HAL will be down for maintenance from Friday, June 10 at 4pm through Monday, June 13 at 9am. More information
Skip to Main content Skip to Navigation
Preprints, Working Papers, ...

Radial Schur multipliers on some generalisations of trees

Abstract : We give a characterisation of radial Schur multipliers on finite products of trees. The equivalent condition is that a certain generalised Hankel matrix involving the discrete derivatives of the radial function is a trace class operator. This extends Haagerup, Steenstrup and Szwarc's result for trees. The same condition can be expressed in terms of Besov spaces on the torus. We also prove a similar result for products of hyperbolic graphs and provide a sufficient condition for a function to define a radial Schur multiplier on a finite dimensional CAT(0) cube complex.
Document type :
Preprints, Working Papers, ...
Complete list of metadata

Contributor : Ignacio Vergara Connect in order to contact the contributor
Submitted on : Friday, October 12, 2018 - 3:24:29 PM
Last modification on : Tuesday, November 19, 2019 - 10:40:14 AM

Links full text


  • HAL Id : ensl-01894550, version 1
  • ARXIV : 1803.06692



Ignacio Vergara. Radial Schur multipliers on some generalisations of trees. 2018. ⟨ensl-01894550⟩



Record views