
On the relative error of computing complex
square roots in floating-point arithmetic

Claude-Pierre Jeannerod∗ and Jean-Michel Muller†
∗Univ Lyon, Inria, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR 5668, F-69007 LYON, France,
†Univ Lyon, CNRS, ENS de Lyon, Inria, Université Claude Bernard Lyon 1, LIP UMR 5668, F-69007 LYON, France

Abstract—We study the accuracy of a classical approach to
computing complex square-roots in floating-point arithmetic.
Our analyses are done in binary floating-point arithmetic
in precision p, and we assume that the (real) arithmetic
operations +, −, ×, ÷,

√
are rounded to nearest, so the

unit roundoff is u = 2−p. We show that in the absence of
underflow and overflow, the componentwise and normwise
relative errors of this approach are at most 7

2
u and

√
37
2

u,
respectively, and this without having to neglect terms of
higher order in u. We then provide some input examples
showing that these bounds are reasonably sharp for the
three basic binary interchange formats (binary32, binary64,
and binary128) of the IEEE 754 standard for floating-point
arithmetic.

Index Terms—binary floating-point arithmetic; rounding
error analysis; relative error; complex square root

I. INTRODUCTION

We consider the problem of computing a square root
of a complex number a+ ib accurately in floating-point
arithmetic: given two floating-point numbers a and b, we
want to deduce very good floating-point approximations
to some reals x and y such that

(x+ iy)2 = a+ ib. (1)

In exact arithmetic, explicit formulas for x and y are
easy to derive: first, by rewriting (1) as

x2 − y2 = a and 2xy = b,

and solving quadratic equations in x2 > 0 or y2 > 0, we
obtain

x = ±
√
h+ a

2
, h :=

√
a2 + b2, (2)

and

y = ±
√
h− a
2

. (3)

Then it suffices to adjust the signs of x and y in order
to ensure that 2xy = b holds and to make the complex
square root a single-valued function. For example, one
can take x > 0 and sign(y) = sign(b) with sign(0) =
+1; see [2, §4.2]. (See also [4, p. 201] for a sign function
supporting signed zeros.)

In floating-point arithmetic, however, it is in general
not recommended to use the above formulas for x and
y simultaneously when b2 � a2, since then cancellation

can occur either when evaluating h+a if a < 0, or when
evaluating h− a if a > 0.

To avoid such a possible loss of accuracy, Friedland [1]
proposed the following approach (which is now classical
and can also be seen in [4] and [2]):
• if a > 0, then compute x using (2) and deduce y

using

y =
b

2x
;

• if a < 0, then compute y using (3) and deduce x
using

x =
b

2y
.

Note that in the above expressions division by zero
can be avoided by assuming that (a, b) 6= (0, 0) and by
handling the situation where a = b = 0 separately.

Since h− a = h+ |a| when a < 0, we see that the two
cases in Friedland’s approach eventually rely on a single
core computation, which can be summarized as follows:
given two floating-point numbers a and b such that

(a, b) 6= (0, 0) and a > 0,

evaluate

h =
√
a2 + b2, x =

√
h+ a

2
, y =

b

2x
.

In radix-2, precision-p floating-point arithmetic with
rounding to nearest (RN), this corresponds to Algo-
rithm 1 below.

Algorithm 1 Core computation of
√
a+ ib, assuming

(a, b) 6= (0, 0) and a > 0.
1: sa ← RN(a2)
2: sb ← RN(b2)
3: s← RN(sa + sb)
4: ρ← RN(

√
s)

5: ν ← RN(ρ+ a)
6: x̂← RN

(√
ν/2

)
7: ŷ ← RN

(
b/(2x̂)

)
A detailed rounding error analysis of Algorithm 1 is

given by Hull, Fairgrieve, and Tang in [2]: assuming that

underflows and overflows do not occur and using the
fact that for any real number t,

RN(t) = t(1 + δ), |δ| 6 u := 2−p, (4)

they show that the computed floating-point numbers x̂
and ŷ satisfy

|x̂− x|
|x|

6
5

2
u+O(u2)

and
|ŷ − y|
|y|

6
7

2
u+O(u2);

they also show that for ẑ = x̂ + iŷ and z = x + iy, the
associated normwise relative error |ẑ − z|/|z| admits a
bound smaller than 7

2u+O(u2), namely,

|ẑ − z|
|z|

6

√
37

2
u+O(u2),

√
37

2
= 3.041

Finally, for the binary32 format (p = 24), they provide
two numbers a and b for which |ẑ − z|/|z| ≈ 2.980u.

In this paper, we refine the analysis of [2] in two
ways: we show that the terms O(u2) in the three bounds
above can be removed and, on the other hand, we
give examples of inputs in the binary64 and binary128
formats (that is, for p = 53 and p = 113) for which
|ẑ − z|/|z| > 3u.

For our analyses it will be useful to exploit the follow-
ing refinement of (4), which can be found for example
in [5, p. 232]:

RN(t) = t(1 + δ), |δ| 6 u

1 + u
. (5)

We shall apply (5) to floating-point additions and multi-
plications; for floating-point divisions and square roots,
we can use the following smaller bounds, introduced
in [3]. Let a and b be two floating-point numbers. If a > 0,
then

RN
(√
a
)
=
√
a (1 + δ), |δ| 6 1− 1√

1 + 2u
; (6)

if b 6= 0, then

RN
(a
b

)
=
a

b
(1 + δ), |δ| 6 u− 2u2. (7)

As we shall see in §II, the bounds in (5–7) are enough
to show that |x̂ − x| 6 5

2u|x|. However, our analysis for
ŷ will use some variants of (6) and (7), which we detail
in §III. We conclude in §IV with the derivation of the
normwise bound and three numerical examples.

II. REFINING THE BOUND ON |x̂− x|/|x|
First, let us apply (5) to steps 1, 2, 3 of Algorithm 1:

we have

a2
(
1− u

1 + u

)
6 sa 6 a2

(
1 +

u

1 + u

)
and similarly for sb, so that

(a2 + b2)

(
1− u

1 + u

)
6 sa + sb 6 (a2 + b2)

(
1 +

u

1 + u

)

and then

(a2 + b2)

(
1− u

1 + u

)2

6 s 6 (a2 + b2)

(
1 +

u

1 + u

)2

.

By taking square roots and with h =
√
a2 + b2, we find

h

(
1− u

1 + u

)
6
√
s 6 h

(
1 +

u

1 + u

)
.

Using (6), we deduce that the value of ρ = RN(
√
s) at

step 4 of Algorithm 1 satisfies

hL 6 ρ 6 hU,

where

L :=

(
1− u

1 + u

)
· 1√

1 + 2u

= 1− 2u+
7

2
u2 +O(u3)

and

U :=

(
1 +

u

1 + u

)(
2− 1√

1 + 2u

)
= 1 + 2u− 3

2
u2 +O(u3).

Since a > 0 and 0 6 L 6 1 6 U , this leads to

(h+ a)L 6 ρ+ a 6 (h+ a)U.

By applying (5), we see that ν = RN(ρ + a) at step 5
satisfies

(h+ a)
(
1− u

1+u

)2
· 1√

1+2u

6 ν

6 (h+ a)
(
1 + u

1+u

)2 (
2− 1√

1+2u

)
.

Recalling that x =
√
(h+ a)/2, it follows that

√
ν/2

satisfies

x
(
1− u

1+u

)
· 1
(1+2u)1/4

6
√
ν/2

6 x
(
1 + u

1+u

)(
2− 1√

1+2u

)1/2
.

By applying (6) once again, we find that the value x̂ =
RN
(√

ν/2
)

produced at step 6 satisfies

xL′ 6 x̂ 6 xU ′, (8)

where

L′ :=

(
1− u

1 + u

)
· 1

(1 + 2u)3/4
(9)

= 1− 5

2
u+

41

8
u2 +O(u3)

and

U ′ :=

(
1 +

u

1 + u

)(
2− 1√

1 + 2u

)3/2

= 1 +
5

2
u− 11

8
u2 +O(u3).

Since L′ > 1− 5
2u and U ′ 6 1 + 5

2u, we conclude that

|x̂− x| 6 5

2
u|x|.

III. REFINING THE BOUND ON |ŷ − y|/|y|
Let us now analyze the relative accuracy of the value

ŷ = RN(b/(2x̂)) produced by the last step of Algorithm 1.
Recalling that y = b/(2x), we deduce from the bounds

on x̂ in (8) that
y

U ′
6

b

2x̂
6

y

L′
. (10)

Applying (7) then shows that ŷ satisfies

y · 1− u+ 2u2

U ′
6 ŷ 6 y · 1 + u− 2u2

L′
. (11)

One has
1− u+ 2u2

U ′
= 1− 7

2
u+

97

8
u2 +O(u3)

and one can check that this is larger than 1 − 7
2u.

However, the upper bound has the form

1 + u− 2u2

L′
= 1 +

7

2
u+

13

8
u2 +O(u3)

and is not smaller than 1+ 7
2u. Thus, at this stage, all we

have is

y

(
1− 7

2
u

)
6 ŷ 6 y

(
1 +

7

2
u+O(u2)

)
. (12)

To remove the term O(u2), we introduce the following
two lemmas, which show that the bounds in (6) and (7)
can be reduced slightly under suitable assumptions.

Lemma III.1. Let a be a nonnegative floating-point number.
If a is not an integral power of 2, then

RN
(√
a
)
=
√
a (1 + δ), |δ| 6 u√

1 + 6u
.

Proof. The result is clear for a = 0, so we assume that
a > 0. Then one can write a = m ·2k, where k is an even
integer and m is an integral multiple of 2u = 21−p such
that 1 6 m < 4. We now consider the following three
cases:
• if m = 1 or m = 1 + 2u, then RN(

√
a) = 2k/2 is an

integral power of two;
• if m = 1 + 4u, then RN(

√
a) = (1 + 2u) · 2k/2 and

the relative error is less than 2u2, and thus less than
u/
√
1 + 6u (since in this case we necessarily have

p > 2);
• if m > 1 + 6u, then, since

√
a ∈ [2k/2, 2k/2+1),

|RN(
√
a)−

√
a|√

a
6
u · 2k/2√

a
=

u√
m

6
u√

1 + 6u
.

If we compare with (6), we see that the above lemma
gives a slightly smaller bound, since

u√
1 + 6u

= u− 3u2 +O(u3),

whereas

1− 1√
1 + 2u

= u− 3

2
u2 +O(u3).

Lemma III.2. Let a and b be two floating-point numbers,
with b nonzero. If b is not equal to 2 − 2u times an integral
power of 2, then

RN
(a
b

)
=
a

b
(1 + δ), |δ| 6 u

1 + 3u
.

Proof. Up to scaling by suitable powers of two, we can
assume that 1 6 b < 2 and 1 6 a/b < 2, so the
assumption on b becomes b 6 2 − 4u. If a = b then the
division is exact, so it remains to consider the case where
a > b, that is, a > b+ 2u. Consequently,

a

b
> 1 +

2u

b
> 1 +

u

1− 2u
> 1 + u,

and three cases can occur:
• if a/b 6 1 + 2u, then RN(a/b) = 1 + 2u and the

relative error satisfies∣∣∣∣RN(a/b)− a/b
a/b

∣∣∣∣ 6 1 + 2u

1 + u
1−2u

− 1 =
u(1− 4u)

1− u
,

with the latter quantity being less than u/(1 + 3u)
for u > 0;

• if 1+ 2u < a/b < 1+ 3u, then RN(a/b) = 1+ 2u and∣∣∣∣RN(a/b)− a/b
a/b

∣∣∣∣ < 1− 1 + 2u

1 + 3u
=

u

1 + 3u
;

• if a/b > 1 + 3u, then, using the fact that a/b < 2,∣∣∣∣RN(a/b)− a/b
a/b

∣∣∣∣ 6 u

|a/b|
6

u

1 + 3u
.

Note that u/(1+3u) = u−3u2+O(u3), which is slightly
smaller than the expression u− 2u2 in (7).

We can now exploit these two lemmas as follows, by
considering three different cases depending on the shape
of the floating-point number

x̂ = RN
(√

ν/2
)

produced at step 6 of Algorithm 1:
1) If x̂ is an integral power of 2, then the floating-

point division at step 7 is exact. Hence ŷ = b/(2x̂)
and it follows from (10) that

ŷ 6 y · 1
L′
,

where 1/L′ has the form

1 +
5

2
u+O(u2)

and is less than 1 + 7
2u for u 6 1/2.

2) If x̂ = (2−2u) ·2k for some integer k, then
√
ν/2 >

(2− 3u) · 2k and the relative error due to rounding
is at most u/(2 − 3u) = u/2 + O(u2). This means
that instead of L′ as in (9), one can take

L′′ :=

(
1− u

1 + u

)
· 1

(1 + 2u)1/4
·
(
1− u

2− 3u

)
= 1− 2u+O(u2)

and replace the upper bound in (11) by

ŷ 6 y · 1 + u− 2u2

L′′
.

Here (1 + u− 2u2)/L′′ has the form

1 + 3u+
15

8
u2 +O(u3)

and is less than 1 + 7
2u for u 6 1/8.

3) In all the other cases, Lemmas III.1 and III.2 imply
that

x̂ =

√
ν

2
· (1 + δ), |δ| 6 u√

1 + 6u

and

ŷ =
b

2x̂
· (1 + δ′), |δ′| 6 u

1 + 3u
.

Therefore, the upper bound in (11) can be replaced
by

ŷ 6 y ·
1 + u

1+3u

L′′′
,

where

L′′′ :=

(
1− u

1 + u

)
· 1

(1 + 2u)1/4
·
(
1− u√

1 + 6u

)
.

It can then be checked that (1+u/(1+3u))/L′′′ has
the form

1 +
7

2
u− 7

8
u2 +O(u3)

and is less than 1 + 7
2u for u 6 1/8.

The three cases above thus show that ŷ 6 y (1 + 7
2u)

if p > 3. By combining this upper bound with the lower
bound in (12), we conclude that

|ŷ − y| 6 7

2
u|y| if p > 3.

IV. CONCLUSION

The refined bounds 5
2u and 7

2u we have obtained on
the relative errors of x̂ and ŷ can also be used to deduce
the refined bound

√
37
2 u on the normwise relative error

|ẑ − z|/|z|.
To see this, one can proceed exactly as Hull, Fairgrieve,

and Tang in [2, p. 230]. The normwise error satisfies

|ẑ − z|
|z|

=

√
(x̂− x)2 + (ŷ − y)2√

x2 + y2

6

√
25
4 u

2x2 + 49
4 u

2y2√
x2 + y2

=: f(x, y) for p > 3.

Since (a, b) 6= (0, 0) and a > 0 by assumption, we have
x > 0 and 0 6 y 6 x. On this domain, f(x, y) is largest
when x = y, and its maximum equals

f(x, x) =

√
25
4 + 49

4√
2

u =

√
37

2
u.

To summarize, we have shown the following:

Theorem IV.1. Assume binary floating-point arithmetic with
precision p > 3 and rounding to nearest. Then, in the absence
of underflow and overflow, the floating-point values x̂ and ŷ
computed by Algorithm 1 satisfy

|x̂−x| 6 5

2
u|x|, |ŷ−y| 6 7

2
u|y|, |ẑ−z| 6

√
37

2
u|z|,

where ẑ = x̂+ iŷ, z = x+ iy, and
√
37/2 = 3.041

We also note that these bounds are reasonably sharp.
For example,
• for p = 24 (binary32/single-precision format) and

with a = 53877/223 and b = 8433897/222, the
values x̂ and ŷ computed by Algorithm 1 satisfy
|x̂ − x|/|x| > 2.459u, |ŷ − y|/|y| > 3.446u, and
|ẑ − z|/|z| > 2.992u;

• for p = 53 (binary64/double-precision format) and
with

a = 650824205667/252

and
b = 4507997673885435/251,

these errors are larger than 2.482u, 3.481u, and
3.023u, respectively;

• for p = 113 (binary128/quad-precision format) and
with

a = 5964355165421358811162724754522111/2150

and

b = 5192298808565739300701174676465595/2111,

these errors are larger than 2.483u, 3.471u, and
3.018u, respectively.

ACKNOWLEDGMENT

This research was supported in part by the French
National Research Agency under grant ANR-13-INSE-
0007 (MetaLibm project).

REFERENCES

[1] P. Friedland. Algorithm 312: Absolute value and square root of a
complex number. Communications of the ACM, 10(10):665, 1967.

[2] T. E. Hull, T. F. Fairgrieve, and P. T. P. Tang. Implementing complex
elementary functions using exception handling. ACM Transactions
on Mathematical Software, 20(2):215–244, 1994.

[3] C.-P. Jeannerod and S. M. Rump. On relative errors of
floating-point operations: optimal bounds and applications, 2014.
Manuscript available at https://hal.inria.fr/hal-00934443. To ap-
pear in Mathematics of Computation.

[4] W. Kahan. Branch cuts for complex elementary functions or much
ado about nothing’s sign bit. In A. Iserles and M. J. D. Powell,
editors, The State of the Art in Numerical Analysis, pages 165–211.
Oxford University Press, 1987.

[5] D. E. Knuth. The Art of Computer Programming, Volume 2, Seminu-
merical Algorithms. Addison-Wesley, Reading, MA, USA, third
edition, 1998.

https://hal.inria.fr/hal-00934443

