Classification of scaling limits of uniform quadrangulations with a boundary

Abstract : We study non-compact scaling limits of uniform random planar quadrangulations with a boundary when their size tends to infinity. Depending on the asymptotic behavior of the boundary size and the choice of the scaling factor, we observe different limiting metric spaces. Among well-known objects like the Brownian plane or the infinite continuum random tree, we construct two new one-parameter families of metric spaces that appear as scaling limits: the Brownian half-plane with skewness parameter θ and the infinite-volume Brownian disk of perimeter σ. We also obtain various coupling and limit results clarifying the relation between these objects.
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées

https://hal-ens-lyon.archives-ouvertes.fr/ensl-01664484
Contributeur : Grégory Miermont <>
Soumis le : jeudi 14 décembre 2017 - 20:22:43
Dernière modification le : jeudi 11 janvier 2018 - 06:12:31

Identifiants

  • HAL Id : ensl-01664484, version 1
  • ARXIV : 1608.01129

Collections

Citation

Erich Baur, Grégory Miermont, Gourab Ray. Classification of scaling limits of uniform quadrangulations with a boundary. 2017. 〈ensl-01664484〉

Partager

Métriques

Consultations de la notice

17