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ON THE BROWNIAN SEPARABLE PERMUTON
MICKA EL MAAZOUN

Abstract.  The Brownian separable permuton is a random probability measure on the
unit square, which was introduced by Bassino, Bouvel, Feray, Gerin, Pierrot (2016) as
the scaling limit of the diagram of the uniform separable permutation as size grows to
in nity. We show that, almost surely, the permuton is the pushforward of the Lebesgue
measure on the graph of a random measure-preserving function associated to a Brownian
excursion whose strict local minima are decorated with i.i.d. signs. As a consequence, its
support is almost surely totally disconnected, has Hausdor dimension one, and enjoys
self-similarity properties inherited from those of the Brownian excursion. The density
function of the averaged permuton is computed and a connection with the shu ing of the
Brownian continuum random tree is explored.

1. Introduction

Forn 1, letS, be the set of permutations ofJl;nK and S =t , ;S,. We use the

one line notation =( (1) (2) (n)) for 2 S,. A pattern in a permutation 2 S,
induced by the indices 1 i; < :::iig n is the permutation 2 Sy that is order-
isomorphic to the word ( (i1);:::; (ix)). The density of the pattern 2 Syin 2 S, is

the proportion of increasingk-uples inJ1; nKthat induce in . A classof permutations

is a subset ofS that is stable by pattern extraction, and is characterized by the pattern
avoidance of some minimal family of permutations called itbasis [8, 5.1.2]. There is a
large literature on the asymptotics of the pattern densities and diagram shape of a large
typical permutation in several classes. This type of results can, to some extent, be encoded
as convergence to germuton In [6] (to which we refer the reader for an extensive review
of literature), Bassinoet. al. studied the class ofseparable permutationsand showed the
convergence, of a uniform large separable permutation toBaownian separable permuton
and the present paper is a detailed study of this object. Let us start with a few de nitions.

1.1. Limits of permutations. A probability measure on the unit square [p1] is called
a permuton if both its marginals on [Q 1] are uniform. With every permutation 2 S,
we associate a permuton by setting (dxdy) = n1[ (bxnc) = bync]dxdy. The set of
permutons is equipped with the weak convergence of probability measures, which makes it
compact. A sequence of permutations ), is said to converge to a permuton if and only
if  converges weakly to . This theory was introduced by Hopperet. al. in [14], where
it is shown that convergence of a sequence of permutations to a permuton is equivalent
to convergence of all pattern densities. As a result, permutons can be alternatively con-

structed as the completion of the space of permutations w.r.t. convergence of all pattern
1
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densities. This theory is similar to graphons as limits of dense graphs, and uni es the study
of the limit shape of the permutation diagram with that of the limit of pattern densities.

1.2. The case of separable permutations. A permutation is separable if it does not
have (2413) and (3142) as an induced pattern. Separable permutations were introduced in
[10], but appeared earlier in the literature [4, 20]. They are counted by the large Schreder
numbers: 12;6;22, 90,394 ::: and enjoy many simple characterizations [10, 4, 20, 13]

The one most relevant to this paper is in terms of trees. A signed trdeis an rooted
plane tree whose internal nodes are decorated with signsfin; g . We label its leaves

di erent ordering of the rooted treet: we callt'the tree obtained fromt by reversing the
order of the children of each node with a minus sign. The order of the leaves is changed
by this procedure, and we set (i) to be the position in t of the leafi. We call perm{)
this permutation 2 Sy. It turns out [10, Lemma 3.1] that separable permutations are
exactly the ones that can be obtained this way.

Figure 1. The permutation associated to a signed tree.

The article [6] shows that separable permutations have a permuton limit in distribution,
yielding the rst example of a nondeterministic permuton limit of a permutation class.
The representation by signed trees is fundamental in their proof.

Theorem 1.1 (theorem 1.6 of [6]) If , is a uniform separable permutation of size,
then  converges in distribution, in the weak topology, to a non-deterministic permuton
122 called the Brownian Separable Permuton of parametér2.

This result comes with a characterization of ¥*? (which we recall in section 2) which
suggests that it can be realized as a measurable functional ofigned Brownian excursion
(see remark 2.7). The authors of [6] left this, along with the study of the support of'*?,
as open questions that the present paper aims at addressing.

Let us mention that theorem 1.1 was generalized in [5] by the same authors along with
the present author to a rather wide range of permutation classes called substitution-closed
classes. It yields, among others, a one-parameter family’j, o.1) of possible limits, called
the biased Brownian separable permutondVe set our paper in this generality and x once
and for all p2 (0;1). We postpone a precise de nition of P to section 2.

1.3. The signed Brownian excursion.  We call continuous excursiona nonnegative
function g : [0;1] ! R, that is positive on (0;1). The inner local minima of g are the
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points of (0; 1) in which g is locally minimal, and we say thatx 2 (0; 1) is not a one-sided
minimum of g if

8> 0,912 (X ;xX);X22 (X;x+ )s.t. g(x1) <g(x) and g(xz) < g(x):

A CRT excursion is a continuous functiong : [0;1]! R.: such that:

(CRT1) the inner local minima of g are dense in [01],
(CRT2) the values at the inner local minima are all di erent,
(CRT3) the set of times that are not one-sided minima has Lebesgue measure 1.

In a CRT excursion, all inner local minima are necessarily strict local minima, and hence
countable. It will be useful for our purposes to enumerate them in a well-de ned manner.

De nition 1.2. A measurable enumerations a sequencel();,y of functions from the set
Ecrr Of CRT excursions to [Q1] such that

(ME1) for every g 2 Ecgr, 1 7! b(Q) is a bijection betweenN and the inner local minima
of g,

(ME2) for everyi 2 N, g 7! (g) is measurable,

(ME3) the function which maps @;u;V) 2 Ecgr  [0;1Ptoi 2 Nif b 2 (u;V) is the unique
point in [u; v] in which the minimum of g on [u; v] is reached, andlL otherwise, is
measurable.

We x once and for all a measurable enumeration (see section 2 for an explicit construc-
tion of one, which comes from [6]). We calligned excursiona couple @;s), whereg is a
CRT excursion ands is a sequence ifi ; g N. The signs; is to be considered as attached
to the inner local minimum h.

In what follows, we consider the signed excursiore(S), where e is a the normalized
Brownian excursion, andS is an independent sequence of independent signs with b@s
that is probability p of being and 1 p of being

The signed excursion €; S) is the main ingredient in building P. To that end, if x <
y 2 [0; 1], we say thatx and y are g-comparable if and only if the minimum ofg on [x;y]
is reached at a unique point which is a strict local minimunh 2 (x;y). In this case, if
si= ,wesayx gy, otherwisey gx. Therelation jis nota strict partial order, because
it lacks the property of transivity. However we will see later that it can be extended to a
total preorder. Moreover, almost surely, the pairs of points that arg-comparable have full
Lebesgue measure, since two distinct points which are not one-sided minima are always
g-comparable.

1.4. Main results. If (g;9) is a signed excursion, we de ne
(1) 'gs(t) =Lebfu2 [0;1fu gGtg, t2][0;1]

and gs=(Id;' gs) Leb. HereH denotes the pushforward measurg(H *()), whenever
H and are respectively a measurable function and a measure de ned on the same space.
Our main theorem is the following:
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Theorem 1.3. The maps(t;g;s) 7! ' 4s(t) and (g;9) 7! s are measurable, and the
random measure .. is distributed like P, the biased Brownian separable permuton of
parameter p.

This theorem is proved in section 3, along with a corollary which shows that the con-
vergence of theorem 1.1 can be rewritten without permutons, only in terms of functional
convergence. To any permutation 2 S,, we associate a @dhg, piecewise a ne, measure-
preserving function’ :[0;1]! [0;1] with ' (x)= ( (bntc+1) 1)+ ifntg.

Corollary 1.4. Let , be arandom permutation inS,, for everyn 2 N. If  converges
in distribution to P, then for everyq2 [1;1 ), we have the convergence in distribution in
the spacel 9([0; 1]):

d

ro .
ni1 es

This function ' ¢ is well-de ned as a random element df! ([0; 1]), and although it has
a dense set of discontinuity points, it is continuous at every point which is not a one-sided
minimum of e (i.e. on a set which has almost surely measure 1). In section 4, we prove
the following result.

Theorem 1.5. Almost surely, the support of P is totally disconnected, anlgl_its Hausdor
dimension is 1 (with one-dimensional Hausdor measure bounded above bg).

The claim that the Hausdor dimension is 1 also comes as a special case of a result of
Riera [19]: any permuton limit in distribution of random permutation in a proper class, if
it exists, almost surely has a support of Hausdor dimension 1.

In section 5, we show that P inherits the self-similarity properties ofe, in that P
contains a lot of rescaled distributional copies of itself. In particular, we get the following
theorem, illustrated in g. 2, which states that P can be obtained by cut-and-pasting three
independent Brownian separable permutons.

Theorem 1.6. Let( o; 1; »)bearandom variable obirichlet($;;2) distribution. Let

o; 1, 2 be independent and distributed likeP, and conditionally on o, let (Xo; Yp) be a
random point of distribution o. Let be an independent Bernouilli r.v. of parametep.
We de ne the piecewise a ne maps of the unit square into itself:

oY) =( o(¥); oY) = oY) +(1  0)(Lpex o Liysvo)
(2 16y) =0 1(x); 1Y) = 1(xy)+ oXo;Yo)+ 2(0; )

2 y) =( 20x); 20y) = 2xy)+ oXoYo)+ (L1 )
Then
(3 oo of 11 1+t 22 2g P

We believe that a result by Albenque and Goldschmidt [1] about the Brownian CRT can
be adapted to show that thedistributional identity (3) characterizes P (see remark 5.5.)

Finally, our construction allows us to compute the averaged permutod P, obtained by
taking E P(A) = E[ P(A)]. We get the following result.
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Figure 2. The construction of from three independent permutons dis-
tributed like . Here =0and( o, 1; 2 (0:4;,05;0:1).

Theorem 1.7. The permutonE P is absolutely continuous w.r.t. the Lebesgue measure
on the unit square, with density function a(x;y) equal to

Z min( x;y) 3p2(1 p)zda

5=2"°

: — 2 1 2 2 1 2
@y B 2 (ax gl x y+aly a)* % * ((x pa)l) * @ xp y+a) * ((y F;))

We discuss a relationship with an existing result by Dokos and Pak on doubly-alternating
Baxter permutations at the end of this section.

1.5. Shu ing of continuous trees. Through a classical construction (see [16]), a con-
tinuous excursiong encodes a continuous rooted tree equipped with a total ordering (ana-
loguous to the depth- rst search order of a discrete tree) and a probability measure. This
is done by settingdy(x;y) = 9g(x) + 9(y) 2miny,;9 on [0 1] and identifying points
X;y 2 [0;1] such that dyg(x;y) = 0. This yields a quotient metric space {y; dy) with a
continuous canonical surjectiorpg : [0; 1] 7! T4. The root is = py(0), the order is de ned
by x gy 0 infp,*(x) infp,*(y), and the measure is 4 = p; Lebyp,y. Wheng= e,
we get the well-known Brownian CRT. Section 7 is devoted to the proof of the following
theorem, illustrated in g. 3.

Theorem 1.8. There exists a random CRT excursiore, de ned on the same probability
space age; S), with the following properties:
(1) The excursione has the distribution of a normalized Brownian excursion, with the
same eld of local times at time 1 a%.
(2) Almost surely, the function’ .5 is an isometry between the pseudo-distanagsand
de. In particular, & ' os= e

This result has an interpretation in terms of shu ing of continuous trees, mirroring the
construction of separable permutations described in section 1.2.

When g is a CRT excursion, the construction ofTy puts the strict local minima of g in
bijection with the branching points of Ty. Hence, wheng; s) is a signed excursion, the order

g can be de ned on the treeTy by inverting at all branching points with a minus sign,
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Figure 3. A realization of (e;S) (here p = 1=2), and the associated func-
tions ' ¢.s and & highlighting the property e ' s = e

as follows. Letx;y 2 T4 such thatx 4 Y. If there exists a strict local minimumb such
that suppy*(x) < b; < inf p,*(y), with g(b) =inf fg(t);supp,*(x) t infp,*(y)g, and
s(h) = , then setx 3y. Otherwise, setx 3y. This de nes a total order compatible
with the relation on [0; 1] de ned in the previous section: wherx and y are g-comparable,
thenx Sy 0 py(x) <§ Po(y).

This allows us to give an interpretation of theorem 1.8 in terms of trees. If we consider
the tree (Te; de; e o e), from theorem 1.8(2) we deduce, fox;y 2 [0; 1], that

Pe(X) = Pe(y) 0 de(x;y)=0 0 de(" es(X);" es(¥) =0 Pe(" e;s(X)) = pe(’ es(¥)):

So thereisaunique mag : T ! T esuch that| pe= pe 'es. Itisimmediate than

| is an isometry (Te;de) $ (Te; de). Moreover,| maps the root of T, to the root of T, is
measure preserving and increasing w.r.t. €; ). This discussion can be summarized in
the following corollary of theorem 1.8.

Proposition 1.9. The map| : Te $ T ¢ provides an isomorphism (of pointed, ordered, mea-
sured metric spaces) between the tré€; de; ; 3; ) and the Brownian CRT(Te;de; & e
;) constructed from the Brownian excursiore.

Combining this with the result of Duquesne on the uniqueness of coding functions of
trees [12, Thm 1.1], we directly get an abstract construction of s.
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Proposition 1.10. Almost surely, the functionse and| are uniquely determined by the fact
that e is continuous and| is an isomorphism betweei(Te; de; o; 5; ) and (Te;de; &

; e). Any function which veries pe = | pe must coincide with' ¢.s on a set of
measure 1, hence still veries s =(ld; ) Leb.

1.6. Comments and perspectives. Let us mention another natural family of permuta-
tions: the doubly-alternating Baxter permutations, which are also the doubly- alternating
separable permutations [17], and are counted by the Catalan numbers. The fact that
they enjoy a tree decomposition similar to separable permutations, along with simulations
[11], allows to boldly conjecture that they converge to the Brownian separable permuton
of parameter E2. Under the conjecture just stated, the main result of Dokos and Pak
[11, Thm 1.1] would provide another expression for the density function of E *2: for
0 x min(y,;
(y;1 y), _—
dxdy — * X 1
(x;y)= —/— du dv =
4 0 [(U+Vv)(y v vy u)*
the values on whole unit square being recovered through the invariance under isometries
of the square. We were unable to nd a direct analytical proof of the equality with the
expression of theorem 1.7 fop = 1=2.

As already mentioned, the article [5] considersubstitution-closed classeswhich are
natural generalizations of the class of separable permutations. Depending on the class,
several possible limits appear, among which are the for p possibly di erent from 1=2.
Another family of possible limits isthe -stable permuton driven by, for 2 (1;2) and

itself a random permuton. We believe a continuum construction similar to the one
presented here is possible, by considering astable tree, with an independent copy of at
each branching point, driving the reordering of the (countably in nite number of) branches
stemming from that point.

The structure of the paper is as follows. Section 2 contains various de nitions that will be
needed in the rest of the paper, notably a characterization of through its marginals, that
highlight the link with the signed excursion. Section 3 contains the proof of theorem 1.3,
along with some facts about the random function ..s that are reused later. Sections 4
to 7 are respectively devoted to the proofs of theorems 1.5 to 1.8.

1.7. Acknowledgements. | warmly thank Gegory Miermont for his dedicated super-
vision, enlightening discussions and his detailed reading of this paper. Many thanks to
Mathilde Bouvel, Valentin Feray and Sbastien Martineau for enriching discussions and
useful comments. | am grateful for the hospitality and support of the Forschungsinstitut
far Mathematik at ETH Zadrich during a stay where part of this research was conducted.

2. Definitions

set(E; ),thenrank (Xxi;:::;xk)Iisthe permutation suchthat (i)< (j) ( Xi <X
forevery 1 ;] K. The sequenceX 1) <:::<X 1) is called the order statistic
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2.1. Marginals of a permuton. In this section we want to give a tractable de nition of
the random permuton P. This will take the form of a characterization through its nite-
dimensional marginals, which we dene now. Ik 1 and is a random permuton, let
subperm/( ) = rank(Yi;:::Ye) rank(Xy;:i::Xy) 2 Sy, where conditionally on , the
(Xi;Y;) fori 2 J1; kKare independent and distributed according to. Then the distribution

of subperm( ) is called the k-dimensional marginalof . The interest of this de nition
lies in the following result, which is an extension of the main theorem of [14] to random
permutations. It

Proposition 2.1 (theorem 2.2 of [5]) If |, is a sequence of (possibly random) permutation
whose size goes to in nity, then , converges to some random permuton in distribution
if and only if for every permutation , E[occ(; )] converges to some number .

In this case, the law of is characterized by the relation®(subperm( )= ) = ,
fork land 2 Sy.

This is indeed the result used by [6] and [5] to prove permuton convergence. As a result,
the distribution of subperm ( P) for every k is obtained as follows (see [6, prop. 9.1] and
[5, def. 5.1])

De nition 2.2. The permuton P is determined by the relations
4) 8k 1 subperm( P) < perm(tiy);

wheret,, is a uniform binary tree with k leaves, whose internal vertices are decorated with
i.i.d. signs that are  with probability p.

In the rest of the section, we make apparent a connection with the signed Brownian
excursion.

2.2. A few facts about excursions.  We start by constructing a measurable enumeration
as de ned in de nition 1.2. Let (pi; ¢)i-n be a xed enumeration ofQ?\ [0;1]. Let g be a
CRT excursion. Fori 1, denew; =minft 2 [p;; ¢]: g(t) = min 54799, ip = 0, and for
k 1, set recursively

Finally, for k 2 N, seth(g) = w;, .
Lemma 2.3. This construction de nes a measurable enumeration.

Proof. It is immediate that all inner local minima will appear in the sequencew;);. The
way the subsequencdy(); of (w;); is chosen guarantees that only inner local minima appeatr,
and only once, in @);.

Measurability of g 7! b(g) for everyi follows from that of g 7! w;(g) and k 7! iy.

To prove (ME3) we see that thanks to item (CRT2), the functionEcgr  [0;1F !  N[flg

(9;xy) 7' min i 2 N;g(h(9)) = npxi;g] gandh(g) 2 (x;y) and g}iyr]lg < min(g(x); a(y))

is a measurable functional that mapsd;x;y) to i 2 N wheneverh is the point in (x;y)
that is the only global minimum of g on [x;y], and 1 if no suchi 2 N exists.
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We now collect a few facts about CRT excursions. In section 1.5 we saw a that such
functions encode continuous trees. So we borrow the vocabulary of trees in a way that is
coherent with this encoding: thex 2 [0; 1] which are not one-sided local minima are called
leaves ofg. The by fori 2 N are calledbranching points ofg and are identi ed with N. Set

a; =supft<b;:g(t) = g(h)g;
G =infft>b;:g(t)= g(b)g;
hi = g(b) = g(c) = g(a):

By de nition, for x 2 (a;;h)[ (b;G), g(x) h;, de ning two subexcursions at respectively
the left and the right of b. We collect an immediate consequence of (CRT2), which states
that these subexcursions are nested, with a binary tree structure (which comes from that
of Ty).

Lemma 2.4. For everyi;j either[a;;c] [a;¢Glor[g;c] [a;c]or[a;c]\ [a;6]=;.
Furthermore, if [;G] [a;c], then eitherj =i, [3;6] (a;h) or [a;g] (b;c).
If x <y areg-comparable, thely in which g reaches its minimum betweerx andy at b
is called themost recent common ancestoof x andy. We extend this notion to branching
points: if [a;;c]\ [g;¢] = ;, thenh and b are g-comparable. We can always assume by
symmetry that b < b; and call most recent common ancestoof i and j the k 2 N such
that [a;6]  (axsh) and [a56] (b ).

2.3. Extraction of permutations and trees from a signed excursion. Let (g;9) be
a signed excursion. Recall thak and y are g-comparable if the minimum ofg on [x;y] is
reached at a unique point, and that pointb is a strict local minimum with b2 (x;y). If
X1;:::X, are points of [Q1], pairwiseg-comparable, then we de ne

To understand the structure of these permutations, let us de ne the (signed) trees ex-
tracted from a (signed) excursion. Following Le Gall [16], wheg is a CRT excursion
and t; < ::: <t are pairwiseg-comparablé, the discrete plane tree with edge-lengths

If k=1, then (g;ty) is a leaf labeledt;.

If k 2, then the minimum of g on [t;;t«] is reached at a strict local mini-
mum b for somei, and there isj 2 J2;kKsuch that fty;:::t; 19 (&;h), and

ftj;:iteg  (b;c). Then (g;ty;:::;t) is a root labeledi, spanning two subtrees

This yields a binary tree whose internal vertices are put in correspondence with branching
points of g. Then, if (g;9) is a signed excursion, we set (g;s;t;:::tk) to be the tree

(9;t1;:::tk), to which we add, at each internal node labeled the signs;. The following
observation is capital:

1The de nition there is stated di erently and covers any continuous function g and choice of points
[ET
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Observation2.5. For any signed excursiond; s) and g-comparablexy;:::;X,,
Permgs(Xa;:::Xn) = perm( (958, Xy); 115 X))
If Ug;:::;Uc are independent uniform random variables in [@], then they are almost

surely leaves ofy thanks to (CRT3), henceg-comparable.

We recall that the signed Brownian excursiond; S) is built by taking eto be a normalized
Brownian excursion, andS an independent i.i.d. sequence ifi ; g , whereP(S;= )=
p. Then a consequence of [16, Theorem 2.11] is that the tree(e;S; Uyy;:::Uyy) is a
uniform binary tree with k leaves, independently decorated with i.i.d. signs of bigs
From de nition 2.2 and observation 2.5 follows a new characterization of°, which we use
in this paper.

Proposition 2.6. The permuton P is determined by the relations
(5) 8k 1; subperm( P) :dPerme;s(Ul;:::Uk):

Remark 2.7. This connection with the Brownian excursion was present in [6] fqy= 1=2.
The main result of that paper actually goes further: the conditional distribution of the
l.h.s. given %2 equals (in distribution) the conditional distribution of the r.h.s given
(e;9), jointly for all k (see [6, thm. 1.6] and its proof). This indeed strongly hinted at the
existence of a direct construction of 2 from (e; S), made explicit in the present paper.

3. The function

Theorem 1.3 follows from the next two propositions.

Proposition 3.1. If gis a CRT excursion ands a sequence of signs, them; s;t) 7! ' 4.5(t)
and (g;9) 7! 4 are measurable. Furthermore; 45 Leb = Leb, hence 4 is a permuton.

Proof. For the measurability, remark that ((g; s;t);u) 7! 1[u jt]is a measurable function,
as a result of item (ME3). Then Fubini's theorem implies that its partial integral overu
is a measurable function ofd; s;t).

Now we only have to prove that' Leb = Leb. Let (Z;); 1 be independent uniformly
distributed random variables in [Q1]. Fork 2, let Uy = 5#fi 2 2,kKZ; § Z1g
and U; = limy; Uyx. We can apply the law of large numbers conditionally oz, to
the sequencel, $71) 17, 57,00 (which is i.i.d given Z;) to show that this limit is well
de ned and equal almost surely to Lebt : t §Z;g = ' (Z;). This means that U; has
distribution * Leb. On the other hand, by exchangeability of th&Z;, the U, are uniform
over f_L::::; k 19 so the distribution of the limit U; must be uniform. This means

Tk
precisely that' Leb = Leb.

Proposition 3.2. The Brownian separable permuton is distributed like ¢.s.

Proof. By de nition of 4., subperm/( e:s) can be realized as rank() rank(X) * where
X1;::: Xy are independent uniform in [01] andY; = ' ¢s(X;) for i 2 J1;kKSincex 3y
implies' ¢.s(X) ' es(y), and moreover since thér; are almost surely distinct, then almost
surely subperm( es) = Perme.s(Xq;::: Xy). According to proposition 2.6, this property
characterizes P among permutons.
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We now collect a few results about the excursion and the function The rst one states
that [0; 1] can almost be covered by a union of small subexcursions.

Lemma 3.3. Let g be a CRT excursion, and > 0, > 0. Therg exists a nitg,] N such
that the ([&; G])i») are disjoint, ¢ a; for everyi, andLeb( ,,[a;c])= (¢ &)>
1 .

Proof. Let x be a leaf of the excursiom. Let X, < x be another leaf. De ne recursively,
to be the most recent common ancestor of, and x, and X+ to be a leaf in (max b, ; x
nlg; X). This is possible by density of the leaves. Then necessartty 2 [&,;C,] and
ax, converges tox. Henceg(c,) = d(ax,) converges tog(x), which implies that ¢, &,
converges to O (otherwisg couldn't be a leaf). Hence there must be asuch thatjc  a]
and x 2 [&;G].

We deduce that ;.. ., [a;G] has measure 1. So a nite union can be found with
measure 1 . Now thanks to lemma 2.4, this union can be readily rewritten as a
disjoint union.

Now we want to characterize how the functiont 4.5 behaves on a pair of sibling subex-
cursions de ned by an interval of the form §;c]. Setal = ' 45(a), ¢ = &+ ¢ &,
P=2a+(h a)l[si= ]+(¢ h)1l[ss = ] The numbersa’f;c® 2 [0;1] can be
interpreted as the equivalent ofa;; ly; ¢ for the shu ed order.

Lemma 3.4. For i 2 N, we have

if t2 [a;h]lands = ,then ' gs(t)= a’+Lebfx 2 [a;h]:x 3tg2 [a’H]:
ift2[0;c]lands = |, then 'gs(t) = B+ Lebfx 2 [b;c]:x §tg 2 [
if t2 [a;h]ands; = , then "as(t) = B+ Lebfx 2 [a;h]:x §tg 2 [
ift2[h;g]ands = , then "as(t) = &'+ Lebfx 2 [h;c]:x  §tg 2 [a; H:

If t2[0;a) [ (c;1] then
"gs(=Lebfx 2 [a) [ (6;l:x Sig+ la 56 &) 2 [Oall (1]

Proof. We prove the rst and last equalities, as the others have a symmetric proof. If
si= ,t2[a;h]anduis aleaf, thenu Ztifandonlyifu2 [0;a)[ (g;1]andu §a,
oru2 [a;h]andu 3t. The rst claim follows by taking the measure of suchu.

For the last equality, we see that ift 2 [0;&) [ (¢;1] andu 2 [&;c], thenu 3t if and
only if & g§t.

Lemma 3.5. If [a;G] (a;h), then eithers; = and[a);¢] [a%H], or s = and
[a% ¢ [ ).

If [a;6] (h;g), then eithers; = and [@;5¢] [, )], or s =  and [af; ]
[a?; K.
Proof. The four claims have a symmetrical proof, hence we only prove the rst. & =
and [3;¢6] (a;h), then the previous lemma implies readilya? a]-o. We need to prove
¢ K thatisa’+q & al’+h a&,whichisequivalenttoa® & & a+h g.
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This is exactly the inequality of measures derived from the inclusiofx;a; §x §ag
[ai;ay]t [G:h]
Now we can prove corollary 1.4.

Proof of corollary 1.4. We consider the Kolmogorov distance between probability mea-
sures, which is the uniform distance on the bivariate CDFsdg (; ) = SUPg xy 1]

j([0;x]  [0;y])). We use the fact that convergence of permutons is metrized lok [14,
lemma 5.3], and the following result:

Lemma 3.6. If 2S,, dc( ;(d;'" ) Leb) 2

n

Proof. It is enough to notice that both CDFs coincide on points whose coordinates are
entire multiples of 1=n and use the fact that CDFs of permutons are 1-Lipschitz [14, eq.
7]

All together, this implies (Id;" ) Leb d (Id;" e:s) Leb. With the Skorokhod coupling
we can assume without loss of generality, that the convergence is in fact almost sure. Let
and be positive real numbers, and apply lemma 3.3. Then
G
Leb(x :J' ,(X) "es(X)j> ) Leb(x:x2 [a&;c])
i21

+Leb(x:9i s.t. x 2 [a;6];" ,(x) 2 [a% )

The rst term is smaller than by construction, and the second term converges to Leb(

9i s.t. X 2 [a;G];" es(X) 2 [a% ) = 0 because of the narrow convergence of (Id ) to
(Id;" ¢:s) and the Portmanteau theorem (indeed permutons put no mass on the boundary
of rectangles, because they have uniform marginals). So for 1, ji' , ' esiila

9+ + 0o(1). This last quantity can be made arbitrary small by choosing rst and small

LP
enough and thenn large enough. We have proven almost sure convergenceé of ! S
in some coupling, hence the corollary.

We end this section by considering the following property of signed excursiorts $):

A 8i6j [l @) f h:il LEhd [@hqland @ ql [ clg
andfh 1 L[ahq] [ac]and %] [al g are dense inffi; hy]

It is very similar to the "order-leaf-tight" property of continuum trees de ned in [2]. Loosely
said, it means that it is impossible to nd a nontrivial ancestral path in the treeT, without
a density of points both on the right and on the left where a subtree is grafted. "left" and
“right” are understood with regard to the shu ed order 3. This is crucial to the proof
of theorem 1.8. We show that it holds almost surely in our setting.

Proposition 3.7. Let g be a CRT excursionp 2 (0;1) and S be a random i.i.d. sequence
of signs with biasp. Then with probability one,(g;S) veri es property (A)
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Proof. By symmetry we prove only the rst claim and by countable union we xi and
j. LetK =fl 1:[a;6] [a;clandfa;G] [biglg, andk = fl:1  1[a’d]
[a% ¢l and [a; "] [ flg. Fory 2 (hi;hy)\ Q, considerx = supft 2 [a;&]: g(t) = yg.
Then by de nition g(x) = y and g(t) >y for t > x . Consider a sequence of leaveg % X
and the minimum b, of g betweenx, and a. Then necessaril\k, 2 K and x, < by, <X.
SOhkn ! .

Now wi%lh probability one a subsequencekf), of (k,), can be found withsw =  for
everyn. Then lemma 3.5 implies thatk? 2 K, and hye ! y. By countable union overy

we have shown thatf h;;| 2 g countains (;h;) \ Q. So it contains p; h;] from which
the proposition follows.

An immediate consequence of property (A) is the following improvement on lemma 3.5,
with strict inclusions.

Lemma 3.8. Suppose(g;s) veries (A). Leti 6 j.

If [a;G] (a;h), then eithers; = and [a% ] (%), or s =  and [ )
(f: ).

If [a;G] (h;c), then eithers; = and [a% ] (), or s, = and [a% ]
(& H)

If [a; 6]\ [4:G]= ;. then [a% I\ [a% ] = ;.

4. The support of the permuton

Theorem 1.5 follows readily from the two propositions of this section.

Proposition 4.1. For every signed exch;sior(g;s), g:s has Hausdor dimensionl and
its 1-dimensional Hausdor measure is 2.

Proof. We start by showing that dimy (supp( )) 1. If ; is the projection of the unit
square to its rst coordinate, then ;(supp( )) =[0; 1], otherwise couldn't have a uniform
marginal. We conclude with the following lemma, which is immediate from the de nition
of Hausdor dimension:

Lemma 4.2. If : (E;dg) ! (F;dg) is a contraction, then for X E, dimy(X) >
dimy ( (X))

To prove the upper bound, we apply lemma 3.3 for some choice of > 0. Let| be
the set of indices provided by the lemma. Led = fk:9i;j 2 1; [a;G]  (ax; bx);[g;G]
(bk;c)g. Let K = 1t J We have the following fact, which is a direct consequence of the
nested structure of the &; G].

Fact 4.3. For everyi 2 J, there exists an; 2 K such that for everyj 2 K, [a;;¢] [a;h]
implies[a;; 6] [&,;6,] [a;h]. Similarly for everyi 2 J, there exists be an, 2 K such
that for everyj 2 K, [a;G] [b;c] implies[a;;g] [a,;c,] [b;c]. Also there exists
? 2 J such that for everyk 2 K, [ax; ] [a7; G
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We can de ne the following subsets of the unit square, which we use to cover supg{):

Ai=(a;a]l [6:bD  (a%a’]1[ ;)

[ (b;a ]l [c;aD)  ((halll [c:cl) ifi2Jands; =
Ai=(a;a ]l [6:b]) (a1l ;)

[ (0:a,][ [c,;c])  (aia’]l [c;HD) ifi2Jands; =
Ai=[a;c] [&c] if i 21

Ao=([0;a][ [c;1]) (10;@3[ [5;1])

S
By construction and fact 4.3, , o5 1(Ai) = [0;1], and lemma 3.4 implies that for
X2 1(A), (X;' gs(X)) 2 Aj. This one has:

[
(6) (Id;" ¢s)[0;1] Ai

i2K [f Og

The rest of the proof is devoted to rewriting the right-hand side of (6) as an union of sets in

Figure 4. Ag in blue, A; fori 2 I in green, andA; fori 2 J in red.

hich we control the sum of diameters. Now, far2 I, diam(A;) = diam([&;c] [af; ) =
2(¢G  &). We deduce that

X p_
(7) diam(A;) 2:

i21
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Fori 2 J, A is the union of 8 rectangleAl;::: A8. We have that

Xe .
width(AD) =2[(¢ &) (¢, &) (¢ &)l
j=1

height(Al) =2[(¢® &) (€ &) (@ &)

j=1

And both these quantities are equal and their value is 2 Leb((A;)). Similarly, Aq is

Hence
X XX _ X X .
diam(A}) + diam(Al) (width + height)( A}) + (width + height)( A!)
j=1 i2J j=1 j=1 X i2J j=1
=4Leb( 1(Ao))+4  Leb( 1(A))
[ i2J
(8) =4Leb([0;1]n  [asc]) 4
i21
By taking the closure and rewriting the right-ha'nd side in e'q. (6), we get '
N T B
9) supp( gs)  (Id;" g:5)[0; 1] Ai [ Ao I Ai
i21 j=0 i23j=1
Summing (7) and (8) shows that the sum of diameters in the cover (9) can'te e_:ed+4p 2.
Moreover, each square and rectangle in the cover has diameter bounded,b® . This
implies that supp( ) has 1-dimensional Hausdor measure bounded above by2.

Proposition 4.4. If S is an i.i.d sequence of nondeterministic signs, thesupp( g:s) is
almost surely totally disconnected.

Proof. We re-use the notations of the last proof, with > > 0. We now show that almost
surely, we can build set4 | andJ J such that

(1) the statement of fact 4.3 is still true whenJ is replaced by andK by K =11t J,
(2 foralli2 g &
(3) Leb([0;1]n i, [a;c]) <

with the following added constraint:

(10) 8i2J s(h)=s(h)6 sh):

This is done by adding successively indices toin order to create new branching points
in between two branching points of the same sign. Condsider2 J and its left child i,
with s; = s;, = . We can build, as in the proof of lemma 3.3, an in nite sequencéy (),
such that [a,;¢,] [a;h] and [y, ;c,] [a,;G,]. Almost surely, one of ther,, which
we denotej = j(i;i), is such thats; 6 . We can then nd, by the same reasoning, a
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k = Kk(j (i;i)) such that [a;c] [a;G]andsc = . We proceed similarly fori 2 J such
that s; = s;,. We can now set

I
J

| [f k(i;ip):i23;s 6 s,g[f k(i;i;):i2J;s 6 s,
JMFjGin):i23s6s,g[fji): i23s6s,0

By construction, fact 4.3 applies tol and J, and (10) is veri ed.
Now we can de ne the setsAi)i,k r og @S in the previous proof, and we still have
[
Supp s C= A
i2K [f Og

We will show that the diameter of any connected component of C is almost surely bounded
by 4 +2 . This is enough to show that supp(g:s) is totally disconnected.

For x 2 C, let us denote byC(x) the connected component ofC containing x, and
for X C, set C(X) = [ x2xCX). We now set, fori 2 |, B = CA;), fori 2 J
Bi = C(Ai) nA;,) ndA;,), and By = C(Ag) nQA ). Then, immediate induction yields

G
C= B;:
i2K [f Og

Now remark that the setsB; were obtained by inclusion and exclusion of full connected
components ofC. Hence each connected component Gf appears as a connected compo-
nent of one of theB;, that we now consider.

It turns out (see g. 5) that for i 2 |, B; has only one connected component, and its
diameter is bounded above by 4+2 . Fori 2 J, B; has three connected components,
whose diameter is bounded above by 2 For i = 0, By has two connected components,
and their diameter is also bounded above by 2

(a) Bifori 21, in the case (c) By, in the cases, =
Si= ,i=Jiforsomej. ) B forj 2 J,in the case
si= ,j=]lfor somej®

Figure 5. The proof of total disconnection.
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5. Self-similarity

Given a CRT excursiong and one of its branching points, one can build three subex-
cursions by cut-and-pasting, which encode the three connected component3 i f py(b)g.
The goal of this section is do the same procedure on signed excursions, and observe the
consequences on the associated permutons. This will allow us to prove theorem 1.6 in a
“reversed" fashion: we start from , build ;, , and 3 by cutting along a suitably chosen
branching point, as to be able to use a result of Aldous [3] and identify the distribution
and relative sizes of the subexcursions.

Let (g;s) be a signed excursion. Givefi2 N, we can obtain 3 excursions by looking at
the values ofg on [a; 1], [a; ¢] and [0 a]t [c; 1]. More precisely, following [3], we de ne

(11) 0=1 cgta; 1=k a; =g b{;Xo:io;Yo:ﬁO; = s

Given these constants, we can de ne the contractions; «; « for k 2 f 0;1; 29, as in (2),
and

(12) gk=191=g kv, k2f0,12g:
k

Because eachy is a piecewise a ne function, it pulls back the strict local minima ofg
that are in the interior of Im( ) onto strict local minima of g¢. This is made explicit in
the following result:

Proposition 5.1. For k 2 f 0;1; 2g, there is an injective map#, : N! N, such that

82 N; «(b(g)) = by i(9):

Moreover, the#c(N), for k 2 f 0; 1; 2g, form a partition of Nnf{g. Finally, for k 2 f 0; 1; 2g,
the map(g;{;i) 7! #«(i) is measurable.

Proof. We set#,(i) =minfj 2 N: «(b(a)) = b(9)g, and the measurability claim follows
from measurability of (;9) 7! hb(g), ({9) 7! « and ({;g) 7! . The other claims are
immediate by construction and from the de nition of a measurable enumeration.

We can now transport the signs ofg onto signs of theg, by setting sf = sy, () for
k2f0;1;,2gandi 2 N. A result of this construction is the following crucial observations:

Observation5.2 For x<y 2 [0;1], andk 2 0;1;2g, x g yifandonlyif «(x) 3 «(y).
Observation5.3. The map (@;{; (si)i2n) 7! S is measurable for every 2 N andk 2 f 0;1; 29

Now we want to use lemma 3.4 to show that our functiohy.s can be cut out into rescaled
copies of  .c, which translates immediately in termes of measures.

Proposition 5.4. For {2 N, k2f0;1;2gandt 2 [0; 1],

(13) I g:s k(t) = ' Ok ;sK (t):
As a consequence,

gis — k (x gk;sk):



ON THE BROWNIAN SEPARABLE PERMUTON 18

Proof. Let us prove (13) fork = 0.

Ygs( o(t)) =Lebfx2[0a)[ (czll:x § o)g+ La il &)

Lebfx 2 [0;) [ (ci1]:x § o(t)g

+(c a)l Lebfx 2 [Oa)] (C{;llixha o(t)g > ay

olebfy2 [0;1]:y Stg+(1 o)1 olebfy2[01]:y $tg> oY
o' eo;so(t))

Where the rst two equalities come from lemma 3.4 and the third is the result of the change
of variable x = ((y). Now, for k =1,

Cas( ()= al+ (K a)i[sg= ]+Lebfx2[azh]ix § ai(t)g
oYo+ o +(hy a)lebfy2[0;1]:y & tg
1(' gl;sl(t))

where the rst equality comes from lemma 3.4 and the second is the result of the change
of variablex = 1(y). The casek = 2 is similar.

This is all we need to show theorem 1.6.

Proof of theorem 1.6.If e is an Brownian excursion, andX; < X , are reordered uniform
independent random variables in [QL], independent ofe, then almost surely there is &
such that by = argmingy . ;e Dene o, 1; 2;Xo;Yo; asin (11). This allows us to
de ne the | as in (2) and theg;s* as before.

A result of Aldous [3, cor. 5] states thatey; e;; e, are Brownian excursions, (o; 1; 2)
is a Dirichlet(%; %; %) partition of 1, and Xg is uniform in [0; 1], all these random variables
being independent.

Now, as a consequence of observation 5.3, for2 [0;1] andi 2 N, SK is a random
variable. Giveneand{, the Sk fork 2 [0; 1] and are permutations of disjoint subsequences
of S. As a result, the S and are independent (and independent ofef X;; X)), and
distributed as i.i.d. sequences of signs of bigs

We nally set = s« for k 2f0;1;29 and need only prove

(14) Yo ="' eo;SO(XO) a.s.

to show that the collection of random variables (( «)k2f 0;1:29 ( k)2t 0:1:2g5 (Xo0; Yo); ) has
the joint distribution assumed in theorem 1.6. Proposition 5.4 then yields the theorem.
Let us now prove (14).

oYo= & =Lebfx2 [0;&)[ (6;1):x gag= olebfy2[0;1]:y & ,'(a)g
= olLebfy2[0;1]:y & Xog= o e:s0(Xo):

Remark 5.5. As seen in the proof, theorem 1.6 is a direct consequence of the self-similarity
property of the Brownian CRT [3, thm. 2]. It was shown [1] that this property actually
characterizes the Brownian CRT in the space of measurdgittrees. We believe that the
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arguments of Albenque and Goldschmidt can be transposed in our setting, to show that
the law of P is the only distribution on permutons which veri es (3). The main reason
backing that claim is the following: permutons are characterized by their nite-dimensional
marginals, just like measureR-trees are determined by their reduced trees (see section 3

in [1]).

6. Expectation of the permuton

In this section we shall compute the density function of the averaged permutdh P for
p2 (0;1). We know that P = s, wheree is a normalized Brownian excursion ancs
is an independent sequence of i.i.d. signs with bigs Since for xed (g;s), the measure

g:s IS the distribution of the random pair (U;' 4s5(U)) with U uniform in [0; 1], then by
Fubini's theorem, we get the following:

Lemma 6.1. E P is the distribution of the random pair(U;' .s(U)), wheree is a nor-
malized Brownian excursion,S is an independent sequence of i.i.d. signs with bipsand
U is uniform, those three random variables being independent.

Let (Bt)o ¢ 1 be a normalized Brownian bridﬂe between 0 and 0. De ne its local time
at 0 as follows: fort 2 [0;1], setLy =lim ¢ zi cfloj B,j » dsin probability. De ne also
its right-continuous inverse ), o.

Weset T,=T T forl 0. We suppose that each O suchthat T, > Ois
equipped with an independent sign, with bias p. We will use a result of Bertoin and
Pitman [7] to rewrite the measureE P as the distribution of some functional ofB.

Lemma 6.2. The measureE P is the distribution of s EiFe o s—FL s, where
— P . — P
(15) Pl - =) I<L 1=2; = TI1 I:)2 - P I<L 1=2; |= TI
Ps = I>L 1=2; = T, Pa= I>L 1=2; = T

Proof. We will build a suitable coupling of €;S; U) on one hand, and B; ) on the other
hand. Start with the bridge B, and setU = T, ,-,. Dene (K)o 1 as follows:K; = L;
forO t UandKi{=L; LiwhenU t 1. Theorem 3.2 of [7] tells us that if we
sete= K + |Bj, then (e; V) is distributed as a Brownian excursion with an independent
uniform variable in [0; 1]. Moreover, the following holds almost surely: for 0 t U,
Ki=infy s yesandforU t 1, K;=infy s 6. Finallylet S be a sequence of i.i.d.
signs with biasp, independent of 8; e; U). The triple (e; S; U) has the desired distribution.
We can transfer some of the signs &to form the marking process ()| o. ,>o. Firstremark
that almost surely, U is not a one-sided local minimum oé. For| 0O suchthat T, > 0O,

eitherl <L ;=2 and thenT, < T, <U, in which caseT, is an inner local minimum
by, of e for some{ 2 N. We then set | = S;.
either| > L ;=2 and thenT;, < T, <U, in which caseT, is an inner local minimum
ky, of e for some{; 2 N. We then set | = S;,.
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The sequence{();. 1,>0 IS a random injection into N that solely depends onB. So con-
ditional on B, the signs in (). 1,50 are i.i.d. and of biasp. Then (B; ) has the desired
distribution.

We now show that in this coupling we have the almost sure equalitJ(' ¢.s(U)) =

P1+ P2 . P1+ Py H H
5P PPy PP pap, - 1hen lemma 6.1 implies the present lemma. If we de ne

P.=Lebft:0 t U;t SUg P,=Lebft:0 t Ut SUg;
P;=Lebft:U t 1t SUg P,=Lebft:U t 1Lt SuUg

then it is immediate that P, + P, + P;+ P, = 1 almost surely, P, + P, = U and P, + P, =
" e:s(U). Now we need only show that theP; = P.forl i 4. Forinstance fori = 1,
we need to observe that 2 [0;1] is such thatt < U andt S U if and only if there is
ab 2 (t;U) such that i is the unique minimum ofe on [t;U] and S = . Suchh is
necessarily equal tol, for somel < L ;=2 such thatT, <t<T,, andthenS§ = . We
have shown the following logical equivalence for2 [O; 1]:

t Uandt SU ()9 I<L,;=2st T <t<T,and =

Taking the Lebesgue measure on both sides yieléls = P;. For i = 2;3;4, the proof is
symmetric.

Let U be the set of continuous excursions of variable length, witR : U ! R* denoting
the length statistic. Let N be the 1td6 excursion measure of Brownian motion. For 0,
de ne the measure (dr) = e "N(R 2 dr). Denote by (X, )| o the process of sums up to
fme | of a Poisson point process of intensitdt . This is a well-de ned process because

(dr)(r ~ 1) is nite. We can state the following rewriting of the distribution E P.

P i ictri i P1+P> . P1+Py
Lemma 6.3. Forany > 0, E Pisthe distribution of —tX 5%+ s5paiperp, - Where

conditional on a random variable y with exponential distribution of parameter 2 , we
de ne the variablesP,, P,, P; and P, to be independent withP, 4 Ps 4 X =2 and

P,2 P, 2 X

p

(1 p) vy=2r

Proof. Let us reuse the notations of lemma 6.2. We make use of the results of Perman and

Wellner [18], which show that the most tractable object in terms of its excursions is not

the normalizlgd Brownian bridge, but the random-length bridge (;); o de ned as follows:
=10ty YBwey whereY is a random variable of distribution (1=2; ) independent

of B. Its logal time , inverse local time and jump process are related to those of

Bby = YlLey, | = YT.Pyand | =Y T.Py. The marking process can be
modi ed accordingly by setting"; = Py forl O suchthat > 0.
Now if we set P . P
i p < 1721= o Pa= p < 17217 !
P3= 1> 1=2; = i Pa= 1> 1=2; = I
then by construction, PotPy . Pui*Pa = PitPp . _Pai+Ps

P1+ P2+ P3+Ps? P1+ P2+ P3+ Py P1+P2+P3+Pg? P1+Po+P3+Py
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We now have to identify the joint distribution of the P;. It results from [18, thm 1
and 4] that  is distributed as an exponential random variable of parameter 2 , and
that, conditional on v, the excursions of away from 0, parametrized by the local time,
form a Poisson point process of intensitdle R N (dw) over [0, y] U . The random set
f(l; );1 0y > 0g, which is just the point process of excursion lengths, is then also
Poisson with intensitydl (dt) over [0; y] R.. This results from the mapping property
of Poisson processes. Now, since the marking proce§3 (o is a choice of i.i.d. marks,
chosen independent oB, the marking property of point processes [15, sect. 2.3] tells us
that f(I; ;");1 0O; ;> Ogis itself a Poisson process of intensigl (dt)(p + (1
p )d)over[0 yv] R. f ;g.

Since they are functionals of the same Poisson process restricted to disjoint subsets, the
processe§ ;0 | v=2, > 0" =g¢g,f ;0 I vy=2, 1> 0" =g,
fo v=2 | y; 1>0"= g andf ; y=2 | y; 1> 0" =g,
are independent. Moreover, by the mapping property, they are themselves Poisson, with
respective intensity measure&-  (dr), &2 (dr), - (dr)and &2 (dr). The
lemma follows.

Proof of theorem 1.7.By a classical argument using Girsanov's theoreinX, is distributed

as the hitting time of level | by a Brownian motion with positive drift , hence its density
2_
is $P(X, 2.dt) =y (1) = 1, oS»ie——(see [9, ch. IL.1, eq. 2.0.2)).
Then, going back to the notations of lemma 6.3, the joint density ofRy; P»; P3;P4) at
(t1;ta;ts;ts) 2 (R4)* equals

Z,
d 2e ? Yo=2(dt)Yq p=2(dt2)Yq p) = 2(dts)y, - 5(dta)

P_— Z
2 2 4 (ti+ta+tz+ts) <1 2.5 P2, @ p2, p?2_ @ p?
2pn(1 p)“e 4 2 Py + Py

B _ e Ity ity 4t (g
24 2)4 (atatsty)®2

221 pre (i P2 .
202 )  (ubelste)®? 5 @ e, @, ap? 2

4t1 4to 4t3 4ty

0

Now we de ne the random variablesS = P1+ P+ P3+ P4, Q = P;=S, U = (P + P,)=S
and V = (P, + P4)=S. According to lemma 6.3,E P is the distribution of the couple
(U; V). It follows from the Lebesgue change of variables theorem that the joint density of

21t also follows from Campbell's formula [15, sect. 3.2] and [9, ch. 1.1, eq. 2.0.1]
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(S;Q;U;V) at (s;q;u; ) 2 (R RY[0;1] [0;1]) is equal to

p__
3 3 2p2(1 p)?
S 1max(0;u+v 1) g min(uyv) —9—25? —é )Sp) e S

(sasu sl u v+osv @) L+ L4 B OO >
| 4sq 4s(u Q) 4s(1 u v+Q) 4s(v Q)
p — ) 3p2(1 2
_ e S % 1max(0;u+v 1) g min(uyv) .
= P=>P= 5=2"

3=2 p? (1 p)? p? (1 p?
(u 9@ u v+alv A T+ Ggtraowe v o

Now we get the joint distribution of (U; V) by integrating with respect to s and g, which
immediately yields theorem 1.7.

7. Shuffling of continuous trees

The goal of this section is to build, from a signed excursiog{s), a shu ed excursion f g,
that veri es the conclusions of theorem 1.8 after setting = f..s. This will not be possible
for every choice of deterministic signed excursion, but we will show that it is possible for
signed excursions with property (A), which is the case ok(S) with probability 1.

We start from the following observation: for every CRT excursiory, if we de ne the
a;;h;G; h; as before, then by density of the branching points it is easy to see that

g(t) = SUIP hi 1[ai ;ci](t):

Hence, given a sequence of sigaswhich provides us the numbers®; if; &, it is natural to
de ne a shu ed version as such:

fgs(t) = sup hi 1[ai°;ci°](t)
[

The map (g;s;t) 7! fg.s(t) is measurable because thg(a), a° and ¢ are measurable
functions ofg and s.
From now on, we will drop the dependency ind;s) in the proofs. So we sef = fg

and' ="' g4 The rst step is to show that f is continuous wheneverd;s) veri es (A).
We start with two lemmas. Let! (g; ) stand for the modulus of continuity ofg at radius

Lemma 7.1. Fora] u K, he f(u) he+! (g8 a).
Ford u & he fu) he+!(g:Q ).

Proof. The two claims are symmetric, thus only the rst is proved. Recall thatf (u) =
SURaocosu i @nd supposel 2 [ag; ). Fori such that [af, ¢ 3 u, eitherh;  hy, orh; > hy.
In the latter case, B% ¥ [ad; f]. Hencejay hj < ji &Y, andh; he = g(a) g(a)
gk a)=!(a:8 a)

This shows that for everyi such that [2%c” 3 u, hy < h,+ ! (g;§ a?) Taking the
supremum gives the claim of the lemma.

Lemma 7.2. The If, for i 2 N, are dense in[0; 1].
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Proof. The leaves ofg are of full Lebesgue measure. ¥ andy are leaves, there is @ such
that & <x<b; <y <c;. As a result of lemma 3.4/ must lie between' (x) and ' (y).
Since' is measure-preserving, the images of leavegyddy ' are of full measure, and hence
dense in [01]. So thelf are dense.

Proposition 7.3. Under (A), the function f is continuous.

Proof. Lett bein [0 1] and > 0. By lemma 7.2, we can ndtf <t<b P with (i )
Let k be the most recent common ancestor ofand j, so that i < b? < b?. We shall show
that there is a continuous functionf such that for u 2 [f; qo]

(16) fu f( f+!(g)
Which is enough, since was arbitrary, to show continuity in t. We build f and show (16)

on [; ] only. The interval [t; ] can be treated with a symmetric proof.
Setf : [; ]! R., with

f =supfh 1o jl: [ ] [ahc] [af;clo:

Clearly, f  f. Itis also clear thatf is increasing fromhy to h;, because the indicator
functions are nested and, increases as decreases. Lemma 3.8 implies that thaf are all
distinct, while property (A) implies that the h, are dense inlfi; h;]. This implies continuity
of f.

Now we shall show (16) fow in [if; Ef]
Case 1: for everyl s.t. u 2 [a} ], we have[a, ¢ [a);c]. Thenf (u) = f (u).
Case 2: there exist$ s.t. x 2 [a); ¢] and [af, ¢ + [&’;¢f]. Then consider the most recent
common ancestom of | and j. Necessarily,

i <ay <al<u<ci<b) <al<cP<ch:
Then lemma 7.1 giveshy, g(u) hyn +!(g; ). Itis clear that hy, = f(u), proving
(16).

Now that we have shown thatf is continuous, it becomes possible to de ne the distance
dr on [G 1] and the structured real treeT; .

Proposition 7.4. Under (A), we haveg = f
([0; 1]; df ) isometry.

Proof. Let t 2 [0;1]. To showg(t) = f (' (1)) it is enough to see that

(17) fk:t2[a;adg= fk:' (1) 2 [a; Slo
becausee(t) and f (' (t)) are just the sup ofi 7! h; over these two respective sets. K is
such that t 2 [a; ], then by lemma 3.4," (t) 2 [a2;c?]. If on the other handk is such
that t 2 [a; c], then by symmetry supposd < ay, it is then possible to nd i such that
t<aj;<ayx<ck ¢.Thenlemmas 3.4 and 3.8 imply that (t) 2 [a; ]

Now to show that' is a (dg; d; ) isometry, we need only show that fox <y,

, and furthermore, ' is a ([0; 1]; dg) !

ming= min f:
[xy] [ ()" (V]
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Case 1:ming.y; 9= g(x). Then for everyi, x 2 [a;c¢] impliesy 2 [a;;c]. So' (x) 2 [a’; c]
implies ' (y) 2 [%c? and then [ (x);' (y)] [a%c?. The de nition of f then yields
f(t) f(C (x)foreveryt2][ (x);' (y)]. Hence
min f =f( (x))= g(x)=min g:

[ (x)" (] 0= 9(x) [x:y] g
Case 2:miny.y;9 = g(y). This case is similar by symmetry.
Case 3: miny.y19 = b for someh 2 (x;y). Then we conclude immediately by applying
case 2 on)X; b] and case 1 onH;y].

Proposition 7.5. The random continuous functionf ..s has the distribution of a Brownian
excursion with the same local time at 1 as

Proof. The claim on the local time is an immediate consequence of the fact that for every
y O, Lebit;fgs(t) yg=Lebft;fgs( gs(t)) yg=Lebft;g(t) vo.

To show that the random continuous functioneandf = f..s have the same distribution,
we shall show that for evernyk 1, if Uy <:::< U () are reordered uniform variables in
[0; 1], independent ofe; S, then

(18) (&(Uwy); i e(Ugg)) = 2 (f (Uwy)s o (Ugy)):

Deriving e 2 f from there is classical, see for instance the end of the proof of the direct
implication of [2, thm. 20].

Let us considerUy < ::: < U () the order statistics ofp uniform random variables in
[0; 1], independent ofe; S. SetV, = ' (U;;y) forevery 1 i k. Then there exists 2 Sy
such that W, = V () < i1 <V (g = Wi. Since' preserves the Lebesgue measure,
(W4q;:::; W) has the distribution of the order statistic of p uniform variables.

We consider themarked trees as per the de nition of [16, sect. 2.5], associated to a CRT
excursion and a nite number of points. For any set = (t; < ::: <t ) of leaves ofg,

(g;t) is built from the tree (g;t) by adding edge-lengths compatible with the distances
in the tree Tgy. Since the root of (g;t) has a positive height, a new root is added below
it. It is characterized (among plane trees with edge-lengths up to isomorphism) by the
following fact:

(19) d @i ) = dg(tist));  d(gn(s i) = 9(ti);
whered (gt)_ denotes the graph distance, taking edge-lengths into account, and in any plane
tree "q;:::; « is an enumeration of the leaves in the natural ordering.

Let T = (e U), and let ® be obtained fromT by inverting the order of the children at
each branching point corresponding to & where the signs; is a . By de nition there
is an isomorphism of rooted trees with edge-lengtf®$ T. This isomorphism necessarily
permutes the leaves: set 2 Sy such that *i{(®) $ ~ ((T). Then by construction is
such that' ¢s(U q)) <:::<' &s(U (). We deduce = , and hence

de(Cis )= dr(C iy 9)) = de(U ;U 9) = A (U )" (U p)) = d ey (i )
de(Ciss) = dr(C ys5) = 9(U @) = g(Wi) = d rw)(iss):
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Sof= (f;W).

Finally we consider the distribution of . Theorem 2.11 of [16] tells us that the structure
of T is that of a uniform planted binary tree with k leaves, and the edge-lengths are
exchangeable. So an independent shu ing of is still distributed like T, and this is the

case off. We deduce (gU)=T de= (f ;W). From there, (19) implies that we can
recover (18).

Now theorem 1.8 follows from propositions 3.7 and 7.3 to 7.5, after settieg= f¢.s.
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