Total positivity, Grassmannian and modified Bessel functions

Victor Buchstaber 1 Alexey Glutsyuk 2
2 UMPA
UMPA-ENSL - Unité de Mathématiques Pures et Appliquées
Abstract : A rectangular matrix is called {\it totally positive} if all its minors are positive. A point of a real Grassmanian manifold $G_{l,m}$ of $l$-dimensional subspaces in $\mathbb R^m$ is called {\it strictly totally positive} if one can normalize its Pl\"ucker coordinates to make all of them positive. Clearly if a $k\times m$-matrix, $k
Document type :
Journal articles
Complete list of metadatas

Cited literature [23 references]  Display  Hide  Download

https://hal-ens-lyon.archives-ouvertes.fr/ensl-01664210
Contributor : Alexey Glutsyuk <>
Submitted on : Thursday, December 14, 2017 - 3:50:19 PM
Last modification on : Friday, November 22, 2019 - 1:13:32 AM

File

bessel-grass.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Victor Buchstaber, Alexey Glutsyuk. Total positivity, Grassmannian and modified Bessel functions. Contemporary Mathematics, Amer. Math. Soc., 2019, 733, pp.97-107. ⟨10.1090/conm/733/14736⟩. ⟨ensl-01664210⟩

Share

Metrics

Record views

258

Files downloads

102