K inductively such that p is a primitive p-th root of unity and (pn4+1)? = fin.
Let

Koo :=Upl  K(mp),  Kpeo = Ut K(pn), L= Upl K (mp, pin)-
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Let
Goo = Gal(K/Ky), Gpe:=Gal(K/Kyx), Gp:=GCal(K/L), G:=Gal(L/K).

Let V be a finite dimensional Q,-vector space equipped with a continuous Qp-linear G'x-
action. In [Carl3], using the theory of field of norms for the field K, Caruso associates to V'
an étale (¢, 7)-module (if one uses the field K~ instead, one would get the usual étale (p,I")-
module); this induces an equivalence between the category of p-adic representations of G g
and the category of étale (o, 7)-modules. An étale (g, 7)-module is a triple D = (D, ¢p, G)
(see Def. 6.2.2 for more details). Here, we only mention that D is a finite free module over
the ring Br_ := Ag__[1/p] where

+oo
Arg =A{ Z aiu’ : a; € W(k),vp(a;) = +oo, as i — —oo},

1=—00

and @p is a certain map D — D (here, we ignore the discussion of the @—data). We say that
D is overconvergent if we can “descend” the module D to a ¢-stable submodule D' over a
subring B}(OO of Bi_, where

+o00
B}(oo =1 Z aiu' € Bx..,vp(a;) +ia — +oo for some o > 0, as i — —00}.
i=—00

The following is our main theorem.

Theorem 1.1.2. For any finite free Q,-representation V' of G, its associated (p, T)-module
is overconvergent.

Remark 1.1.3. (1) Thm. 1.1.2 is originally proposed as a question by Caruso in [Carl3,
§4], as an analogue of the classical overconvergence theorem for étale (¢, I')-modules
by Cherbonnier and Colmez ([CC98]).

(2) In a previous joint work by the first named author and T. Liu, Thm 1.1.2 is established
when K is a finite extension of @Q,, using a completely different method (see [GL]);
a key ingredient in loc. cit. is the construction of “loose crystalline lifts” of torsion
Galois representations, which requires the finiteness of k (see e.g., [GL, Rem. 1.1.2]).

(3) There does not seem to be any obvious comparison between the proof in this paper
and that in [GL]. The main idea in [GL] is to “approximate” a general p-adic Galois
representation by torsion crystalline representations; whereas we do not use any
torsion representations in the current paper.

Remark 1.1.4. (1) In an upcoming work [Gao| by the first named author, the overconver-
gence property will also be established for (¢, 7)-modules attached to an arithmetic
family of Galois representations Vg over a rigid analytic space S (we need to assume
K/Q, finite there). Furthermore, these family of overconvergent (¢, 7)-modules will
be used to confirm a conjecture of Bellovin, which says that the sheaves of Fontaine
periods Dy (Vs) and Deis(Vs) are coherent sheaves (cf. [Bell5, Conj. 4.3.8]). Let
us remark that it seems almost impossible to settle the conjecture by only using the
corresponding family of (p, T')-modules.

(2) Using ideas and methods in this paper, it also seems very plausible to formulate and
prove overconvergence results for geometric families of (¢, 7)-modules, in analogy
with results in [KL]. These results in turn will have applications similar to those in
[Gao].

(3) In contrast, the methods in [GL] can not be generalized to families (either arithmetic
or geometric) of Galois representations.

Remark 1.1.5. We refer to [GL, §1.2] for some discussions of the importance and usefulness
of overconvergence results in p-adic Hodge theory. In particular, in loc. cit., we mentioned
about the link between the category of all Galois representations and the category of geo-
metric (i.e., semi-stable, crystalline) representations. Indeed, in loc. cit., we used this link
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to prove the overconvergence theorem. In the current paper, we do not use any semi-stable
representations; instead, some results we obtain in the current paper will be used to study
semi-stable representations. One result worth mentioning is Thm. 3.4.4(4) (see also Rem.
3.4.5), where we show certain ring of locally analytic vectors is related with the ring Opo,1)

in [Kis06]. We will report some progress (in particular, on the theory of (¢, é’)-modules) in
a future work by the first named author and T. Liu.

1.2. Strategy of proof. The key ingredient for the proof of Thm. 1.1.2 is the calculation
of locally analytic vectors in some period rings, in the spirit of the work by Berger and
Colmez ([BC16, Berl6]). The philosophy that overconvergence of Galois representations
is related with locally analytic vectors is first observed by Colmez, in the framework of
p-adic Langlands correspondence (cf. [Coll0, Intro. 13.3]). For example, overconvergent
(¢, T)-modules (cf. [CCI8]) are closely related with locally analytic vectors in the p-adic
Langlands correspondence for GLy(Qy) (cf. [LXZ12, Coll4]), i.e., via the “locally analytic
p-adic Langlands correspondence” .

To study the p-adic Langlands correspondence for GLg(F') where F'/Q, is a finite extension,
Berger recently proves overconvergence of the Lubin-Tate (¢, I')-modules (cf. [Berl6]). The
key idea in loc. cit., very roughly speaking, is that there should exist “enough” locally
analytic vectors in the Lubin-Tate (p,I')-modules. To find these locally analytic vectors,
one first “enlarges” the space of Lubin-Tate (¢, I')-modules over a bigger period ring; then
there are indeed enough locally analytic vectors, by using the classical overconvergent (¢,I")-
modules as an input (cf. [Berl6, Thm. 9.1]). One then descends from the bigger space of
locally analytic vectors to the level of Lubin-Tate (¢, I')-modules, via a monodromy theorem
(cf. [Berl6, §6]).

The key idea in our paper is similar to that in [Berl6]. Indeed, (very roughly speaking),
we first “enlarge” the space of the (¢, 7)-module over the big period ring Brlg ;. (which is

Gal(K /L)-invariant of the well-known ring Bng) there are enough locally analytic vectors
on this level, by using the classical overconvergent (o, I')-modules as an input again (cf. the
proof of Thm. 6.2.6). To descend these locally analytic vectors to the level of (¢, 7)-modules,
we can use a Tate-Sen descent or a monodromy descent (see Prop. 6.1.6 and Rem. 6.1.7 for
more details).

As the strategy suggests, one needs to compute locally analytic vectors in some period rings
(e.g., Brlg )- In the case of (¢,I')-modules, the concerned p-adic Lie group is Gal(K e /K)
(see Notation 1.1.1), which is one-dimensional. In the case of Lubin-Tate (¢, I')-modules, the
p-adic Lie group is Oy, which is of dimension [F': Qp]. In general, it would be very difficult
to calculate locally analytic vectors for p-adic Lie groups of dimension higher than one.
In [Berl16], Berger considers firstly the “F-analytic” locally analytic vectors, which behave
similar to the one-dimensional case. He then uses these “F-analytic” locally analytic vectors
to determine the full space of Of-locally analytic vectors. In our paper, the concerned p-adic
Lie group is G = Gal(L/K), which is of dimension two. The key observation is that we need
to firstly consider é—locally analytic vectors which are furthermore Gal(L/K)-invariant;
these locally analytic vectors then again behave similar to the one-dimensional case. Indeed,
we have:

Theorem 1.2.1. Let (BT 1) P8=L denote the set of Gal(L/Kpye)-(pro)-locally analytic
vectors which are furthermore fized by Gal(L/K). Then we have

(Bl )™ = Unsop ™ (B, 1),

where BIig,Koo is the “Robba ring with coefficients in Kg”.

With the above theorem established, we can also completely determine the G- locally

analytic vectors in B gL since the statement is too technical, we refer the reader to Thm.
5.3.5.
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1.3. Structure of the paper. In §2, we study the rings B! and B! (where I is an interval),
as well as their Gal(K /K,)-invariants which are denoted as ﬁﬁ(m and Bf(oo. In §3, we
compute locally analytic vectors in ]A?;f(oo; and in §4, we need to carry out similar calculations
when we replace K, with a finite extension. In §5, we compute the G—locally analytic vectors

in ]§£ All these calculations will be used in §6 to carry out the descent of locally analytic
vectors, giving us the desired overconvergence result.

1.4. Notations.

1.4.1. Conwvention on ring notations. In this paper, we will use many rings. Let us mention
some of the conventions about how we choose the notations; it also serves as a brief index
of ring notations.

(1) In §1.4.2, we define some basic rings. We also compare them with notations commonly
used in integral p-adic Hodge theory (see Rem. 1.4.3).

(2) In §2.1, we define the rings Al and B! (where I is an interval), which are exactly the
same as Al and B in [Ber08] (which are A; and By in [Ber02]). (See also the table in
[Ber08, §1.1] for a comparison of notations with those of Colmez and Kedlaya).

(3) When Y is aring, X C K is a subfield, we use Y to denote the Gal(K /X )-invariants of
Y. Some examples include when Y = :&I, ]§I, Al B! and X = L, Koo, M where M /K
is a finite extension. This “style of notation” follows that of [Ber08], which uses the
subscript *x to denote Gj~-invariants.

(4) In §2.2, we define the rings A’ and B’ and study their G-invariants: A%w and B%OO.

These rings “correspond” to those rings studied in [Col08, §6.3, §7]. Our A! and B!
are different from A’ and B’ in [Col08] (cf. Rem. 1.4.3); fortunately, we are mostly
interested in A%OO and B%OO, and since we are using K., as subscripts, confusions are
avoided.

1.4.2. Period rings. Let ET = l'glOF/pOF where the transition maps are x +— 2P, let
E := FrET. An element of E can be uniquely represented by (SU(n))nzo where z(" ¢ Cp and

()P = (2(™); let v be the usual valuation where vz () := v,(2()). Let

E E
At =W(E"Y), A:=W(E), BT:=AT[1/p], B:=A[l/p],

where W(-) means the ring of Witt vectors. There is a unique surjective projection map

6: AT — Oc,,, which lifts the projection Et — Oy /p onto the first factor in the inverse limit.

Let B:{R be the usual period ring (so the § map extends to B(J{R). Let € = {pn}n>o0 € E',

let [¢] € At be its Teichmiiller lift, and let ¢ := log([¢]) € By as usual.

Let 7 := {m,}nz0 € ET. Let Ej_ = k[z], Ex,, := k((x)), and let E be the separable
closure of Eg_ in E. By theory of field of norms (cf. §4), Gal(E/Eg_) ~ G . Furthermore,
the completion of E with respect to vg is E.

Let [z] € At be the Techmiiller lift of 7. Let A}“(OO := Wu] with Frobenius ¢ extend-
ing the arithmetic Frobenius on W (k) and ¢(u) = uP. There is a W (k)-linear Frobenius-
equivariant embedding A}w < A" via u — [r]. Let Ak_ be the p-adic completion of
A;}w [1/u]. Our fixed embedding A;goo < A" determined by m uniquely extends to a -

equivariant embedding Ag,_ — K, and we identify A with its image in A. We note that
A is a complete discrete valuation ring with uniformizer p and residue field Ex_ .

Let Bg., := Ag_[1/p]. Let B be the p-adic completion of the maximal unramified
extension of By inside ]§, and let A C B be the ring of integers. Let AT := ATNA. Then
we have:

(A)~ = Ak, (B)“~ =Bk, (A" > =A% .
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Remark 1.4.3. (1) The following rings (and their “B-variants”) that we defined above,
Ef, E, A, A, AL, Ax., A A"

are precisely the following rings which are commonly used in integral p-adic Hodge
theory (e.g., in [GL]):

R, FrR, W(R), W(FrR), &, 0Og Og,, 6"

(2) The rings A and B (and their variants, e.g., A/, B!, in §2.2) are different from
the “A” and “B” in [Ber08] or [Col08]. Indeed, they are the same algebraic rings,
but with different structures (e.g., Frobenius structure). In the proof of our final
main theorem (Thm. 6.2.6), we will use the font A, B to denote those rings in the

(p,T')-module setting.

1.4.4. Valuations and norms. A non-Archimedean valuation of a ring A is a map v : A —
R U {400} such that v(z) = 400 <& = = 0 and v(z + y) > inf{v(x),v(y)}. It is called
sub-multiplicative (resp. multiplicative) if v(zy) > v(x) +v(y) (resp. v(zy) = v(z) + v(y)),
for all z,y. All the valuations in this paper are sub-multiplicative (some are multiplicative).
Given a matrix T' = (t;)i;, let v(T") := min{v(t;;)}. A non-Archimedean valuation v on A
induces a non-Archimedean norm where ||a|| := p~¥(®), and vice versa.

1.4.5. Some other notations. Throughout this paper, we reserve ¢ to denote Frobenius op-
erator. We sometimes add subscripts to indicate on which object Frobenius is defined. For
example, @gy is the Frobenius defined on 9. We always drop these subscripts if no confusion
arises. We use Mg4(A) (resp. GLg(A)) to denote the set of d x d-matrices (resp. invertible
matrices) with entries in A.

Acknowledgement. We thank Laurent Berger and Tong Liu for many useful discussions.
The influence of the work of Laurent Berger and Pierre Colmez in this paper will be evident
to the reader. H.G. is partially supported by a postdoctoral position in University of Helsinki,
funded by Academy of Finland through Kari Vilonen. L.P. is currently a PhD student of
Laurent Berger at the ENS de Lyon.

2. A STUDY OF SOME RINGS

In this section, we study some rings which are denoted as B! and B! (where I is an
interval). In particular, we study their Goo-invariants (see 1.1.1 for G), which are denoted

as Bé(oo and B%OO. The results will be used in Section 3 to further determine the link between
these rings. All results in this section are analogues of their Gp~-versions, established in
[Ber02, Col08]; the proofs are also similar.

2.1. The ring B! and its Goo-invariants. Let T = -1 € E+ (this is not m), and let
[7f] € AT be its Teichmiiller lift. When A is a p-adic complete ring, we use A{X,Y} to
denote the p-adic completion of A[X,Y]. As in [Ber(02, §2], we define the following rings.

Definition 2.1.1. (1) Let

Al = AT [%T, [7;]}, when r, s € ZZ°[1/p],r < s, (r,s) # (0,0);
APl = A when r € Z2[1/p);
™
Alfootod . A

(2) If I is one of the closed intervals above, then let B! := AT[1/p].
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If I is one of the closed intervals above, then Al is p-adic complete; we use V! to denote
its p-adic valuation (which is sub-multiplicative). When I C J two closed intervals as above,

then A7 c Al , and the completion of B’ with respect to the induced topology from V7 is
B’
Remark 2.1.2. We do not define A0,
Definition 2.1.3. When r € Z=°[1/p], let
Blroo) Bl
where s, € Z~%[1/p] is any sequence converging to +oo.

Remark 2.1.4. (1) For any interval I such that A’ and B/ are defined, there is a natural

bijection (called Frobenius) ¢ : Al — AP! which is valuation-preserving.
(2) For n € Z2°, let r,, := (p — 1)p" L. Let

I := {[re, 7], [re, +00], [0,74], [0, +00]}, where £ < k run through Z=°.

By item (1), in many situations, it would suffice to study A (and BY) for I € I,
or I = [+00,+00]. The cases for I a general closed interval can be deduced using
Frobenius operation; the cases for I = [r,+00) can be deduced by taking Fréchet
completion.

There is another type of valuation W/ on ]~3[’"’+°°}, which we quickly recall. A particularly
useful fact is that Wl are maultiplicative valuations (not just sub-multiplicative), see Lem.
2.1.6 below.

Definition 2.1.5. Suppose 7 € Z=°[1/p], and let z = > k>ko pFlz] € B+l Denote
wy(z) := inf;<p{vg(zi)} . See [Col08, §5.1] for the properties of wy; in particular, we have
wi(x + y) > inf{wg(x), wr(y)} with equality when wy(z) # wg(y). For s > r and s > 0, let

[s,8] s p_1_~ _ p_l.
WSSl (x) . klg}fo{k + s vg(Tr)} klélzfo{k + s wi(x)}.

When r = 0, then B+l = B , let
w0 () .= inf {k}.
(z) - 0{ }

For I C [r,+00) a non-empty closed interval, let

Wi(z) = iréfl{w[wl (z)}.

Lemma 2.1.6. Suppose r < s € Z=°[1/p|, then the following holds.

(1) Suppose x € Bl then
e when s > 0, both k + p;sl vg(rr) and k + pgsl ~wi(x) go to +o0 as k — +oo,
and so Wsl(z) is well-defined;
o whenr =s=0, W% s obviously well-defined.

(2) Alr+eel gnd Alm+e2l[1/[7]] are complete with respect to W1

(3) Wl (zy) = Wl (z) + Wnrl(y), Ve, y € Blrtedl,

(4) For z € Bl and s > 0, we have VI3l (z) = (WSl (2) ], where VI™3(2) is defined
by considering r as an element in Bl

(5) For z € BIrt> we have Wl (z) = inf{W 7] (z), Wlssl(z)}.

(6) For s > 0, the completion of BIr+o<l with respect to WUl is isomorphic to Bl gs
topological rings. Thus, we can extend W] to B! such that forx € B we have
ylrsl (z) = LW[T’S] (z)] and Wirs] (r) = inf{W[r”"} (x), W sl ()}

(7) Bl s complete with respect to its Fréchet topology, and contains BIn+l 45 g
dense subring.




LOCALLY ANALYTIC VECTORS AND OVERCONVERGENT (¢, 7)-MODULES 7

Proof. All these results are well-known. Item 1 and 2 is [Col08, Prop. 5.6]; note that the ring
AT in Joc. cit. is our AlP=D/(r)+e2l[1 /[7]], and the ring of integers in A(©7] is precisely
our Al=1/r)+el Ttem 3 is [Berl0, Lem. 21.3]. Item 4 is [Ber02, Lem. 2.7]. Item 5 is
[Ber02, Lem. 2.20]. Item 6 follows from Item 4. Item 7 is [Ber02, Lem. 2.19]. O

Remark 2.1.7. (1) Suppose z € B+l then Wl(z) > 0 does not imply that z €
A0l it only implies that 2 € A" (when r > 0). However, if z € Al»+ol[1/[7]],
then Wl(z) > 0 if and only if z € Al+o°,

(2) In comparison to Lem. 2.1.6(2), B+l is not complete with respect to Wl
indeed, its completion is B[""] by Lem. 2.1.6(6).

(3) In comparison to Lem. 2.1.6(6), the completion of A"+t with respect to W1l
is only strictly contained in Alrsl (which is already the case when r = s by Lem.
2.1.6(2)). Also note that Alrsl ig complete with respect to W™l since it is the ring
of integers in Bl (Thus, A0 ig 4 closed subset of A7 with respect to Wi,

Let I be an interval. When BY (resp. A) is defined, let ]:3;%Oo := (B1)%< (resp. Af(oo =
(A1G=). Recall that as in [Ber02, §2.2], when r, € I, there exists ¢, : B! < Bl Let
0: B(TR — Cp be the usual map.

Proposition 2.1.8. Let q:= ([e]? —1)/([e] = 1). Suppose I = [rg, 1] or [0,7]. We have
(1) Ker(f oy, : AT — Cp) = wk_l(q);xl = £
Ker(f o, : B — Cp) = *~ i(q)BI =¥
(2) Ker(@ou : Al — Cp) = “EZWIRL
(

W) X1
E(u))BI.

-@tq

—~

A P
Ker(6 o ¢, : Bﬁ(oo —Cp) = QOIC(E( ))B%oo'

Proof. Ttem (1) is easily deduced from [Ber02, Prop. 2.17], because E(u) and ¢~ !(q) generate
the same ideal in AT. Ttem (2) is easy consequence of (1). O

Lemma 2.1.9. Suppose £ < k, then we have the following short exact sequence
0— K[Ig’;w] — _/XE,’;ZFOO] ® A[I%;:k] — K[};if” — 0.

Proof. The proof is analogous to [Ber02, Lem. 2.27]. Indeed, via [Ber02, Lem. 2.18], we
have

0— K[O,«FOO} - K[W,‘FOO] ) A[O’Tk] — A[T@,T‘k} — 0.

Take G-invariants, and consider the long exact sequence, it suffices to show that the map
§: Ak o HY (G, AF[1/p)

is zero map. By exactly the same argument as in [Ber02, Lem. 2.27], it suffices to show
that H'(Goao, mgy) = 0 (where mg, is the maximal ideal of ET); and this is an analogue of
[Col98, Prop. IV.1.4(iii)]. Indeed, the ring ET satisfies the conditions (C1), (C2) and (C3)
in [Col98, IV.1] with respect to our APF extension K, (note that the Ko in loc. cit. is
our Kpe); the proof is verbatim as in [Col98, Rem. IV.1.1(iii)], since the theory of fields of
norms for our extension K also works (see e.g. [Bre99, §2] for a detailed development). [

o o
Lemma 2.1.10. (1) ARl = Aj (#5My — Aj (25},
(2) A[Te,JrOO] Koo uepe}
" k
(3) Aferd = A {5 )

uer p

Proof. Ttem (1) is an analogue of [Ber(02, Lem. 2.29]. It suffices to prove it when k£ = 0. Since
E}gw /ueE}Qw has a basis of u’ for i € Z[1/p] N[0, e), we can easily deduce that 6 : A}oo —
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. L . <0, . ~o,
O,¢_ is surjective. Given z € A[K:OO], we recursively define two sequences x; € A[K;O] and
oo

a; € K‘[Eoo as follows:
e let zg = x; _
e choose any a; € A}m such that 0(a;) = 6(z;) € Oy _;
o let x4 = (2, — a;) - %, then ;11 € A[Ig,ro] by Prop. 2.1.8.

Then it is easy to check that = Y5 ai(E(u)/p)’ with a; — 0.

For Item (2), again it suffices to consider the case £ = 0. Let x € A[I@jw}, write it as
x = Zkzopk[zk], then clearly zj, € (E)C=. Since (pro)/(p — 1) - k + vg(TE) — +00 as
k — 400, s0 k + vg () = +00, and so vg(zy - 7%) — +00. Then one can easily show that
v €A} {Z}.

Consider Item (3). By Lem. 2.1.9, any element of x € A[IZ:’“] can be written as a sum

x =a+bwitha € A[IZ:FOO] and b € _/1[[3;2’“], so we can apply Items (1) and (2) to conclude. O

Lemma 2.1.11. The ring ]~3[;;‘;+°O] in dense in ]T%[I?’JFOO) for the Fréchet topology.

o0

Proof. The proof is verbatim as the proof of [Ber02, Prop. 2.30], by changing ¢ there to
E(u). O

2.2. The ring B! and its G..-invariants.
Definition 2.2.1. (1) When r € Z=°[1/p], let
A[’I’,-I—OO] = A M ;&[7’7—"_00}’ B[T7+OO} = B M ]§[7",+OO]
(2) When 7,5 € ZZ9[1/p], s # 0, let B[l be the closure of B+l in B with respect
to Wsl. Let Alms! .= BIsIn A8l which is the ring of integers in B
(3) When r € Z=°[1/p], let
B[r,—i—oo) — mn>OB[r,sn]
where s,, € Z>%[1/p] is any sequence increasing to +oc.

Definition 2.2.2. For 0 < r < 400, let Al»+ol (Ko) be the set consisting of Laurent series
[ = 2wz apT* where a, € W(k) such that f is a holomorphic function on the annulus
defined by

p—1. 1]

ep r
(Note that when r = 0, it implies that aj, = 0,Vk < 0). Let BTl (Ky) := A+l (K)[1/p].

UP(T) € (07

Definition 2.2.3. Suppose f = >, ., a;T" € B+l (Ky).
(1) When s > r, s >0, let

-1 k
Y

ps e

[s,s] .— inf p
W) = inf {p(ar) +
(2) When r =0, let
WIORI(f) = nf {up(ax) }
(3) For I C [r,4o0] a non-empty closed interval, let

WH(z) == chéfIW[o"a] (x).

Definition 2.2.4. Let BI"*)(Kp) be the completion of BI">°l(Ky) with respect to W3,
Let A*(Kj) be the ring of integers in BU"*)(Ky) with respect to W,
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Lemma 2.2.5. For I = [r,s] C [0,+00), we have W!(z) = inf{W"l(z), Wlssl(x)}. Fur-
thermore, when s > 0, BI"*l(Ky) is the set consisting of Laurent series f = > okez apT* where
ar € Koy such that f is a holomorphic function on the annulus defined by

p—1 1 p—1 1
well—=.2 =

Proof. This is easy. ([

Lemma 2.2.6. Suppose r < s € Z=[1/p].
(1) The map f(T) — f(u) induces bijections
ALFl () ~ A[Ig’ioo], when 7 = 0;
Ar+l(gggy o~ Al /u] when > 0,
Furthermore, for f € ATl(Ky), s € [r,400), we have
WISI(F(T)) = WEI(f (w).
(2) The map f(T)— f(u) induces isometric homeomorphisms
A[O’S](KO) ~ A[lg’s], when r =0,s > 0;
Arsl(Ky)  ~ A[;;S}, when r > 0.

Before we prove the lemma, we introduce the section s and use it to build an approximating
sequence.

2.2.7. The section s. Denote

S AKoo /p — AK()O
oo Gitl, let s(T) == 3", [aiu’. One can see that s(T) €
A[I?:w][l Ju] for any r > 0. Furthermore, for any k& > 0, we have

the section where for 7 = ),

(2.2.1) wi(s(T)) = igf{wk([@]ui)} = émin{i 2a; # 0} = vg(T),

where the first identity holds because wy([@;]u’) are distinct for different i.

2.2.8. An approzimating sequence. Let r > 0, given x € A[T o] [1/u], define a sequence {z,}

in A[;;;:oo][l/u] where zo = x and z,41 :=p l(asn — s(Ty)). Then r =7 ,~oP"5(Tpn), and
we have that B

Wg(Tnt1) = Wgt1(PTnt1)
> inf{wgt1(2n), we1(s(Tn))}
= inf{wkii(xn), wo(x,)}, by (2.2.1),
= wra(zy).
Iterate the above process, we get
(2.2.2) wo(Tn) = wp(xg) = wy(x).

Proof of Lem. 2.2.6. Lem. 2.2.6 is an analogue of [Col08, Prop. 7.5], and the proof uses
similar idea. It suffices to prove Item (1). Note that when s = 0 (in the case r = 0), then
everything is trivial; so in the following, we suppose s > 0.

Part 1. Given f(T) = 3,5 axT* € Alr+l(Ky), then for any s € [r, +00),s > 0,

} WESI(F(T)).

WE(f () > inf (W (aru)} = igf{vp(ak)
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When r > 0, vy(ax) + pp%rl : % — 400 for k — 400 or k — —o0, so f(u) € AE;;’;OO}[I/U] when
r > 0, by noting that A[I?:m}[l/u] is complete with respect to W1, When r = 0, then it

is clear that f(u) € A[Igioo}. Also, it is obvious that the map f(T') — f(u) is injective.

Part 2. Given z € A[I?:oo}[l/u] when 7 > 0 (resp. = € A[Ig;—:oo] when r = 0), let {z,}
be the sequence constructed in §2.2.8 (note that when z € A[Ig’ioo], then z,, € A[Ig’ioo},Vn
). Let f,(T) be the formal series Y, 5 fnxT" such that f,(u) = s(Z), and let f(T) :=
anopnfn(T)- By (2.2.2),

U}E(ﬂ> = wo(Tn) > wn (),

so the expression for s(Z;) would be of the form }_,~ ., () [@]u’ (recall that vg(u) = 1/e).
Thus fu(T) = X isewn(z) [@;]T", and so

whsslpr (1)) = wissl (prrleen@1y > 5 4 p-1.1, ew(z) > Wl(z).

ps e
When r > 0, n + pp;l wp(z) — 400 when n — +oo, so f(T) converges in AM+l(Ky).
(When r = 0, f(T) automatically converges in AF>l(Ky)). It is clear f(u) = z, and
WISl (£(T)) > Wl (). Combined with Part 1, this concludes the proof. O

Corollary 2.2.9. We have

AL < ap
A = A?;oo{“;pk},
AR = AL
NG S )
Proof. This easily follows from Lem. 2.2.6 and Lem. 2.2.5. O

Corollary 2.2.10. Suppose [r,s] C [, s] C [0,+00], then A[;;:j NAl"s = A[gj.

Proof. Let f € A[sz‘j N Al By Cor. 2.2.9, we can always write f = f; + fo, where
fi€e A[IT(’:OO} and fy € A[[gi]; it then suffices to show that f; € A[;(/j. But indeed we can
show that f; € A[Ir(:joo], using similar argument as in [CC98, Lem. 11.2.2]. O

3. LOCALLY ANALYTIC VECTORS OF SOME RINGS

The main result in this section is to calculate locally analytic vectors in (]§] YGoo = ]§§(Oo
Actually, there is no group action on (]§I )G°° since G is not normal in Gg; what we do

instead is to calculate locally analytic vectors in ﬁi ;= (B)Gal(E/L) (with respect to the
Gal(L/K)-action) that are furthermore G -invariant.

3.1. Theory of locally analytic vectors. Let us recall the theory of locally analytic
vectors, see [BC16, §2.1] and [Berl6, §2] for more details. Recall that a Q,-Banach space
W is a QQ-vector space with a complete non-Archimedean norm || - || such that [law| =
lallpl|w],Va € Qp,w € W, where ||a||, is the usual p-adic norm on Q,. Recall the multi-
index notations: if ¢ = (cy,...,¢q) and k = (kq,...,kq) € N? (here N = ZZ0), then we let

k _ ki kq
Co=cp XXyt
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3.1.1. Let G be a p-adic Lie group, and let (W, || - ||) be a Q,-Banach representation of G.
Let H be an open subgroup of G such that there exist coordinates c1,...,cq : H — Zj, giving
rise to an analytic bijection ¢ : H — Zg. We say that an element w € W is an H-analytic
vector if there exists a sequence {wy }yene With wix — 0 in W, such that

g(w) = c(g)wx, Vg€ H.
keNd
Let WH-a0 denote the space of H-analytic vectors. WH-" injects into C**(H, W), and we
endow it with the induced norm, which we denote as || - || 7. We have ||w||g = supyend || wk]|,
and WH-a" i a Banach space.

We say that a vector w € W is locally analytic if there exists an open subgroup H as above
such that w € WH2n_ Let W2 denote the space of such vectors. We have W? = Uy WH-an
where H runs through open subgroups of G. We can endow W' with the inductive limit
topology, so that W' is an LB space.

Lemma 3.1.2. Keep notations in §3.1.1. If W is furthermore a ring such that ||xy| <
[z - lyll for z,y € W, then
(1) W= is a ring, and |lay|g < |lelm - lylm if .y € W=,
(2) Suppose w € W* and w € WG then 1/w € WE2, (In particular, if W is a field,
then W12 is also a field.)

Proof. Ttem (1) is [BC16, Lem. 2.5(i)]. Item (2) is stronger than [BC16, Lem. 2.5(ii)], but
this stronger statement is proved in loc. cit.. O

3.1.3. Keep notations in §3.1.1. By the paragraph preceding [BC16, Lem. 2.4], there exists

some (not unique) open compact subgroup G of G such that there exist local coordinates
n—1

¢: G1 — Z{, which furthermore satisfy ¢(G,) = (p"Zp)* where G,, := G . Then we have

Wla — Uann—an‘

Lemma 3.1.4. ([BC16, Lem. 2.4]) Keep notations in §3.1.3. Suppose w € W2 then, for

allm >n, w € WG gnd |wl||g,, <|wl|a,. Furthermore, |wl||g,, = ||w| when m > 0.

3.1.5. Let W be a Fréchet space, whose topology is defined by a sequence {p;}i>1 of semi-
norms. Let W; denote the Hausdorff completion of W for p;, so that W = yan L W;. If W is
a Fréchet representation of G, then a vector w € W is called pro-analytic if its image ;(w)
in W; is a locally analytic vector for all i. We denote by WP? the set of such vectors. We
can extend this definition to LF spaces (cf. [Berl6, §2]).

Proposition 3.1.6. Let G be a p-adic Lie group, let B be a Banach (resp. Fréchet) G-ring,
and BC B a subring (but not necessarily G-stable). Let W be a free B-module of finite rank,
let W:=B®g W, and suppose there is a B-semi-linear G-action on W. Let B := BN B*?
and W .= W N W% (resp. BP* := BN B and WP := W N WP?),

If W has a B-basis w1, ...,wq in which g — Mat(g) is a globally analytic (resp. pro-

analytic) function G — GLg4(B) C My(B), then
Wi = @?ZlBla ~w; (resp. WP* = @?Zpra -wj).

Proof. By [BC16, Prop. 2.3] (resp. [Berl6, Prop. 2.4]), we have W = @?:1313 -wj (resp.

Wra = @?leg’pa -wj), then we can take intersections with W to conclude. O
In the following, we give a useful criterion to determine analytic vectors for the p-adic Lie

group Zjy.

Lemma 3.1.7. Suppose (W, ||-||) is a Qp-Banach representation of Z,. Let T be a generator

of Zp. Givenx € W, then x € W22 if and only if the following hold:

(1) (bg:% € W,Vi >0, where log 7 denote the operator (—1) - > 5, (1 — TV /k;
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(2) |[(log )i (x)/d!|| — 0 as i — +oo;
(3) for all a € Zy,

a i (log7)'(2)
(3.1.1) (z) =) a R
1=0
If the above holds, then logT(x) € W2 and for all a € Z,, we have (logT?)(x) =
a-log7(z).
Proof. This is standard, cf. [ST02, §3]. O

Lemma 3.1.8. Suppose (W, || - ||) is a Qp-Banach representation of Z,, such that ||g(w)|| =
|wl|,Yg € Zp,w € W (i.e., || - || is an invariant norm). Let x € W. Let T be a generator of
Zy. If there exists some r < inf{1/e,p~ Y@=V} (here e is Euler’s number 2.718...), some
R >0 and ky € Z2°, such that

(3.1.2) [(1=79*@)| < R, forallacZyk < ko;
(3.1.3) (1 =79*@)| < % foralla€Zy k> ko,
then x € W2p-an,

Proof. Step 0: Partial log. Let A be a Qp-algebra. Given a € A, denote

p"—1

1— A
log,, a := Z QEA.

- (3
=1

If A is furthermore a Banach algebra, and H@H — 0 when i — +o00, then we denote

loga = (1) - :;Of (1-a)' (and say loga is well-defined). Suppose a,b € A such that

1

ab = ba, then we have the identity:

i

(1_.ab)i _ (1—.a)i S <i— 1) Cal(1 — a)i i - (1 —‘b)j.

1 1 j—1 J

j=1
So we have (cf. [Carl3, Eqn. (3.4)]):

log,,,(ab) = log,, a + Z <a] : Z (l > (11— a)’_j> . —.
i=1 i=j
Note that (cf. the equation below [Carl3, Eqn. (3.4)])

pm—1 .

. 1\ . . o

(1-x)7 -3 <; B 1>X’_J €1+ X7 7, [X].
=7

Apply the above identity with X = 1 — a, then we get

p™—1 i
(3.1.4) log,,, (ab) — log,, a — log,, b = Z fil—a)-(1—a)" 7. u — b)],

J=1

where f;(X) € Z,[X] are some polynomials.

Step 1: Logarithm of x. Using condition (3.1.2) and (3.1.3), it is clear that for any a € Z,,
(log 7)(z) is well-defined. Furthermore, there exists some ' > 0, such that

(3.1.5) |(log7*)(x)|| < 7', Va € Z,.
We claim that
(3.1.6) (log7®)(x) = a- (log7)(x), VYa € Zp.

To prove (3.1.6), we first show that
(3.1.7) (log 7**%)(z) = (log 7*)(z) + (log 7°)(z), Ve, B € Z,.
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Using (3.1.4), we have
(3.1.8)

-1 .
m_ (1 —71P8)]
(08, 7) (&) (log,, 7)) — Togy 7)) = 3 y(1=7)- (1= 72" LT,
j=1
Since || - || is an invariant norm, it is easy to see that
(3.1.9) 1)) < llwll, Vw € W, f(X) € Zy[X] a polynomial.

When p™/2 > ko (so max{j,p™ — j} > ko,Vj), the norm of the right hand side of (3.1.8)
is bounded by p™rP"/2 (using (3.1.3) and (3.1.9)). Let m — +o0, and so (3.1.7) is proved.
Now given a € Zy, let a = ay, + p™by, where ap, € Z, by, € Zy,. By (3.1.7),

(log 7*)(z) = (log 7%")(z) + (log 7" )(2) = am - (log 7)(x) +p™ - (log 7°")(z).
Use (3.1.5), and let m — +o0, we can conclude (3.1.6).

(log 7)* (x)

Step 2: General term of a summation. Consider the summation Y ;2 i where

a € Zy, then its “general term” is of the form:
1 (1 —7a)atti(g)
k! SRRRET
Suppose > i; =n, then n > k. Let

1(1—7%"(x .
T = sup{||k'(21)1k()H7 where sz :n}.

n>k

, where i; > 1.

Note that we have

| <r".pr-1. (—)k, when n > kg.

ik k

Fix a k, consider the function f(X) = r¥ . X* with X > k. Its logarithm is X In7 + kln X,
which has derivative Inr + k/X < 0 since r < 1/e. Thus we conclude that
1 (1—74)" &k 1
Hi(Ti)(x)H S T'k .ppfl . (7)k — (rppil)k’ when n Z kO'
k! 11 -1k k

This implies that r, < +o00,Vk. Furthermore,

107 L
Hk:! i

1
e < (rpp=1)k, when k > ko,

_ 1 a\k
and so limg g, — 0 since r < p~»-1. This implies that the summation Y ;2 w

converges absolutely.

Step 3: Conclusion. Using Step 2 and (3.1.6) in Step 1, it is easy to show that all
the itemized conditions in Lem. 3.1.7 are satisfied; in particular, the equality (3.1.1) holds
because by Step 2, we can “re-arrange” the order of the summation. Thus x € W22, O

3.2. Locally analytic representations of G. Let G = Gal(L/K) be as in Notation 1.1.1.
In this subsection, we mainly set up some notations with respect to representations of G.

Notation 3.2.1. (1) Recall that:

e if Koo N Ky~ = K, then Gal(L/K =) and Gal(L/K.,) topologically generate ¢
(cf. [Liu08, Lem. 5.1.2]);

o if Koo N Kp~ 2 K, then necessarily p = 2, and Gal(L/Kp~) and Gal(L/K)
topologically generate an open subgroup (denoted as G') of G of index 2 (cf.
[Liul0, Prop. 4.1.5)).

(2) Note that:
o Gal(L/Kp~) ~ Zy,, and let 7 € Gal(L/K,~) be a topological generator;
e Gal(L/Kx) (C Gal(Kpe/K) C Z,;) is not necessarily pro-cyclic when p = 2.
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If we let A C Gal(L/Ks) be the torsion subgroup, then Gal(L/Ky)/A is pro-
cyclic; choose 7' € Gal(L/K ) such that its image in Gal(L/K)/A is a topological
generator.

(3) Let 7, := 77" and 7/, := (7/)?". Let Gn C G be the subgroup topologically generated
by 7, and 4},. These G, satisfy the property as in §3.1.3.

Notation 3.2.2. (1) Given a G-representation W, we use
WT:]', W’y:l

to mean
WGal(L/Kyoo)=1  1p7Gal(L/Koo)=1

And we use
e pTeean e
to mean
W Gal(L/Kpee)la  pprGal(L/(Kpoe (mn)))-la -y Gal(L/Koo)-la,
(2) Let
_log "
=

B log g
log,, x»(9)

be the two differential operators (acting on G’—locally analytic representations).

Vit forn>0, V,: for g € Gal(L/K) close enough to 1

Remark 3.2.3. Note that we never define v to be an element of Gal(L/K); although when
p > 2 (or in general, when Gal(L/K ) is pro-cyclic), we could have defined it as the topolog-
ical generator of Gal(L/K). In particular, although “y = 1”7 might be slightly ambiguous
(but only when p = 2), we use the notation for brevity.

Lemma 3.2.4. Let W=l .= wlan W=l then
WT—la,'yzl C Wé—la_

Proof. This can be deduced from the fact that any element g € G (or g € G’ when Ko N

Ky~ # K, cf. Notation 3.2.1) can be uniquely written as a product gig> for some g; €
Gal(L/K), g2 € Gal(L/Kp). (]

Remark 3.2.5. (1) Let WY1am=1.— wlaq =1 "then
Wv—la,rzl _ ((W)Gal(L/Kpoo)>Gal(Kpoo/K)—la

because Gal(L/Kp~) is normal in G.

(2) We do not know if the inclusion W& ¢ W12 0 W™ is an equality (very probably
not, see next item).

(3) We thank Laurent Berger for informing us of the following example. Let G = Go = Zy,
and let G = G1xGa. Let W be the space of continuous Q,-valued functions on G' with the
action of G by translations. Let f(z,y) = 0if (z,y) = 0 and f(z,y) = (2% -y*)/(2? +py?)
otherwise. Then f € W&-lanw&ela byt f ¢ W2, (Note that by Hartog’s theorem,
the analogous phenomenon does not happen over usual complex numbers).

C WG—la

3.3. Locally analytic vectors in L. Let L be the p-adic completion of L (cf. Notation
1.1.1). As in [BCI6, §4.4], consider the 2-dimensional Q,-representation of Gk such that

g (X%‘]) C(lg)) where x is the p-adic cyclotomic character. Since the co-cycle ¢(g) becomes

trivial over C,, there exists a € C), (indeed, o € L) such that ¢(g) = g(a)x(g9) — a. This
implies g(a) = a/x(g9) + ¢(g)/x(g) and so «a € L612, Now similarly as in the beginning of
[BC16, §4.2], let o, € L such that |jo — ]|, < p~™. Then there exists r(n) > 0 such that if
m > r(n), then [[a —anllg = |la—ayllp and o — o, € fGm-an (see Notation 3.2.1 for Gy,).
We can furthermore suppose that {r(n)}, is an increasing sequence.
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Definition 3.3.1. Let H be a commutative Q,-algebra with a Hausdorff norm, and W C H
a Qp-subalgebra. For T' € H, let W{T'}},, be the vector space consisting of 3, a,TF with

a € W, and p™a; — 0 when k — +0o. One can view W{{T'},, as a subset of H.

Proposition 3.3.2. (1) fGa = Un>1 K (fr(nys Tr(n)) L — an tn-
(2) fjé-la,m:o — L
(3) LT2=1 = K.

Proof. Ttem (1) is [BC16, Prop. 4.12]; we quickly recall the proof here. Suppose z € [Gn-an,

For ¢ > 0, let
4 k+1
;= —lka—ankvlﬁ“x( ),
= LD - i ()

then there exists m > n such that y; € f/ém'an, and x = Yoyl — o)t in [Gm-an Then
the fact V,(y;) = 0 will imply that y; € K (i, mmn), concluding (1).

Consider Ttem (2). By [BC16, Prop. 6.3], there exists a non-zero element 3 € C, ® Lie G
such that 8 = 0 on f)é‘la; this implies that V; and V, satisfy a non-trivial linear relation
(as operators on f/é'la). Thus V., = 0 implies V; = 0, and so y; = 0 for ¢ > 1, concluding

(2).
Item (3) easily follows from (2). O

3.4. Locally analytic vectors in Eé(oo
Lemma 3.4.1. Suppose I = [ry,ri] or [0, rg].
(1) Alori] — ;&+{w’“(E(U))}.
(2) pAl 0 £EW) NE ( ))AI (E(u)):&[
(3) pAT 0 Al il _ pAlo Tkl
(4) If y € Ao 4 pAT and y; € At such that i — Zz s yz(@)i is in (Ker(6 o))’
for all j > 1. Then there exists some j > 1 such that y — ZZ —0 yZ(W)i € pAl.

Proof. (1) is easy analogues of [Berl6, Lem. 3.1]. When I = [ry,rg], (2)-(4) are easy
analogues of [Ber16, Lem. 3.2, Prop. 3.3]; one can prove them by simply changing Q. (resp.
7 ) in loc. cit. to @*(E(u)) (resp. p). When I = [0,74], (2) is easy analogues [Ber16, Lem.
3.2(2)], (3) is vacuous, and (4) easily follows from (1). O

For I a closed interval, note that (Ei, W) is a Q,-Banach representation of G (in par-
ticular, note that W!(p) = 1); also note that the valuation W/ is invariant under Galois
action.

Lemma 3.4.2. Suppose I = [r¢,ri] or [0, rg].
(1) There exists mo > 0 such that
t
p*(E(u))
(2) Suppose m > myg, then ¢~ "(u) € (]§£)Tn+m'an. Thus:

€ (B

" (u) € (B)em o=t ¢ (B

(3) Suppose x € ]§£ such that tx € (f;i)m—an} then x € (Ei)m—an'
(4) Suppose m > mg. Then

(BE)™ 77 01 (B(w) B, = o (B(u)) (B
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Proof. Consider Item (1). Denote F' := ©*(E(u)). Since F is the generator of Ker(f ot :
B! — Cp), we have % € Bi. Let mg > 0 such that when a € p"°Z,,

(3.4.1) (1 =79 (u) = u(l - [g]*) = up’t - h(p’t),  for some 6 > 0, h(X) € Z,[X].

By increasing my if needed, we can further assume that W7 (p? - %) = a > 0. We claim that
for all a € p™°Z,, there exists fs(X,Y) € W(k)[X,Y] (depending on a), such that

04\s . U 0
(34 =) = P

F
When s = 0, simply let fo = 1. Suppose (3.4.2) is valid for s — 1, then

TaS(F) : fsfl - Ta(fsfl)
[l 7 (F) '

Vs > 0.

t
1— asizt Qtsfl'
(1 =7(5) =tp’t)
Note that

TGS(F) ' fsfl - F- Ta(fsfl) = (Tas - 1)(F) : fsfl - F- (Ta - 1)(]0371)'

It is easy to see that (7% — 1)(F) = pt - G(u, pPt) and (7% — 1)(fs—1) = p’t - H(u, p’t) with
some G, H € W(k)[X,Y], so we can simply let

TGS(F) : fs—l - I Ta(fs—l)
pit ’

fs =
concluding the proof of (3.4.2). By (3.4.2),

Pt
F
Thus it is easy to see that for the group generated by p™°t (~ Z,), the conditions (3.1.2)
and (3.1.3) in Lem. 3.1.8 are satisfied (if needed, we can increase myg to increase «), and we
can conclude (1).

Item (2) can be easily deduced using (3.4.1) and Lem. 3.1.8.

For Item (3), one can assume that n = 0 (the general case is similar). Write I = [r,s].
Since W = inf{W ] Wl*s} and both Wl and W5 are multiplicative valuations, it is
easy to see that there exists a constant ¢(I) > 0 depending on I only, such that

W17 () > W - (B 2 0+ (s + Do

W(y) > W(ty) — e(I), Vye B,
Using this, and the fact that (1 —7%)(tz) =t- (1 —7%)(z), it is easy to see that if tz satisfies
the itemized conditions in Lem. 3.1.7, then so does x.
For Item (4), suppose y € ]A?;i such that *(E(u)) -y € (ﬁi)m—an’ it suffices to show that
Yy € (]~3£)Tm‘an. By Item (1), m - oF(E(u)) -y = ty is an analytic vector, and we can
conclude by Item (3). O

Definition 3.4.3. Define
Aj oy T (pim(A?(moj)’ A%(oo,oo = UmZOAI

Koo,m:
Define Bﬁ{w . and B%OO oo Similarly.

Theorem 3.4.4. Suppose I = [ry, 1] or [0, 7).

(1) Let mg be as in Lem. 3.4.2, then (Ki)TmM'anﬁzl C A%mm when m > my.
(2) (AL = A o
(5) (B Hyrpan=t = Bt

Koo,00 °

(4) (B )yrena=t = BT

Koo,00*
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Proof. The proof of Item (1) follows the same strategy as in [Berl6, Thm. 4.4]. (Some
error of loc. cit. is corrected in the errata, posted on Berger’s homepage.) Suppose z €

(Ki)Tm%‘an’“’:l. Suppose ky, > 0 such that we have

k
u°P

T = ( Yonz e ATl L pn AT,

p
(Note that when I = [0,7y], we can choose k, = 0). Then by Lem. 3.4.2(2) (and Lem.
312(1))’ T, € (Ai)Terk—an,fy:l. S0

80 1(za) € (OF) =1 = Oy

where the last identity follows from similar argument as in [BC16, Thm. 3.2]. Since 6 o
t(97™(u)) = T4k, there exists y, 0 € W(k)[¢™ " (u)] such that

7Tm+k)’

o p(xn) =00 ti(yno)-

By Lem. 2.1.8, x;, — yno0 = (F/p) - xpn,1 with 1 € A’ where F := ©*(E(u)). By Lem.
3.4.2(4), zp1 € (Ai)TmH“‘mW:l. Applying this procedure inductively gives us a sequence
{Yn,i}ti>o0 where y,,; € W(k)[™"(u)] such that

Zn = (Uno + (F/P)ynt + - + (F/D) M ynio1) € (F/p)'AL.
By Lem. 3.4.1(4), there exists j > 0 such that

(3.4.3) o = (Uno + (F/D)ynt + -+ (F/p) yn;j1) € pAL,
Note that the left hand side of (3.4.3) belongs to K[LO”] + p”;ii (since yp; and F/p are in
A[LO’T’“}), and so it further belongs to

(A[LO’TI“] +p"AL) npAl = p(A[LO’Tk] +p" tAL), by Lem. 3.4.1(3) .
Let
o = (Yno + (F/P)ynt + -+ (F/pY " ynj-1) = pal,.
By Lem. 3.4.2(2), yn,; € (Ai)%%'anﬁ:l, and so x|, € (Ai)%%'anﬁzl. Apply to ], the

same procedure that we applied to x,, and proceed inductively. In the end, we will get
{Un,i }i<j, for some j, > 0 where g,; € W(k)[p~"(u)], and

G = Gn0 + (F/D)n1 + -+ (F/P)" ™ gt

such that z,, — g, € p"AI. Let z,, := (%)k“gjn, then z, € wfm(Az;:[r’“’rk}) and z, converges
U oo

to x as elements in A7+ (with respect to WIrems]) and so z € @‘m(Az;;zyk’rk}). By Cor.
2.2.10, we have
v e AL YA AT = oAy = AL

Item (2) then follows from (1). For Items (3) and (4), one can argue similarly as in [Ber16,
Thm. 4.4(3)]. O

Remark 3.4.5. Item (4) of Thm. 3.4.4 (and (1), (2) when I = [0, r¢]) will not be used in this

paper, but it has potential applications to the study of semi-stable Galois representations;

indeed, the ring B[[gioo)

is precisely the ring O 1y in [Kis06].
Definition 3.4.6. (1) Define the following rings (which are LB spaces):
Bf := U5oB*>), Bt = U,50BI+l, Bl = u,5oBE™L
(2) Define the following rings (which are LF spaces):

B, = U2oBU), Bl = UnsB T, Bl

Corollary 3.4.7. (E’Lg’L)T'pa”:l = Umzogo_m(B;ri&Koo).

Ko '— UTZ()B[I?;:OO) .
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Remark 3.4.8. In comparison, by [Ber16, Thm. 4.4], we have

B =l,-pa _ - T
(Brig,L)T TP = Um>op m(Brig,Kpoo)>

where IB%Lg K - is the ring “Biig 5 in [Ber08]. (As we mentioned in Rem. 1.4.3, we use the
s p )
font “B” to denote the “B”-rings in (¢, ')-module setting).

4. FIELD OF NORMS, AND LOCALLY ANALYTIC VECTORS

In this section, when Ko, C M C L where M /K is a finite extension, we calculate G-
locally analytic vectors in B! which are furthermore invariant under Gal(L/M); the results
are parallel with the case for M = K.

4.1. Field of norms. In this subsection, we briefly recall the theory of field of norms de-
veloped by Fontaine and Wintenberger (cf. [FW79, Win83]). To save space, we refer the
readers to [Win83] for more details.

In this subsection, let Fq be a complete discrete valuation field with a perfect residue
field of characteristic p. Let E; be a fixed algebraic closure, and let EJ* be the maximal
unramified extension of F; contained in Fj.

If E2/E; is an algebraic extension, let £(E2/E1) be the poset consisting of fields E such
that £y C E C Ey and [E : Eq] < +00. Let

Xp,(Ez)= lm E
Ee€&(E2/En)
where the transition maps from E' to E (for £ C E') are the norm maps Ng//p. For
a € Xg, (E2), we denote it as o = {ap} g, cEcE, Where ap € E and Ng//p(ap) = ap when
E C E'. For any a € X, (E2), the number vg(ag) for E}* N By C E C Es is independent
of E (here, vg is the valuation such that vg(E) = Z U {cc0}); denote the number as v(«).

Theorem 4.1.1. [Win83, Thm. 2.1.3] Suppose E2/E is an infinite APF extension (cf.
[Win83, §1.2] for the definition of APF (and strict APF) extensions), then there exists an
element up, /g, € Xg, (E2) such that v(ug,/p,) = 1, and there exists a (valuation-preserving)
isomorphism

Xpy (B2) ~ kg, ((up,/5,)),

where kg, is the residue field of Ey (which is a finite extension of kg, ), and kg,((ug,/E,))
is equipped with the ug, g, -adic valuation.
Example 4.1.2. Let K, Kp~, Ky be as in Notation 1.1.1.

(1) When K = Kj, the elements i := {pn}n>1 defines an element in Xg (Kp~), and
f— 1 is a uniformizer of X (Kpe).
(2) The elements 7 := {m, },,>1 defines an element in Xk (K ), which is a uniformizer.

Let By C Ey C E3 where Ey/F is an infinite APF extension, and F3/Fj is finite extension
(so E3/E; is also an APF extension). Then by [Win83, §3.1.1], we can naturally define an
embedding Xg, (E2) — Xpg, (E3) (and we identify Xp, (E2) with its image).

Theorem 4.1.3. [Win83, Thm. 3.1.2] If E3/E> is furthermore Galois, then Xg, (Es3) is
Galois over X g, (E2), and there exists a natural isomorphism

Gal(XEl (E3)/XE1 (EQ)) >~ Gal(E3/E2)

Remark 4.1.4. We can also construct a natural separable closure of Xpg, (E2), see [Win8&3,
Cor. 3.2.3].

For any complete valued filed (A, v4) with a perfect residue field of characteristic p, let
R(A) == {(zn)plo : Tn € A, xh | = 20}

For z € R(A), let vg(x) := va(zo). Then R(A) is a perfect field of characteristic p, complete
with respect to vg.
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Theorem 4.1.5. [Win83, Thm. 4.2.1] Suppose Es/FE; is an infinite strict APF extension.
Let Ey be the completion of Eo. There exists a natural kg, -algebra embedding

Ap,/p, + Xp,(B2) = R(E») < R(EY).
Example 4.1.6. Note that R(C)) is precisely E. Using notations in Example 4.1.2, we have

(1) when K = K, for the embedding X g (Kpe~) — E, we have i — 1+ £ — 1;
(2) for the embedding Xk (K~ ) — E, we have 7 — 7.

4.2. Finite extensions of K., and locally analytic vectors. Let K, C M C L where
M /K is afinite extension (which is always Galois). In the following, given aring A (possibly
with superscripts), let Ay denote Gal(K /M )-invariants of A.

4.2.1. Ramification subgroups. Let G4, (where s > —1) denote the usual (upper numbering)
ramification subgroups of Gg. For any s > —1, let K .= ﬁt>sK . Forany K C ECK,

let B¢ .= ENE®. Let ¢(E) = inf{s : = FE} (called the conductor of F). See
[Col08, Lem. 4.1] for some properties of c(E) In particular, we have ¢(K,) = n — 1 (here
K, = K(m,)).

4.2.2. Finite extensions of K. Choose an o« € M such that M = Ky[a], and let M =

Kla]. Define M, = M(Wn) (note that my = 7 is not necessarily a uniformizer of M) By
using exactly the same argument as in [Col08, Lem. 4.2, Cor. 4.3, Rem. 4.4], the following
hold:

(1) When n > C(M) + 1 (where C(M) is the conductor), MHH/M/H is totally ramified of
degree p. s s s s

(2) Whenn > e¢(M)+1, e(My11/Knt1) = e(M,/Ky) (vesp. f( n+1/Kn+1) f(My/Ky)),
where e(A/B) (resp. f(A/B)) is the ramification degree (resp. inertial degree) of a
finite extension. Denote the common numbers as ¢’ (resp. f’), then €’ f' = [M : K.

(3) Let K’ := K" N M where K" is the maximal unramified extension of K contained
in K, then [K': K| = f'.

4.2.3. Construction of ups. Let k' be the residue field of K’, and let My := UK'(m,). Then by
§4.2.2 and Examples 4.1.2 and 4.1.6, we have X (My) ~ k'((m)). Choose any uy € Xy (M)
such that Xx (M) = K/ ((upr)). By Thm. 4.1.3, Xi (M) is a totally ramified extension of
X (My) of degree €. Let P(X) = X¢ +aGy_1X¢ ! + .- + @ be the minimal polynomial
of upr over X (Mp). Since uyy is integral over X (My), a; € k'[u]. Let a; € W(k')[u] be
any lift of @;, and let P(X) = X¢ + ap_1 X! 4+ ... + ao. By Hensel’s Lemma, P(X) has
a unique root (which we denote as wujys) in Ajp; which reduces to wys modulo p. (Note that
ups depends on the choices of @y, and a;.)

We have Gal(Xx(M)/Xk(Ks)) ~ Gal(By/Bg..) ~ Gal(By/Bg..) (cf. [CCI8, §1.3]).
Let vq,--- ,vp be a basis of W (k') over W (k), and let x4 ¢ := vg - ul, with 1 <a < f,0 <
b < e —1, then we have

Ay =@ Ak, -z
and so (cf. [Berl0, Lem. 24.5]),
Ay = EB ;&K
Lemma 4.2.4. Let 7 >0 and let x =, -, p"[ax] € A[”7+°°][1/u], the following are equiva-
lent: B
(1) @ € (Alrteclys,
(2) vg(ao) =0, and k + pp;rl -vg(ax) > 0,k > 0;
(8) vg(ag) =0, and k + pz;l -wg(x) > 0,Vk > 0.
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Proof. The equivalence between (1) and (2) is proved in [Col08, Lem. 5.9]; see the proof of
Lem. 2.1.6 for comparison of notations. The equivalence between (2) and (3) is trivial. O

Lemma 4.2.5. (1) There exists some constant ryr > 0 which depends only on M (and
not on the construction of upr as in §4.2.3), such that:
(a) ups € AEC[M’JFOO], and
(b) unr/[ung] is a unit in A
(2) If I = [rg,7k] or [re,+00] such that r¢ > 7, then

[ ,400]
M .

I efnl =7 eI
BM_@ileKoo.$i7 BM_@Z 1B ooxl

Proof. Ttem (1) follows from exactly the same argument as [Col08, Lem. 6.4, Lem. 6.5]
(where Item (1b) uses Lem. 4.2.4). Item (2) follows from exactly the same argument as
[Col08, Lem. 6.11] (i.e., an argument using the trace operator). O

Lemma 4.2.6. Suppose ry > Ty, then x; € (A[LT’Z’T’“])T'IB‘.

Proof. By Lem. 3.1.2, it suffices to show that uy; € (A[LTZ’T’“})T‘I“‘; the proof uses the same
argument as in [Berl6, Thm. 4.4(2)]. Indeed, consider the minimal polynomial P(X) of ups
as in §4.2.3. For any 7% € Gal(L/Kp~) where a € Zy, (7% o P)(7%(upr)) = 0. Since the

coefficients of P are in W (k')[u] C (Ag"r’“])ﬂa, the coeflicients of 7% o P are locally analytic

functions (from Z, to (K[LT"“])T'M). Since P’(ups) # 0, we can conclude by implicit function
theorem for analytic functions (using the inverse function theorem on [Ser06, Page 73]. O

Theorem 4.2.7. Suppose 0 < r < s < +00, then
(1) (f;[gﬁ])v-—la,(}al(L/M):l _ Umzocﬂ_m(Bﬁ;[T’S})-
(2) (B[£"=+0°))T—pa,Gal(L/M):1 _ UmZO‘Pim(BI])W [T’H‘OO)).
Proof. Tt suffices to prove Item (1). Denote I := [r,s]. Since ¢ induces a bijection between

(Ei)“la’Gal(L/M):l and (ﬁiI)T‘la’Gal(L/M)zl, it suffices to consider the case when r > 7). In
this case,

(ﬁi)r—la,Gal(L/M):l _ (Eﬂ/j)r—la
— (@Bl -2)™", by Lem. 4.2.5(2)
@flzfi(ﬁ%w)ﬁla - i, by Prop.3.1.6 and Lem.4.2.6,
and so we can conclude by Thm. 3.4.4 (i.e., the M = K, case). O

4.3. Structure of A{w. In this subsection, we study the concrete structure of AL : these
results will be used in §6.

Definition 4.3.1. (1) For 0 < r < 400, let AEC}JFOO] (K{)) be the set consisting of Laurent
series f =) 1z ayT* where aj, € W (k') such that f is a holomorphic function on the

annulus defined by 0 < v,(T) < (p—1)/(e’epr). Let BE\Z’JFOO](K(’)) = Ag\r/foo}(Ké)[l/p].

(2) For f = ,cpaxT" € B][C[”LOO] (K{(), and s € [r, +00), let
p—1 k
ps e

}.
For I = [a,b] C [r,+00) a non-empty closed interval, let

Wi (5 = i W1},

WD) = ool +

3) Let B (K?) be the completion of Bl (K1Y with respect to Wl Let A (K
M o M 0 M M o
be the ring of integers with respect to W][Qs].



LOCALLY ANALYTIC VECTORS AND OVERCONVERGENT (¢, 7)-MODULES 21

Lemma 4.3.2. For I = [r,s] C (0,400), we have Wi, (z) = 1nf{W[M]( )s W[ss( )}. Fur-
thermore, BE\Z;S](K{)) is the set consisting of Laurent series f = >, axT" where aj, € K
such that f is a holomorphic function on the annulus defined by

p—1 1 p—1 1

vp(T) € | e'ep s’ e'ep ;]

Proof. This is easy. (|
Lemma 4.3.3. Suppose r > rj;.
(1) The map f(T) — f(upr) induces a bijection
AR () = AL ]
such that for f € AEC}JFOO}(K(’)), and all s such that r < s < +00, we have
Wil (F() = WEl(f (uan)).
(2) For any s > r, the map f(T) — f(unr) induces an isometric homeomorphism
A = Al

The proof uses similar strategy as in Lem. 2.2.6. We first study the section s.

4.3.4. The section s. Denote
S XK(M) = AM/p — AM

the section where for 7 = ﬂ?\J(ZiZO aiut,) with ap # 0, s(T) = ul, Zizo[di]uﬁw. (When
M = K, this is precisely the s in §2.2.7.) Using the expression, one can check that:

(1) s(z) € AL N1 fungl;
(2) Winerl(s(@)) = Wl (uby ) = Wiersd ([ay ) = (p— 1) (prar) = - vg (), where the

first equality is because ), >O[al]u L, is a unit in A[TM +09]

Lem. 4.2.5(1b);
(3) wo(s(Z)) = vg();

(4) since s(T)/[up]® is a unit in A[TM’+°O] Lem. 4.2.4(3) implies that when k > 1,

(4.3.1) wi(s(T)) > vg(T) — k- pra(p — 1)t =wo(s(z) — k-pra(p—1)71

, and the second equality uses

4.3.5. An approximating sequence. Given x € AE\ZM’+OO][1/UM], define a sequence {x,} in
AE\ZM’+°O}[1/UM] where 29 = x and 2,11 := p~*(z,, — 5(Tn)). Note that z = > >0 P 8(Tn).
Similarly as in [Col08, Lem. 7.3], we have
Wi(Tnt1) = inf{wg1(zn), wei1(s(@n))}
> inf{wes(@n), wo(s(@n)) — (k +1) -pras(p = 1) 7'}, by (4.3.1)
inf{wpy1(xn), wolwy) — (k+1) - pras(p— 1)1}
]

Similarly as in [Col08, Lem. 7.4], by repeatedly using the above, we have

(43.2) vg (@) = wolen) > inf {wi(@) (0= 1) pras(p—1) 7'},

Proof of Lem. /.3.3. Tt suffices to prove Item (1). Given f(T) € AECFLOO] (K{), then similarly
as in (Part 1) of the proof of Lem. 2.2.6, f(un) € AE\TFOO][l/uM], and WsI(f(up)) >
Wil (£().
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For the other direction, suppose z € Ag\r/foo] [1/upr], let {zy} be the sequence constructed
in §4.3.5. Let f,(T) be a formal series such that f,(uy) = s(Z5). So for any s > r,

W (1)) = Wy (e i)

S el O O (Uil TR RSP

ps  0<i<n p—1
. p—1 . . M
= f . . —_— 1 _—
it (i) + i+ (=1 )
. p— . .
> £ W
> Ogign{ s w;(x) + i}, since s > 7y
> ylssl (2).

Note that infogign{pp;sl ~wi(x) +1i+ (n —i)(1 — ™2)} converges to 400 when n — +00, so

f(T) = 32,500  fn(T) converges in AE\T/}JFOO] (K{). Clearly f(up) = z, and W][\S/I’s](f(T)) >

wlssl(z). O
Corollary 4.3.6. Suppose ry > )7, then
e’ epk
rg,400 p o, T p U
AL = W) unl{ ), AR = W) [unl{ 1, 22—
Uy, Uy, p
Proof. This is similar to Cor. 2.2.9. U

Corollary 4.3.7. Suppose [r,s] C [r',s] C (ry, +00], then AE\C}S] NAlsl — AEC[,’S].
Proof. This is similar to Cor. 2.2.10, by using Cor. 4.3.6. U

Lemma 4.3.8. Suppose r > ry. If x € AE\TFOO][l/uM] and © € (AP+oN* then z €
(Aol

Proof. Let {z,} be the sequence constructed in §4.3.5, and so x =} -, p"s(Z). By Lem.

4.2.4, vg(To) = 0, and so s(Tp) € (AE\T/FLOO])X. It then suffices to show that 14+y € (AE\T/}JFOO})X,
where y = > -, p"s(Tn)/s(To). As we calculated in the proof of Lem. 4.3.3,

Wi (pns(@n) > inf {2

1 . . M
ot cwi(x)+i+ (n—i)(1— T)} > 0,

where the final inequality uses n > 1 and Lem. 4.2.4. And since W (p"s(z,)) — +oo

[r,7]

when n — 400, so WIrl(y) > 0, and so (1 +y)~' € Al Thus by Cor. 4.3.7, we can
conclude that (1 +1y)~! € AE\’}’”} N ;{E\?;}JFOO] _ AEC[’JFOO]. 0

5. COMPUTATION OF G—LOCALLY ANALYTIC VECTORS

In this section, we compute the G’-locally analytic vectors in ﬁi The strategy is very
similar to [Berl6, Thm. 5.4]: we need to find a “formal variable” (denoted as b in the
following) which plays the role as the y in [Ber16, Thm. 5.4] (or the « in Prop. 3.3.2(1)).
Indeed, the discovery of b is the key observation for our calculations. In the following, we
define b, and then use Tate’s normalized traces to build an approximating sequence by, and
use them to determine the set of G’—locally analytic vectors in Bi.

5.1. The element b. Let A := [], -, cp”(g%;) € B[Ig’ioo). Let b := pi/\, then b is precisely

the t in [Liu08, Example 3.2.3], and b € KJLF Since ]NBTL is a field ([Col08, Prop. 5.12]), there
exists some r(b) > 0 such that 1/b € ]A?;[g(b)’Jroo].

Lemma 5.1.1. Ifr; > r(b), then b,1/b € (ﬁg“"])é‘la.
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Proof. Since 7 acts on b (resp. 1/b) via cyclotomic character (resp. inverse of cyclotomic
character), it suffices to show that b (resp. 1/b) is 7-locally analytic (cf. the argument in
Lem. 3.2.4). The result for 1/b follows from Lem. 3.4.2(3). Then Lem. 3.1.2(2) implies that
b is also locally analytic. O

Remark 5.1.2. (1) It seems likely that b € (ﬁg’s])G'la for any [r, s] € [0,4+00), just as the
element t/(¢*(E(u))) in Lem. 3.4.2(1); but we do not know how to prove it.

(2) The result that b € (]A?;[g’s])é‘la for r > r(b) implies easily that t/(¢*(E(u))) €
(ﬁg’s])é‘la for 7 > 7(b), because the element \/(¢*(E(u))) is locally analytic; this
(partial) proof of Lem. 3.4.2(1) avoids use of Lem. 3.1.8. However, we need the full
result of Lem. 3.4.2(1) for the calculation in Thm. 3.4.4.

5.2. Tate’s normalized traces. Recall (see e.g., [Col08, §5.1]) that the weak topology on
A is the one defined by the semi-valuations wy, for & € N, meaning that x, — x for the
weak topology in A if and only if for all k € N, wy(z, — ) — +00. In particular, the set
{p”]& + ukx+}n7k20 forms a basis of neighbourhood of 0 in A for the weak topology. The
following lemma is very useful.

Lemma 5.2.1. Let ' >0 and z,, € A[’”/’*OO],Vn > 1. Suppose x, — 0 in A with respect to
the weak topology. Then for any r' < s < +oo (note that it is critical s # '), x, — 0 in

Als ool yyith, respect to the W5l topology.

Proof. This is implied by [Col08, Prop. 5.8]. Indeed, we can let the “C” in loc. cit. to be 0
(see the proof of our Lem. 2.1.6 for comparison of notations). O

In this subsection, we let Ko, C M C L where M /K is a finite extension. For n > 1 and
I an interval, let

Arin =@ "(An), Al =@ (AR,
Denote J :=p~>*ZN[0,1) and for n € N, let J,, := {i € J : v,() > —n}.
Lemma 5.2.2.

1) Every element x € Epr,, admits a unique writing x = >_._; u'a;(x) where a;(z) €
) i€Jn

Ey.

(2) Every element = € Ey admits a unique writing x = Y, ; u'a;(x) where a;(z) € Ey
and a; — 0. .

(8) Every element x € Ayry, admits a unique writing x = ), ; u'a;(x) where a;(r) €
Ay

(4) Every element x € Ay; admits a unique writing x = > e ulai(z) where ai(x) € Ay
and a; — 0 for the weak topology.

Proof. These are easy analogues of [Col08, Prop. 8.3, Prop. 8.5]. (|
We now define, for n € Z=9, Ry - AM — AM by

Ryrn(x) = Z u'ai(z).

i€y
Proposition 5.2.3. (1) For x € Ay, we have Ry () € Apry and Rypn(z) — x for
the weak topology.
(2) Let ' > 0 and suppose x € AECI’JFOO]. Suppose n > 0 such that p"r’ > rp; (where

rar s as in Lem. 4.2.5), then Ry () € AE\Z/’:OO], and Ryrpn(x) — x for both the
weak topology and the Wl -topology for any ' < r < s < 4oo. In particular,
AE\Z’:OOO] = UmZOAE\Z’;OO] is dense in AE\Z’JFOO] for both the weak topology and the

W sl _topology.



24 HUI GAO AND LEO POYETON

Proof. Ttem (1) follows from Lem. 5.2.2. For Item (2), the result that Ras,(z) € AE\ZI:;OO]
for n > 0 is analogue of [Col08, Cor. 8.11]. The convergence Ry (x) — = with respect to

the weak topology follows from Item (1); the convergence for the Wrsl_topology then follows
from Lem. 5.2.1 (note that Wl = inf{W] wlssl}). O

5.3. Approximation of b. We now build a sequence {b,} to approximates b, which fur-
thermore satisfies V. (b,) = 0. In the following, we use Ko, Csn M C L to mean that M is
a middle extension which is finite over K.

Lemma 5.3.1. Let W be a Q,-Banach representation of G. Then

(Wé—la)vn,:() _ U Wy T-la.Gal(L/M)=1
Koo Cﬁn MCL

Proof. If z € WA guch that V,(xz) = 0, then there exists m > 0 such that z € 7 Gm-an
and exp(p™V,) converges in WGman Thus ¢ € WTaGallL/M)=1 {51 some large M. U

Lemma 5.3.2. Let [r,s] C (0,+00) and let n > 1. Let x € AJLF Then there exists w €
(ﬁg’s])a‘lavazo, such that x —w € p"]&[g’s].

Proof. Fix some k > 0 such that u* € p”K[LT’S].
Let 7 € EZL be the modulo p reduction of z. By [Win83, Cor. 4.3.4], the set

Jem| U EL

meN KeoCsnMCL
is dense in Ez for the m-adic topology, where E}, is the ring of integers of X (M). Thus,
there exists some 7; € go_ml(ELl) for some m; and Mj, such that T — 7, = u*Z; where
Z1 € f)z Thus we can write
x — [7,] — uF[Z1] = pxy for some z; € :&j{
Now we can repeat the process for ;1 (in the process, we can choose Mj to contain M), so we
can write 1 — [y] —u¥[Za] = pxo. Iterate the process, and let y = [7;]+p[To] +- - -+ 0" [7,],
then y € AJT/In and
rT—yE p";‘;z + uk;ﬁi

Pick any " such that 0 < ' < r. By Prop. 5.2.3(2), we can choose some N > 0 (in

particular, we require p™r’ > ry, ), such that if we let w := Ry, n(y), then we have

e weE AE\T/[/T’LT]S,O] C ./NXE;/’JFOO] C Ag’Jroo], and

e y—w = p"a+ uFb for some a € A,b cAt (note that we do not know if a € ;&L or
be Af), and

o Wy —w) > n.

We claim that a € Al Since pha =y —w — uFb € A[T’S], it suffices to show that
Wsl(a) > 0. But we have

Wl (@) = Wsl(y —w — u*b) — n > inf (Wl (y — w), Wl (ukb)} —n >0

where we use the assumption u* € p”.K[LT’S] (so Wrsl(uk) > n).
Now, we have
T —w € pn;&[r,s] + uk;&Jr C pn;&[r,s]’

and necessarily z —w € pngg’s} because x — w is Gp-invariant. Finally, w € (ﬁ[g’s})é'laWVZO

by Lem. 5.3.1 (and Thm. 4.2.7). O
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5.3.3. An approximating sequence for b. Let I = [r,s] C (0,+o0) such that » > r(b). For

anyn > 1, let b, € (]§I )é'la V1=0 be as in Lem. 5.3.2 such that b—b,, € pngi For any fixed
n, since both b and b,, are locally analytic, we can choose m = m(n) > 0 (which depends on

n) such that b — b, € (BL) " and [[b—byle <p"

5.3.4. A differential operator. Let I = [r,s| C (0,40c0) such that r > r(b). Since v(b) =
X(7y) - b, we have V. (b) = b. Since 1/b is in (BI )G 18 by Lem 5.1.1, we can define 0,
(B) — (Bf)“™ via

So in particular, we have
Dy (b — b)) = k(b —by)F 1V > 1.

Theorem 5.3.5. Let [ = [r,s] C (0,+00) such that r > r(b). Suppose x € (ﬁi)é‘la, then
there exists n,m > 1 and a sequence {x;};>o in (BL)GmanVa=0 gych that Hp”ixiﬂém — 0
and =) ;5o xi(b— b,)" (which converges in the norm || - e, )-

Proof. The proof is similar as [Ber16, Thm. 5.4]. Suppose m > 1 such that z € (ﬁi)ém‘ar‘.
Apply [BC16, Lem. 2.6] to the map 0y : (ﬁi)ém'an (BI) m=ah g0 there exists n > 1 such
that for all k € Z2°, we have ||6’§($)
m > m(n) as in §5.3.3. Let

e, < pn=b) ]l 4 a - Increase m if necessary so that

) i
'L‘ Z‘Z ak-i—( )7

k>0

then similarly as [Ber16, Thm. 5.4], they satisfy the desired property. O

6. OVERCONVERGENCE OF (¢, 7)-MODULES

In this section, for a p-adic Galois representation V' of Gi of dimension d, we show that
its associated (i, 7)-module is overconvergent. We will construct DI (V) := (B! ®q, V)¢r
(see §6.2), which is a finite free module over ]§£ of rank d equipped with a G-action. The key
point is to show that (lw)i(V))T‘laWZ1 is also finite free over (]§£)T‘1377:1 of rank d, i.e., 1~)£(V)
has “enough” (7-la,y = 1)-vectors; these vectors will further descend to “overconvergent
vectors” in the (¢, 7)-module, via Kedlaya’s slope filtration theorem. Using the classical
overconvergent (¢, I')-module, we already know that (ﬁi(V))G'la is finite free over (ﬁi)c‘la
of rank d. So we need to take (y = 1)-invariants in (Ei(V))G‘la, and show it keeps the
correct rank; this is achieved by a Tate-Sen descent or a monodromy descent (followed by
an étale descent).

In §6.1, we will carry out the descent of locally analytic vectors: the Tate-Sen descent and
étale descent uses an axiomatic approach taken from [BCO8]; the monodromy descent (in
Rem. 6.1.7) follows some similar argument as in [Ber16]. In §6.2, we prove the overconver-
gence result.

6.1. Descent of locally analytic vectors. Since we will use results from [BCO8], it will
be convenient to use valuation notations.

Notation 6.1.1. Suppose W is a Q,- (or Z,-) Banach representation of a p-adic Lie group
G such that W& = W. Let valg denote the valuation on W associated to the norm || - ||g
(cf. §1.4.4).

Proposition 6.1.2. Let (K valp) be a Zp-Banach algebm equipped with a sub-multiplicative
valuation valy. Let Hy be a profinite group which acts on A such that vala (gz) = valp(x),Vg €
Ho,z € A. Let g — Uy be a continuous cocycle of Hy in GLd(A)



26 HUI GAO AND LEO POYETON

Suppose H C Hy is an open subgroup, and suppose there exists some a > ¢1 > 0 such that
the following conditions are satisfied:

o (TS1): there exists oo € A such that valy(a) > —c; and Yoeryuola) =1
e valp(Uy —1) > a,Vg € H.

Then there exists M € GLg4(A) such that valpa(M — 1) > a — ¢1 and the cocycle where
g M~'U,g(M) is trivial when restricted to H.

Proof. This is a slight variant of [BC08, Cor. 3.2.2]. Indeed, in loc. cit., it requires the
condition (TS1) to be satisfied for any pair of open subgroups Hy C Hy in Hy (cf. [BCOS,
Def. 3.1.3]); however, in the proof of [BCO8, Lem. 3.1.2, Cor. 3.2.2], this condition is used
only for one pair. O

Lemma 6.1.3. Let ¢; > 0, let I = [r,s] C (0,+00), and let Koo C M C L where [M :
K] < 4+00. There ezists n > 0, and

= (ﬁi)Tn—an,Gal(L/M):l

such that the following holds:

e val, (a) = Wl(a) > —c1, here val,, = val,, ~ (cf. Notation 6.1.1);
b ZoeGal(M/Koo) o(a) = 1.

Proof. Denote Tr := 3 cqaim/k..) O the trace operator. By Thm. 4.1.3, X (M) is a finite
Galois extension of Xx (Ko ), and so there exists § € Xg (M) such that Tr(5) = 1. Note
that we necessarily have vg(8) < 0.

Suppose m > 0 (m depends on M and I) such that p~™ry < r (where rpy > 0 as in
Lem. 4.2.5), and

p—11
(6.1.1) p p—mvﬁ(ﬂ) > —cy, and
M p—1
1.2 1—— = .
(6.1.2) (1= D)+ o g(8) > 0

Let v = ¢~ ™(s(B)) (where s is the map in §4.3.4), then

e since p~Mry <71,y € cpfm(AE\ZM’Jroo}[l/uM}) c Aol /]
e for any a € [r, s|, by using §4.3.4(2) and (6.1.1), we have

laa] () — pr7lp™ap™al _p-1 _
W) = Wl s(3) = P—oug(8) > —en,

and so W(y) > —ci.
Since Tr(¢~™(5)) = 1, we have Tr(y) =1+ ZkZka[ak]. Furthermore, for any k& > 1,

w(Tr() 2 inf fu(o(0)} = wk() = p " u(s(8) > 0" (wp(8)kprasp-1)7),

where the final inequality uses (4.3.1). So when k > 1,
p —_—
pr

Sw(Tr) > kT (u(8) — kpraslp = 1))
1

M p—1
prg kl—i . =
(- 20+ e —(8)
1 M

"M p—1 .
1My o= (f), 1- M 5
( » 'r) o v=(B), since e

k+

v
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By Lem. 4.2.4, Tr(y) € (A"T°1)* and so ™ (Tr(y)) € (AP™+el)x  Since p™(v) €
Alnereiy i), so

™ (Tr(y)) € A[Izﬁ’+°°} C A[;;::T’Jroo], since p~Mry < T

By Lem. 4.3.8 (note that p™r > rar), o™ (Tr(y)) € (AI[?;Zr,Jroo])X, and so Tr(y) € (Sp—m(A[ﬁanLoo]))X,
and so by Thm. 3.4.4,
(Te(y)) ! € (BY)InCal(L/Koo)=1,

Let o := - (Tr(y))~!. Note that
v €@ ™AL fuy]) © (BT € (BTG by Thin 4.2.7,

Thus, we have a € (ﬁi)T‘la’Gal(L/M)zl. We also note that W!(a) = Wi(y) > —c;. Finally,
the existence of n > 0 such that a € (Bf)mamGalll/M)=1 ig 1y definition; the existence of
n > 0 such that val,, (a) = W!(a) is by Lem. 3.1.4. O

6.1.4. Let B be a Q,-Banach algebra, equipped with an action by a finite group G. Let B
denote the ring B with trivial G-action. Suppose that

(1) B is a finite free B“-module;
(2) there exists a G-equivariant decomposition B'® go B ~ @4ecB" ¢, such that eg = eg,
egen, = 0 for g # h, and g(ep) = egp.
Proposition 6.1.5. Let B and G be as in §6.1.4. Suppose N is a finite free B-module with
semi-linear G-action, then
(1) N€ is a finite free BE-module;
(2) the map B Qpgc NC = N is a G-equivariant isomorphism.

Proof. This is [BC08, Prop. 2.2.1]. O

Proposition 6.1.6. Let I = [r,s] C (0,+00). Let M be a finite free (Ei)é‘la—module of
rank d, with a semi-linear and locally analytic G-action. Then (M)Gal(L/fo’) is finite free
over (BLY™a7=L of rank d, and

(ﬁi)@—la ®(]§£)T_1m:1 (M)Gal(L/Koo) ~ M.

Proof. The following proof is via Tate-Sen descent; see Rem. 6.1.7 for another proof via
monodromy descent.

Since Gal(L/K ) is topologically generated by +, there exists a basis eg, - - - , e4 of M such
that the co-cycle ¢ associated to the Gal(L/K)-action on M (with respect to the basis) is

of the form g — U, where U, € GLd((Ei)G"'an) for some n > 0.
Let a > ¢; > 0. Suppose Ko, C M C L where M /K is a finite extension such that

valg, (Uy —1) > a, when g € Gal(L/M),

where Valén is as in Notation 6.1.1. By Lem. 6.1.3, there exists some n’ > 0 and o €
(B )nnr-anGal(L/M)=1 quch that Valén+n/ (a) > —e1, and 3, cqam/k.) 0(@) = 1. Apply
Prop. 6.1.2 to the pair

(A, valpy) = ((BL)%nenw ™ valy, ),

n+n

(where vals ~  is sub-multiplicative by Lem. 3.1.2), the restricted co-cycle c|qa(,/ar), When

n+n

considered as evaluated in GLd((ﬁi)émn"an), is trivial after base change. So:

(*) = (M)GAL/M) g finite free over (ﬁi)T‘la’Gal(L/M)zl of rank d.
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Let G := Gal(M/Ky,). Fix abasis €, - , €/, of (M)G(L/M) "and suppose the co-cycle as-
sociated to G-action on (M)G2UE/M) with respect to the basis has value in GLd(cp*m(Bg’WmI))
for some m > 0 (using Thm. 4.2.7). Let N, be the go_m(BpMmI)—span of e, el

Via the same argument as in [BC08, Lem. 4.2.5], there exists some s(M) > 0 such that if
a > s(M), then the pair (BE\(TOO}, G3) satisfies the two conditions in §6.1.4. So when m > 0
such that p™r > s(M), then the pair (BZ])\;I,G), and thus also the pair (go_m(Bﬁ:[nI),G)
satisfy the two conditions in §6.1.4. By Prop. 6.1.5, (N,,,)¢ is finite free over go_m(BZI?;Z) of
rank d; this implies the desired result. O

Remark 6.1.7. Keep the notations in Prop. 6.1.6 above. Suppose furthermore that r > r(b)
(see §5 for (b)), then we can give another proof of Prop. 6.1.6 via monodromy descent. The
proof follows similar ideas as in [Berl6, §6].

In this second proof, we only reprove the statement (*) above, namely, we show that there
exists some Ko, C M C L such that (M)S2(E/M) s finite free over (Bf)7-1a.Gal(L/M)=1 of
rank d. By Lem. 5.3.1, it suffices to show that (M)V+=0 is finite free over (ﬁi)G-la,szo of
rank d, and

(Bi)G_la ®(]§£)é_1a,vﬂ,:o (M)V'Y:O ~ M.

Let D, = Mat(0,) (0, is well-defined because r > r(b)), then it suffices to show that there

exists H € GLd((Ei)la) such that 0,(H) + D,H = 0. For k € N, let D}, = Mat(@f;). For n
large enough, the series given by

H = Z(—l)kaL ~ b}t

k!
k>0

converges in Md((ﬁi)la) to a solution of the equation 0,(H) + D,H = 0. Moreover, for n
big enough, we have W1 (Dy, - (b — b,)*/k!) > 0 for k > 1, so that H € GL4((BL)%).

Remark 6.1.8. The condition r > r(b) in the proof of Rem. 6.1.7 is actually harmless for
application in our main theorem Thm. 6.2.6 (i.e., in the proof of Thm. 6.2.6, we could
equally apply Rem. 6.1.7 instead of Prop. 6.1.6). Indeed, at the very beginning of the proof
of Thm. 6.2.6, we could assume the “ry” there to be bigger than r(b).

6.2. Overconvergence of (¢, 7)-modules.

Definition 6.2.1.

(1) Let ModiK denote the category of finite free Ax_ -modules M equipped with a
PAK.. _semi-linear endomorphism ¢ps : M — M such that 1 ® ¢ : p*M — M is an
isomorphism. Morphisms in this category are just A g _-linear maps compatible with
©’s.

(2) Let Mod%Koo denote the category of finite free Bx_ _-modules D equipped with a
¢B. -semi-linear endomorphism ¢p : D — D such that there exists a finite free
A -lattice M such that M[1/p| = D, ¢p(M) C M, and (M, ¢p|m) € ModKKOO.

We call objects in Mod — and Modg finite free étale p-modules.

Definition 6.2.2.
(1) Let Modi’G 5 denote the category consisting of triples (M, ppr, G) where

KoosAL

° (M, QOM) S MOdiKoo;

e (i is a continuous A r-semi-linear G-action on M = A L ®Ak., M, and G com-
mutes with ¢,; on M;

e regarding M as an Ag_ -submodule in M, then M c MGalL/Ks),
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(2) Let Mod‘g’G _ denote the category consisting of triples (D, ¢p,G) which contains
KoosBL

~

a lattice (in the obvious fashion) (M, ¢ar, G) € Mod?¢ .
Ar AL

The category Mod?® (and Mod? % _ ) are precisely the étale (¢, 7)-modules as in
AKoo ,AL BKOO :BL
[GL, Def. 2.1.5].
6.2.3. Let Repg,(Goo) (resp. Repg, (Gk) ) denote the category of finite free Qp-modules
V' with continuous Qp-linear G (resp. G )-actions.
For D € Mod]ﬁ’K , let
V(D) := (B@p,,, D)7,
then V(D) € Repg, (Goo). If furthermore (D, pp, G) € Mod?® | then V(D) € Repg (Gr).
p Bk,.,BL P
For V e Repr(Goo), let
Di. (V) = (B®g, V),
then Dg_ (V) € Modg, . If furthermore V' € Repg, (Gk), let

Dy(V) = (B &g, V),
then D7 (V) = By, ®By. Dk, (V) has a G-action, making (Dg_ (V), ¢, G) an étale (p,7)-

module.
Theorem 6.2.4.

(1) The functors V and D induces an exact tensor equivalence between the categories
Modg  and Repg, (Geo)-

(2) The functors V and (Dg..,Dy) induces an ezact tensor equivalence between the

y 907G
categories Mod B, and Repg, (Gk)-

Koos

Proof. (1) is [Fon90, Prop. A 1.2.6] (and using [GL, Lem. 2.1.4]). (2) is due to [Carl3] (cf.

also [GL, Prop. 2.1.7]). O
Let V € Repg, (Gk). Given I C [0, +00] any interval, let
Dic (V) = (B'&q, V)%,
Di(V) = (Bl ®g, V).

Definition 6.2.5. Let V' € Repg, (Gk), and let D = (Dk_(V),¢, @) be the étale (p,7)-

module associated to it. Say that D is overconvergent if there exists r > 0, such that for
I' = [, +oc],
(1) D%W(V) is finite free over Bﬁw, and Bg_ ®B%oo D%w (V) ~Dg_(V);
(2) ﬁf(V) is finite free over ]~3£ and

B, R DY(V) ~ Dp(V).

Theorem 6.2.6. For any V' € Repg, (G ), its associated étale (i, T)-module is overconver-
gent.

Proof. Step 1: locally analytic vectors in 5£(V) For I = [r,s] C (0,400), let
I — (rI Gpoo
D (V)= (B! g, V)%

where (as we mentioned in Rem. 1.4.3) B and B’ are the rings denoted as “B” and “B!” in
[Ber08]. We still have B C B and B ¢ B. By the main result of [CC98], there exists some
ro > 0, such that when r > rg, then Df(poo (V) is finite free over Bf(poo of rank d (here IB%%Z)OO
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is precisely “B%” in [Ber08]). Furthermore, there exists G g-equivariant and ¢-equivariant
isomorphism

(6.2.1) B! ®g, V ~ B! ®sf, Dje (V).
Also, by [Ber02, §5.1],

(6.2.2) D (V) C (DL(v))™=47 ¢ (D) (v))o .
By Prop. 3.1.6, (6.2.2) implies

(6.2.3) D} (V)1 = (B2 g . Die ().

So in particular ZBi(V)GV'IBL is finite free over (ﬁi)GIa By Prop. 6.1.6, 5£(V)T'la’7:1 is finite
free over (BL)™27=1 By (6.2.1) and (6.2.3), we also have

(6.2.4) B! ® B yrian=t Di(v)yrar=t =Bl @q V

Step 2: glueing ﬁi(V)T'laW:l as a vector bundle. For each X C [rg,+00) a closed
interval, denote MX := ﬁf(V)”aW:l, and RX := (Ef)”aﬁ:l, and so Step 1 says that
MX is finite free over RX. Let I = [r,s] C [rg,+0o0) such that I N pI is non-empty. For
each k > 1, ©* induces a bijection between ﬁi(V) and ﬁzkI(V), and thus also a bijection

between M! and MP*I. Let mi,---,mg be a basis of M!, and so ¢(m1), -, p(mg) is a
basis of MP!. Let J := I Npl, then by using Prop. 3.1.6, we have

M =R @p M, M7 =R’ @por MPL.

So if we write (@(m1),---,p(mg)) = (m1,--- ,mq)P, then P € GL4(R’), and so P €
GLd(Bi(m’m) for some m > 0.

Let Iy, := p*I, J;, := Iy NI, = p*J. For each k > 1, let E}, be the B%wm—span of pk(m;).
Since ©*(P) € GLd(Bi}“OO m), We have
B

Koo,m

X Ej ~ B ®B1k+1 Ejt1.

BIk Koo,m

Koo,m Koo,m

This says that the collection {¢™(E))}k>1 forms a vector bundle over BI[I;ZT’JFOO) (cf. [Ked05,
Def. 2.8.1]), and so by [Ked05, Thm. 2.8.4], there exists ni,---,ng € Ng>19" (L), such
that if we let
m ’+ 4e 7+
DE;?OOT )= EB?:1B[;;OOT > "N,

then

By, s ®pfprritoe) DET) o (Ey).
Now, define )

Dy ko, = Blig i, Opipros Do)
Then by (6.2.4), we have )
(6.2.5) Bl, DBl Df, .. =B, ®q, V.

Eqn. (6.2.5) implies that DrTig ., is pure of slope 0 (cf. [Ked05]). By [Ked05, Thm. 6.3.3],
there exists an étale p-module D}(oo over B}(oo such that
t _pt
BrigvKoo ®B}(oo D}(oo - DrigyKoo'
Step 3: overconvergence. We claim that

(6.2.6) Br. ®gi Dy =D (V).
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Let D' := Bk, ®B.;<oo D};{oo. By Thm. 6.2.4(1), it suffices to show that

(6.2.7) V= (Bop, D)~ Vg,

Note that V' is always a Goo-representation over Q, of dimension d. We have
Vi = (Beg D}, )¢~

(B
- (BT®BT D}, )*=', by [KL15, Thm. 8.5.3(d)(e)] ,
(B!

=1
C BIlg Koo Dj:ig»Koo )go
— (leg@@(@p V)#=l by (6.2.5),

= V

So (6.2.7) holds for dimension reasons, and so (6.2.6) holds, concluding the overconvergence
of p-action (i.e., Def. 6.2.5(1) is verified).

Finally, note that Bf Qpt D}( ~ Bf ®q, V, so if we let
Koo Rl
DL(V) := (Bl @g, V),

then EE(V) o~ ]§TL Rpt D}( . This implies the overconvergence of the 7-action (i.e., Def.
Koo e
6.2.5(2) is verified). O
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