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Abstract

Algorithm recognition is an important problem in pro-
gram analysis, optimization, and more particularly pro-
gram comprehension. Basically, one would like to submit
a piece of code, and get an answer like “Lines 10 to 23 are
an implementation of Gauss-Jordan elimination”. Existing
approaches often perform a bottom-up recognition, using a
database describing many implementation variations of a
given algorithm, in a format making them difficult to main-
tain.

In this paper, we present a new method to recognize al-
gorithm templates in a program. We perform a top-down
recognition, stopping at template variables and thus lim-
iting the need for many program variations. The code to
analyze is given in SSA form, and the

�
-functions are com-

puted on-demand, when computation is possible, along the
candidate slices.

1 Introduction

Algorithm recognition is an old problem in computer sci-
ence. Basically, one would like to submit a piece of code to
an analyzer, and get answers like “Lines 10 to 23 are an
implementation of Gaussian elimination”. Such a facility
would enable many important techniques:

� Program comprehension and reverse engineering: we
try to recognize in the program some codes that have a
significant meaning.

� Program optimization: if we have the necessary items
in our library, we may replace lines 10 to 23 by a hand
optimized version, or by a sparse version, or a parallel
version. If we are bold enough, we may even replace
the relevant part of the code by a completely different
implementation, as for instance an iterative solver.

� Program verification: if we know that the program
specification asks for Gaussian elimination and the an-
alyzer does not find it, we may suspect an error.

� Hardware-software codesign: if we recognize in the
source program a piece of code for which we have a
hardware implementation (e.g. as a coprocessor or an
Intellectual Property component) we can remove the
code and replace it by an activation of the hardware.

Simple cases of algorithm recognition have already been
solved, mostly using pattern matching as the basic tech-
nique. An example is reduction recognition, which is in-
cluded in many parallelizing compilers. A reduction is the
application of an associative commutative operator to a data
set. It can be detected by normalizing the input program,
then matching it with a set of patterns which should include
the most common associative operators (addition, multipli-
cation, and, or, max, min ...). See [19] and its references.
One issue of pattern matching is that it does not handle
well the variations in the control or data flow of the pro-
gram. Several complex pattern matching techniques have
been proposed (see the recent book by Metzger and Wen
[15] and its references) in order to tackle this issue. An
alternative approach, explored by [3, 4] and [21] is to con-
sider system of affine recurrences as the starting point of the
algorithm recognition. From this normal form the method
described in [4] is able to find the equivalence of two pro-
grams, modulo transformations such as variable hoisting,
data expansion/shrinking, affine transformations of the iter-
ation domain, or common sub-expression optimizations.

All these methods recognize only algorithms that have
exactly the same semantics as the code they match. Many
algorithms however are better described in generic terms,
abstracting away the details of implementation. For in-
stance, Gaussian elimination is one instance of the well-
known algebraic path problem (APP), as the Warshall’s
transitive closure algorithm and Floyd’s shortest path algo-
rithm are also instances of this same APP. The only differ-
ence is the underlying algebraic structure. The only way



to handle them by the previous methods is to consider one
different pattern for each instantiation. Such generic algo-
rithms are called algorithm templates and many efficient im-
plementations of templates have been proposed. See [22]
for matrix manipulations, [12] for graph algorithms or [23]
for the APP, to name a few.

The aim of this paper is to present a method for algo-
rithm template recognition, based on the preliminary works
described in [1, 4], enlarging the scope of the technique in
[1] from static control programs [8] to any program. Given a
program written in SSA form [6] and an algorithm template,
our goal is to find out, if it exists, an instantiation of the tem-
plate corresponding to the program. The

�
-functions of the

SSA form capture some dataflow information that may be
needed for the matching to succeed. The on-demand evalu-
ation of the

�
-functions during the matching procedure pro-

vides a convenient way to combine the power of the previ-
ous analysis to a larger range of applications.

As in most algorithm recognition methods, the first step
is to normalize the given program as much as possible. One
candidate for such a normalization is the conversion to a
System of Recurrence Equations (SRE). Algorithm tem-
plates are given as static control programs, whereas the code
to analyze is in SSA form. It has been shown that static con-
trol programs [8] can be automatically converted to Systems
of Affine Recurrence Equations (SARE), and such a con-
version already was the first step in [19]. As for codes in
SSA form, we propose a way to encode it into an SRE. The
next step is to design an equivalence test between SREs and
SARE templates. This is the main theme of this paper.

Section 2 introduces some essential definitions about
SREs and the transformation procedure from SSA form to
SRE. Section 3 defines the problem at hand and Sections
4 and 5 build the semi-algorithm performing the match be-
tween the template and the code. Comparison with related
works is performed in Section 7.

2 Background

We present the definition of systems of recurrence equa-
tions which are used in the rest of the paper, as well as how
to transform a program in SSA form into an SRE.

The code in Figure 1.a provides a toy example for the
notions presented in this section. This is a computation of
the bit vector representing the local maxima in the input
array I. Fig.1.b represents a template for the computation of
a bit vector from an input array Y. X and Y are both template
variables, X representing the operation computing the next
bit.

MAX := I[0]
S := 0
do i := 1, n

if (MAX < I[i]) then
MAX := I[i]
S := S+1

endif
S := S*2

enddo
OUTPUT := S

(a)

A := Y[0]
do i := 1, n

A := X(A,Y[i])*2
enddo
OUTPUT = A

(b)

Figure 1. (a). Code to analyze (b). Template

2.1 Systems of Recurrence Equations

Systems of recurrence equations are a convenient way to
represent algorithms: they already eliminate some syntactic
aspects of the programs since they represent the computa-
tions with explicit dataflow information. Moreover, systems
of affine recurrence equations, SAREs, can be obtained
from static control programs by reaching definition analysis
[8]. The basic reference on SAREs is [7]. Let us recall that
a static control program is a program which manipulate ar-
rays, iteration domains are bounded � -polyhedra and index
functions of arrays are affine w.r.t. index variables. Figure
1.b gives an example of static control program.

Definition 1 A System of Recurrence Equations is a set of
equations called clauses, of the form:

�������	��

��� ��������������������� �! "�#�$�&%&�
�����'%(�
(1)

where
�

is an index vector,
�)�

a domain of integer vectors,�
and

�
are arrays,

�*�
is a function symbol, and

�� +�
is

a function of indices. We introduce the following defini-
tions: free index variables in the equations are called pa-
rameters of the SRE; Domains can be finite sets, paramet-
rically bounded (the domains are finite but their sizes de-
pend on unbounded parameters), or infinite;

��,
denotes

the union of all the sets
� �

, for all - , defining the clauses of�
; Functions

�  +�
are called dependence functions. Arrays

that do not appear in the left-hand side (lhs) of any clause
are called the inputs of the SRE. The outputs are special ar-
rays defined in a lhs of some clauses. Note that there can
be several output variables in a SRE. When the domains
are union of � -polyhedra and functions

�. "�
are affine w.r.t.

index variables, then the SRE is a SARE.
Moreover a SRE must satisfy the single assignment prop-

erty, i.e. each value of
�

is defined uniquely, and we assume
that all values of arrays which are not inputs are defined in
the SRE.

The example of Fig.2 illustrates the transformation from the
program of Fig.1.b to a SARE. The output, /10 is set to the
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Figure 2. SARE template

last element of the recurrence in Fig.1.b, the input is the
array

	
and the variable A has been expanded into a one

dimensional array
� �

.
An SARE does not describe a computation by itself. One

possibility is to build a schedule, i.e. a function giving the
date � �$����� % at which each array

��� � �
must be evaluated.

A schedule must satisfy the following causality constraint,
stating that

��� � �
cannot be computed before the computation

of the arrays appearing in the rhs:

��� � � � 
 � �$����� % � � �$�!���  "� �$� %�%#"$�
for all dependences in the SARE. If the domains are
bounded, a schedule exists iff the given SARE has no de-
pendence cycle. The scheduling problem for parametrically
bounded SAREs is undecidable [20]. However, the exis-
tence of affine schedules for SAREs is decidable [9]. Note
that in general, these schedules have a parametric latency.
We only consider in this paper SAREs with a schedule.

A SARE template has the same definition as a SARE, ex-
cept that in the definition of the clauses,

�
�
can be a function

variable and
�

an array variable. Both
�
�

and
�

can then
be defined during the matching procedure. The SARE tem-
plate representing the template of Fig.1.b is given in Fig.2.1.
We assume that

�%�&�
.

2.2 From SSA to SRE

Consider first a program in SSA form, where only scalars
appear in the

�
-functions. We assume in the following that

lower and upper bounds of do loops are static (they depend
on surrounding loop counters and on parameters). The pro-
cedure builds for each assignment in the program a clause
of an SRE.

Algorithm 1 SSA to SRE
IN : A program in SSA form.
OUT : A SRE

1. Give a different number to each
�

-function

2. For eachwhile loop, add a loop counter going from
�

to an upper bound denoted
�+� � %

where
�

is the iteration
vector of the surrounding loops.

3. Perform scalar expansion. When a scalar, s, has an
upward-exposed use in a loop, rewrite this use into

M0 := I[0]
S0 := 0
do i := 1, n
S1 :=

�
(S0,S4)

M1 :=
�
(M0,M3)

if (M1 < I[i]) then
M2 := I[i]
S2 := S1+1

endif
S3 :=

�
(S1,S2)

M3 :=
�
(M1,M2)

S4 := S3*2
enddo
OUTPUT :=

�
(S0,S4[n])

Figure 3. SSA form of the code

s[prec(i)] where i is the iteration vector of the
use statement. prec is a function providing the previ-
ous value of this vector, in the execution order.

4. Perform an if-convertion on the program.

5. For each assignment S[i] := t in the program,
consider the intersection of the surrounding loop do-
mains with the predicates of the if. This set may be
defined by non-affine constraints in the loop counters
and parameters. Let

�
denote the non-affine part of

this set and ' the affine part. We define the clause

� � ' 
)( � � �!�+*�,��.-�%
where

*#,
is a new function symbol. Its semantics is*�, �./!% �10
2 � ���436587:9;/$7:<
=>7@?

where
?

denotes
an undefined value.

The defining domains of the SRE built by this procedure are
polyhedra, as in SAREs. However, the dependence func-
tions may be non affine.

Fig.3 describes the SSA form of the code in Fig.1.a and
Fig.4 shows its represention as a system of recurrence equa-
tions, as given by the previous algorithm.

The SSA form does not take into account the indices of
the arrays. In order to transform a statement of the form
A3 :=

�
(A1,A2) with A1, A2 and A3 arrays, into a

clause of an SRE, instead of applying the previous steps,
we compute the source of all elements

�BA
� C*�
, for all in-

dices
C
, with an instance-wise dataflow analysis such as [8].

The code must then be a static control program and there
is no more the advantages of an on-demand dataflow analy-
sis.
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Figure 4. SRE form of the code

3 Matching problem

We want to check whether a program � is an instance
of a template � , where � is a static control program, and� is any program with scalar variables. A template is con-
sidered as a program with some redefinable functions and
inputs, as templates in C++ operating on parametric types.
For a program � in SRE form, ��� denotes the term ob-
tained by completely unfolding the recurrence of � . This
term is well-defined for a program � with a schedule (no
infinite loop). Likewise, for a template � with a schedule,
the term ��� exists. The matching problem is to find a
substitution  of the template variables such that  � �!� % is
syntactically equal to �"� . Such a substitution, if it exists, is
called a unifier of the matching problem between � and � .
This problem depends clearly on the underlying algebra. It
is clear, however, that equivalence in the Herbrand universe
implies equivalence in all conforming algebras. We only
consider in this paper equivalence in the initial algebra (no
semantics). In particular

�
-functions are not given any in-

terpretation during the resolution of the matching problem.
The matching problem between two SAREs has been

proved undecidable in [1], therefore the matching problem
between a SARE template and a SRE, which is at least as
complex, is also undecidable.

4 Principle of the algorithm

In order to give the intuition of the method, we study the
case of the template and code in Fig.1.a when

� � �
. The

generalization will be described in the following section.
We can completely unfold the recurrence of the template:

#%$'&)(+*,(-*,.0/ 1�2435.6/8792;:�<>=?3@.0/ =
2�:�<A=
For the program, /CB isDFE�G,HJI�DLK�G;DNMNG,HJIPORQTS U@VXWZY\[FI^]_G�DNMNG;HJI@ORQJS U@VJW�Y\[L`-Ua[�[FW�Y\[
with OFQJS U@VRb+DFK�G,DcMNG�HJIdOFQJS H9VJW�Y\[RI^]eG;DNMNG,HJIPORQTS H9VXWZY\[L`'Ua[P[

Note that in the preceding expressions,
( A � ���

is not defined,
its value will be denoted

?
.

The problem is to find out the possible values of
�

and
	

such that the two expressions are the same, syn-
tactically. Hence, the problem of matching is reduced to a
semi-unification problem, between the terms of the template
and of the program, where unknowns are template variables
(here

�
and

	
), and closed variables are program inputs

(here
� � � �

,
��� ���

and
��� � �

).
To unify two terms, we can apply Huet’s procedure [10].

Basically, we try to decompose the problem by applying the

rule:
�+�gf-�%ih���+� f-5j %lk -a�mh� - j ��n ����� n -5o�h� - jo

until terms of

the form
� �9f-�%'h� �+� f-5j %

are obtained, where
�

is a template
variable. Then we try to construct an unifier by trying:

� Projections:
� ��������/!� �����'%��$/��

;

� Imitation:
� � f/!% � �+�
� � f/ ������� o f/�% , with the

� � new
function variables.

When decomposition is not possible because the two head
operators are different, then this is a failure, the program
and template are not equivalent. When one of these oper-
ators is

�
function then this function may be computed in

order to avoid the failure of the method. If one of the vari-
able in the

�
-function is never in dependence with the vari-

able defined by the
�

-function, then a dependence analysis
can prove it. Otherwise, more complex dataflow analyses
are necessary [8, 17, 14]. The

�
-function cannot be eval-

uated if the code containing it is outside the scope of the
dataflow analysis. In this case, the

�
-function remains un-

evaluated and the unification fails, the template is then said
non-equivalent to the program. This is a safe approxima-
tion. Likewise,

*
-functions could be evaluated if there were

a dataflow analysis able to handle in an exact way non-affine
constraints.

On the example, we try to decompose the head opera-
tor in both expressions: for the code, this is

���
, for the

template this is
�
. Thus

���
is computed: as we have sup-

posed that
� � �

, a dependence analysis can prove that
/�� does not depend on its first argument,

���*�
/#�qp %��rp
.

This is equivalent to prove that at least one iteration of the
loop is executed. The head operator is

�
now in both terms.

By decomposition, we have to match
� �.� � ����� % ��	)� � � %!h�

� � � � � � �����'% ��*�� ����� %�%
. By applying the rule imitate, we de-

fine
� �./��qp %

as
� � �
� � �
/#�qp % � � � �
/#�qp %�%

where
� �

and
� �

are new template variables and the next step is a decompo-
sition for

� �
.

Proceeding in the same manner, we find out the follow-
ing solution:� �./��qp %�� � �
� ���*�
� ��/@���*% � *�� ���*�
� � /����
%�%#"$� %
and

	)� ��� � �
. This is one of the possible solutions which

can be obtained by an exhaustive application of the proce-



dure. This solution is not very helpful as it is. The semantics
of the

�
functions is:

� � �./#�ap % � 0
2 ����� 36587:9mp 7:<
=>7 /
� �*�
/#�qp % � 0
2 � � � � ��� � � � � 36587 9 p�7:<
=>7 / �

Therefore, the function
�

of the template of Fig.1.b is, in a
more natural way:

� �
/#�qp %��

������������������

0
2 � � � � ��� ��� � �

36587:9
����������

0
2 � ��� � ��� ��� � �
36587:9 �� ������

0 2 �����3>5�7:9 /@���7:<
=>7 �
�	 "$�

7:<
=>7�?
7:<
=>7 ������

0
2 �����36587 9;/@���7 < =67��
Computation of

� �
, used by

�
, can be added likewise.

In fact, as templates and programs can depend on a pa-
rameter (here n), computed terms can have a parametric
length, making Huet’s algorithm not applicable as it is. Let
us try nevertheless to build a unification tree. We start with

state / 0 h� / � , then we unfold the recurrence, applying
on demand Huet’s rules. We then obtain an unification tree
– with a parametric number of states – which gives us the
solution. This tree as many similar nodes, and as in [4], the
idea is to capture this unification tree into an automaton with
a finite number of states and then analyze it to construct the
final set of solutions.

5 Our algorithm

As said above, the idea of this semi-algorithm is to im-
plement the procedure with an automaton and to analyze the
automaton, without executing it, in order to construct the
set of unifiers. The automaton, a Memory State Automaton
(MSA) is described below.

5.1 Memory State Automaton

5.1.1 Definition

The state of an MSA has two parts: an element of a finite
set and a vector of integers. The vector associated to state 

is denoted �TB and the full state is �

 � �TB�� . The dimension of�JB is determined by 
 and is noted

� B .
A transition in an MSA has three elements: a start state,
 , an arrival state � , and a firing relation ��B�� in � o���� � o�� . A

transition from �

 � � B � to ��� � � � � can occur only if ��� B � � � � �� B�� . There is an edge from 
 to � in an MSA iff � B�������
.

Let ��
 � � � B! � be the initial state of the automaton. A state�

 � � B � is reachable iff there exists a finite sequence of tran-
sitions from the initial state to �

 � �TB"� :#%$ M 3'&'&(&g3 $*) 3,+.- � 3'&.&'&g3/+%-'021 * $*) & $4365 +%-'798 � 3,+.-.7;:=<?>@-.7A8 �'B -.7q:C&
The reachable set of 
 , noted

� B , is the set of vectors �TB
such that �

 � �TB"� is reachable from the initial state.

5.1.2 Computing the Reachability Relation

One method for computing the reachability relation consists
in characterizing all possible paths in the MSA, then com-
puting the relation associated to each path and “summing”
the results. This can be done by associating a letter from
a new alphabet to each edge of the MSA. This results in a
finite state automaton on the given alphabet. Familiar al-
gorithms [2] allow one to associate to each state a regular
expression representing all paths from the initial state to the
current state. To obtain the reachability relation from such a
regular expression, replace each letter by the corresponding
firing relation, concatenation by relation composition, alter-
nation by union and Kleene star by transitive closure. The
reachable set is obtained by composing the result with the
reachable set of the initial state.

5.2 Construction of the matching MSA

Let us consider � h� � a matching problem. We explain
in this section how to build the corresponding MSA, by first
describing the general form of a state, and then the different
kind of transitions between two states. Next section gives an
algorithm to analyze the matching MSA in order to compute
the set of unifiers.

5.2.1 States

Each state of our matching MSA has two part: a clause

 
�- h� - j
with  a substitution, and a vector of integers� B , which is the concatenation of fD and

fD j , where fD is the
lhs iteration vector, and

fD j is the rhs iteration vector. The

initial state is
��E 
 / 0 � fD ��h� / � � fD j � , where / 0 and / �

are corresponding outputs of � and � . Its reaching set isF � fD � fD j ��G fD � fD j�H . The final states are either:

� 	�� fD � h� - j
where

	
is an input variable of the template� ;

� ?
if there is no unifier.

5.2.2 Transitions

We describe thereafter the transitions:



� Decompose: From a state with label:

 

�+�9f- � fD %�% h��� j � f- j � fD j %�%
starts a transition to each state:

 
 - � � fD % h� - j � � fD j %
with the firing relation:

��E � F fD k fD � fD j k fD j�H
provided

� � � j
. All these transitions constitute an

and-branching. If
� �� � j

then start a transition to a
failure node

?
.

� Compute
�
: Consider a state with label:

 

�+� f- � fD %�% h� �"� f-5j � fD j %�%
If

�
is not computable then start a transition to

?
. Oth-

erwise compute its value (for instance with the meth-
ods in [8, 14], which is of the form:

� ��� f/"� / � � fD j"�� �
for some domain

� �
. Create a transition to each

state:  

�+�gf- � fD %�% h�+- j �
with the firing relation:F fD k fD � fD j k fD j � fD j�� � � H
All these transitions constitute an � � E -branching.

� Generalize: From a state with label:

 
 � � �+� fD % � h�$- j
create a transition to state:

 
 � � fD � h�$- j
with the firing relation:F fD k �"� fD % � fD j k fD j9H
There is a similar rule for the rhs. This rule is im-
portant because it normalizes the form of the states,
ensuring a finite number of states [1].

� Compute: If
� � fD � � - � � fD ��� �

, then from a state
with label:  
 � � fD � h�$- j
create a transition to each state:

 
 -�� � fD % h�$- j
with the firing relation:F fD k fD � fD j k fD j
� fD � � � H
All these transitions constitute an � � E -branching.
There is a similar rule for the rhs.

� Huet’s rules produce an or-branching between each
Project and Imitate. The firing relation is

� E
since they

do not modify the index variables.

� Substitute: Simply replace an already defined tem-
plate variable by its value. Firing relation is

� E
.

Rule Compute
�

does not change the following result
proved in [1]:

Proposition 1 Let � h� � be a matching problem, and
�

be its corresponding MSA. Then the number of states of
�

is finite.

One can remark that the
�

-functions are only computed
when they are needed by the Decompose rule. Therefore,
this limitates the cost due to dataflow analysis. Moreover,
a

�
-function can be imitated as it is. Hence, it allows us to

handle programs with non-computable
�

-functions.

5.3 Analysis of the matching MSA

We have now to analyze the matching MSA in order to
decide whether the program is an instantiation of the tem-
plate, and to find out the set of unifiers. This can be done by
the following algorithm:

Algorithm 2 Match SRE

IN : A matching problem � h� � .
OUT : A set of unifiers

F (������ ������(����,o H
1. Compute the MSA associate to � h� � by the method

described above;

2. Compute the reaching set of each node. Eliminate
nodes with an empty reaching set ;

3. Propagate
?

by applying rules
? n / � / n ? � ?

and
?�� / � /	� ? �$/

;

4. Repeat:

� For each
��


-branching, enable one arc;
� (����
� �

;
� For each definition

� ���k - �
enabled:

– Initialize the set � with the reaching set of
the definition node;

– Visit the following nodes, then add to � the
reaching sets of the nodes which precede the
substitution of

�
by
-
.

– add
� ���k - ���+� fD � fD j % � � to

(����
� If there is no functional incoherence in

(����
Then emit(

(����
);



Until they is no more
��


-branching to enable.

Step 2 allows us to eliminate unaccessible nodes due to
systematic application of Compute and Compute

�
rules.

Step 3 avoids unnecessary work by eliminating the nodes
which do not produce unifiers. Step 4 studies all possible
combinations of unifiers in the remaining automaton. For
each definition of a

�
-function it collects all couples

� fD � fD j %
to which the definition is applied. The final solution is dis-
carded if a variable

�
have two distinct definitions for a

value of fD (functional incoherence).
Rule Compute

�
does not change the soundness result

proved in [1]. However, our algorithm is unable to find
functions with a recursive definition, so it is not complete.
Another restriction is the construction of the transitive clo-
sure of a relation which occurs when a reaching set is com-
puted. This is not an effective procedure [11] and the algo-
rithm works only when transitive closures are computable.

6 An example

Let us apply our algorithm to the matching problem be-
tween the template of Figure 1.b and the program of Fig-
ure 1.a. Applying on demand the rules described in Sec-
tion 5.2, we obtain an MSA of 72 states. For presen-
tation reasons, we will just describe a small, but signif-
icant part of the MSA. Figure 5 give the first part of the
MSA. For sake of clarity, arcs are labeled by shortened no-

������ ���
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  �� 
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Figure 5. First part of the example MSA

tations. Starting from state
��� �!�!h� � � � ( � ��( � � �!� %

, label

� � �
indicates a generalization represented by the relationF ��� ��� %ik �$� ���'% G � � � H

.
� � � �

is computed with respect to
its definition in the SARE template. We will only consider��� �

, which represents relation
F � � ��� j % k � � ��� j % G �@� � H

.

Because
� ����� ���+������	)� � � %�� � h� � � � (�� ��(��
� �!� %

is a

 ��4 �,E

-
 �#4#�,E
pair (the head symbol of lhs is the unary function/��k / �!�

),
� �

must be computed. This explains the
two next transitions.

(�� � �!�
is generalized in

(�� � � j �
, then

computed, and gives
( A � � j ��� �

. The two terms are de-
composed, then

( A � � j �
is computed and gives the

� �#5>/ �76 �15
-
 �#4#�,E

pair
� ����� � �$������	)� � � % h� � � � ( � � � j ��� ( � � � j � %

. We can
now try to build a value for

�
by applying Huet’s rules.

Figure 6 gives the part of the MSA obtained while try-
ing

� �k � / p!� /
. Since

� �
is not computable, we ob-
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Figure 6. Part of MSA obtained while trying� �k � / p!� /
tain failures states (

?
) which are final states. While try-

ing
� �k � / p!� p

, we obtain
	 � � � h� ( A � � j �

, which is a
final state. To achieve the construction of the MSA, we
should try imitation of rhs head symbol (here

� �
) by try-

ing
� �k � / p!� � � �#= � �./��qp % �>= � �./��qp %�%

, where
= �

and
= �

are two new template variables. Since the corresponding
part of MSA is too big, we will not show it.

Let us analyze the MSA. By propagating
?

up to the
first

��

-branching, we discard the projection

� �k � / p!� /
.

Assume the arc
� �k � / p!� p

is enabled. The reaching set

of the definition node
� ����� � �!������	)� � � %ih�$( A � � j �

is
F �.� ��� %'H

so the following substitution is added to
( ���

:S ?A@BDC E F�G F\VIHNG%JPI1J8K,[MLON�G�P I�P [�Q
In the same way, the reaching set of the final state

	 � � �'h�( A � � j �
is
F �
� � � %'H

so the following substitution is added to(����
: S RCS J;V�@B ORQTS J K V8V&HNG�JPI1J K [MLSN�G%P I#Pc[#Q

Finally, the following solution is emitted:S ?T@BDC E F�G F\V HNG%JPI1J K [ULVN�G�P I�P [�QS RCS J;V�@B OFQTS J K VWHNG%JPI1J K [ULVN�G�P I�P [�Q
The solution emitted when the imitation arc is enabled is:S ?T@BDC E F�G DLKXG%ElW�YJIP]NG%E_W�Y\[ `'Ua[�VXHNG%JPI1J K [ULVN�G�U
IqUa[�G7G7GaG%P I1Pc[#QS RCS JZYiU@V�@B H9V HNG%JPI1J K [ULVN�G�U
IqUa[#Q



Which corresponds to the solution given in section 4.

7 Related works

It is a well-known fact that programmers spend most of
their time to understand programs. Hence, tools which fa-
cilitate program comprehension are important. They can be
divided in two complementary categories:

� Tools which help the user to understand a program ;

� Tools which try to understand automatically parts of a
program by performing subcomponent extraction.

The first category includes software visualization tools (see
for example [24] or [18]) which allows the user to under-
stand software architecture by providing a graphical pre-
sentation of modules dependencies and searching facilities.
Pintzger’s revealer [16] extracts parts of the source code
which corresponds to a given pattern by performing a lex-
ical analysis. The user can then quickly find parts of the
code containing characteristic statements, like for example
the declaration of a Java server socket.

We are interested in automatic comprehension of pro-
gram. But what does it really mean to “understand a pro-
gram”? Biggerstaff et al. [5] defined the concept assign-
ment problem as “[...] a process of recognizing concepts
within a computer program and building up an ’understand-
ing’ of the program by relating recognized concepts to por-
tions of the program, its operational context and to one an-
other.”. Since semantic equivalence is not decidable, the
concept assignment problem which is at least as difficult, is
not decidable. There exists several approaches to recognize
a concept in a program. We will evaluate these with respect
to the following criteria:

� Cost ;

� Maintainability of pattern base. Can we easily add our
own patterns ?

� Program variations handled.

The last one is the most important. Indeed, the main dif-
ficulties come from various codes implementing the same
algorithm. The different kinds of variation that can be found
in a program are mentioned in [15]. To sum them up, they
are:

� Organization variation: any permutation of indepen-
dent statements and introduction of temporary vari-
ables ;

� Data structure variation: the same computation with a
different data structure ;

� Control variation: any loop transformation, e.g. fu-
sion, splitting, skewing, . . . or control transformation
e.g. if-conversion or dead-code suppression;

� Semantic variation: pieces of code equivalent modulo
a theory defining properties on operators, e.g. associa-
tivity/commutativity of

"
.

Wills [25] represents programs by a particular kind of de-
pendence graph called flow-graphs, and patterns by flow-
graph grammar rules. The recognition is performed by
parsing the program’s graph according to the grammar
rules. We finally obtain a parsing tree which represents a
hierarchical description of a plausible project of the pro-
gram. This approach is a pure bottom-up code-driven anal-
ysis based on exact graph matching. Wills has shown that
the flow-graph recognition is NP-complete, and argues that
even if the cost of her algorithm is exponential in the worst
case, it is feasible to apply it to practical partial program
recognition. Patterns are represented by grammars rules,
encoding a hierarchy among them, but making the pattern
base difficult to maintain. Organization variation is partially
supported. Temporary variables can be handled by adding
specific rules. All others variations can be handled only if
they are explicitly described in the pattern base.

Di Martino et al. [13] propose an approach similar
to Wills’. Flow graphs and patterns are coded by pro-
log clauses, then the recognition is performed by SLD-
resolution. The differences are essentially in the abstract
program representation (flow graph).

Metzger [15] normalizes the program’s AST by applying
various heuristics, and then compares it to the pattern AST.
Of course this approach is scalable and low cost. More-
over, the patterns are given in the source form. This cannot
handle much program variations though, in particular data
structure variations. Organization variations are not han-
dled by the algorithm itself, but by pre-treatments applied
to the program. In the same way, the control variations sup-
ported are bounded to pre-treatments. One can remark that
semantic variations are partly taken into account, with com-
mutativity of usual operators.

Our approach is able to handle all variations described,
except for semantic variation. Organization and data struc-
ture variations are normalized during the conversion to the
SRE. Since our algorithm checks on-demand the order in
which operations appear in the template and the program,
it copes with any transformation preserving the order of the
operations, in particular the control variations. Templates
are given as source code, so new patterns can be added to the
base without difficulties. However, our algorithm is expen-
sive because of the reaching set computations and dataflow
analyses. The evaluation of different approaches is summa-
rized in Figure 7.



Criteria Wills DiMartino Metzger Us
Cost high high low high
Adding patterns is... difficult difficult easy easy
Organization variations yes yes yes yes
Data Structure variations no no no yes
Control variations no no partly yes
Semantics variations no no partly no

Figure 7. Evaluation of different approaches

8 Conclusion and Future work

Algorithm templates represent programming models that
convey genericity, portability, that can be easily customized
by the programmer to suit its need and at the same time
have efficient implementations. Algorithm template recog-
nition thus appears as a promising tool for code compre-
hension, validation and optimization. In this paper, we have
presented an approach that provides such recognition for
templates described by systems of affine recurrent equations
that can be applied on any code. As a consequence, our
analysis is able to recognize algorithms obtained by com-
position of other algorithms, since templates can be com-
posed with other templates. While other analyses [25] could
recognize an algorithm made of several known algorithms,
ours works also for unknown algorithms.

The method presented relies on a precise knowledge of
the dataflow in the program. The on-demand dataflow anal-
ysis approach reduces the piece of code that must be in
the scope of an exact dataflow analysis to the portion only
needed by the template. Non static control programs can
thus be analyzed with this method, provided the difficult
parts of the program correspond to the template variables.

In future work, we will investigate the feasibility of the
approach on benchmark applications, with respect to the as-
sumptions that have been made and by extending the ex-
isting prototype developed for the equivalence of SAREs.
In order to make algorithm template recognition more ef-
ficient, several further developpements can be explored:
faster heuristics, use of slicing techniques in order to target
only good candidates for template recognition, and recog-
nition of templates organized in a hierachical way: the tem-
plate described in this paper is an instance of a template
of reduction. This could drastically reduce the cost of the
recognition with respect to the number of templates consid-
ered.
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