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ON THE BROWNIAN SEPARABLE PERMUTON

MICKA •EL MAAZOUN

Abstract. The Brownian separable permuton is a random probability measure on the
unit square, which was introduced by Bassino, Bouvel, F�eray, Gerin, Pierrot (2016) as
the scaling limit of the diagram of the uniform separable permutation as size grows to
in�nity. We show that, almost surely, the permuton is the pushforward of the Lebesgue
measure on the graph of a random measure-preserving function associated to a Brownian
excursion whose strict local minima are decorated with i.i.d. signs. As a consequence, its
support is almost surely totally disconnected, has Hausdor� dimension one, and enjoys
self-similarity properties inherited from those of the Brownian excursion. The density
function of the averaged permuton is computed and a connection with the shu�ing of the
Brownian continuum random tree is explored.

1. Introduction

For n � 1, let S n be the set of permutations ofJ1; nK, and S = t n� 1S n . We use the
one line notation� = ( � (1) � (2) � � � � (n)) for � 2 S n . A pattern in a permutation � 2 S n

induced by the indices 1� i 1 < : : : i k � n is the permutation � 2 S k that is order-
isomorphic to the word (� (i 1); : : : ; � (i k)). The density of the pattern � 2 S k in � 2 S n is
the proportion of increasingk-uples in J1; nKthat induce � in � . A class of permutations
is a subset ofS that is stable by pattern extraction, and is characterized by the pattern
avoidance of some minimal family of permutations called itsbasis [8, 5.1.2]. There is a
large literature on the asymptotics of the pattern densities and diagram shape of a large
typical permutation in several classes. This type of results can, to some extent, be encoded
as convergence to apermuton. In [6] (to which we refer the reader for an extensive review
of literature), Bassinoet. al. studied the class ofseparable permutationsand showed the
convergence, of a uniform large separable permutation to aBrownian separable permuton,
and the present paper is a detailed study of this object. Let us start with a few de�nitions.

1.1. Limits of permutations. A probability measure on the unit square [0; 1]2 is called
a permuton if both its marginals on [0; 1] are uniform. With every permutation � 2 S n

we associate a permuton� � by setting � � (dxdy) = n 1 [� (bxnc) = bync] dxdy. The set of
permutons is equipped with the weak convergence of probability measures, which makes it
compact. A sequence of permutations (� n )n is said to converge to a permuton� if and only
if � � n converges weakly to� . This theory was introduced by Hoppenet. al. in [14], where
it is shown that convergence of a sequence of permutations to a permuton is equivalent
to convergence of all pattern densities. As a result, permutons can be alternatively con-
structed as the completion of the space of permutations w.r.t. convergence of all pattern

1



ON THE BROWNIAN SEPARABLE PERMUTON 2

densities. This theory is similar to graphons as limits of dense graphs, and uni�es the study
of the limit shape of the permutation diagram with that of the limit of pattern densities.

1.2. The case of separable permutations. A permutation is separable if it does not
have (2413) and (3142) as an induced pattern. Separable permutations were introduced in
[10], but appeared earlier in the literature [4, 20]. They are counted by the large Schr•oder
numbers: 1; 2; 6; 22; 90; 394; : : : and enjoy many simple characterizations [10, 4, 20, 13]

The one most relevant to this paper is in terms of trees. A signed treet is an rooted
plane tree whose internal nodes are decorated with signs inf� ; 	g . We label its leaves
1; : : : ; k according to the natural ordering oft. The signs can be interpreted as coding a
di�erent ordering of the rooted tree t: we call ~t the tree obtained fromt by reversing the
order of the children of each node with a minus sign. The order of the leaves is changed
by this procedure, and we set� (i ) to be the position in ~t of the leaf i . We call perm(t)
this permutation � 2 S k . It turns out [10, Lemma 3.1] that separable permutations are
exactly the ones that can be obtained this way.

Figure 1. The permutation associated to a signed tree.

The article [6] shows that separable permutations have a permuton limit in distribution,
yielding the �rst example of a nondeterministic permuton limit of a permutation class.
The representation by signed trees is fundamental in their proof.

Theorem 1.1 (theorem 1.6 of [6]). If � n is a uniform separable permutation of sizen,
then � � n converges in distribution, in the weak topology, to a non-deterministic permuton
� 1=2 called the Brownian Separable Permuton of parameter1=2.

This result comes with a characterization of� 1=2 (which we recall in section 2) which
suggests that it can be realized as a measurable functional of asigned Brownian excursion
(see remark 2.7). The authors of [6] left this, along with the study of the support of� 1=2,
as open questions that the present paper aims at addressing.

Let us mention that theorem 1.1 was generalized in [5] by the same authors along with
the present author to a rather wide range of permutation classes called substitution-closed
classes. It yields, among others, a one-parameter family (� p)p2 (0;1) of possible limits, called
the biased Brownian separable permutons. We set our paper in this generality and �x once
and for all p 2 (0; 1). We postpone a precise de�nition of� p to section 2.

1.3. The signed Brownian excursion. We call continuous excursiona nonnegative
function g : [0; 1] ! R+ that is positive on (0; 1). The inner local minima of g are the
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points of (0; 1) in which g is locally minimal, and we say thatx 2 (0; 1) is not a one-sided
minimum of g if

8� > 0; 9x1 2 (x � �; x ); x2 2 (x; x + � ) s.t. g(x1) < g (x) and g(x2) < g(x):

A CRT excursion is a continuous functiong : [0; 1] ! R+ such that:

(CRT1) the inner local minima of g are dense in [0; 1],
(CRT2) the values at the inner local minima are all di�erent,
(CRT3) the set of times that are not one-sided minima has Lebesgue measure 1.

In a CRT excursion, all inner local minima are necessarily strict local minima, and hence
countable. It will be useful for our purposes to enumerate them in a well-de�ned manner.

De�nition 1.2. A measurable enumerationis a sequence (bi ) i 2 N of functions from the set
ECRT of CRT excursions to [0; 1] such that

(ME1) for every g 2 ECRT , i 7! bi (g) is a bijection betweenN and the inner local minima
of g,

(ME2) for every i 2 N, g 7! bi (g) is measurable,
(ME3) the function which maps (g; u; v) 2 ECRT � [0; 1]2 to i 2 N if bi 2 (u; v) is the unique

point in [u; v] in which the minimum of g on [u; v] is reached, and1 otherwise, is
measurable.

We �x once and for all a measurable enumeration (see section 2 for an explicit construc-
tion of one, which comes from [6]). We callsigned excursiona couple (g; s), where g is a
CRT excursion ands is a sequence inf� ; 	g N. The signsi is to be considered as attached
to the inner local minimum bi .

In what follows, we consider the signed excursion (e; S), where e is a the normalized
Brownian excursion, andS is an independent sequence of independent signs with biasp,
that is probability p of being � and 1� p of being 	 .

The signed excursion (e; S) is the main ingredient in building � p. To that end, if x <
y 2 [0; 1], we say thatx and y are g-comparable if and only if the minimum ofg on [x; y]
is reached at a unique point which is a strict local minimumbi 2 (x; y). In this case, if
si = � , we sayx � s

gy, otherwisey� s
gx. The relation � s

g is not a strict partial order, because
it lacks the property of transivity. However we will see later that it can be extended to a
total preorder. Moreover, almost surely, the pairs of points that areg-comparable have full
Lebesgue measure, since two distinct points which are not one-sided minima are always
g-comparable.

1.4. Main results. If ( g; s) is a signed excursion, we de�ne

(1) ' g;s(t) = Leb f u 2 [0; 1]; u � s
g tg; t 2 [0; 1]

and � g;s = (Id ; ' g;s)� Leb. HereH � � denotes the pushforward measure� (H � 1(�)), whenever
H and � are respectively a measurable function and a measure de�ned on the same space.
Our main theorem is the following:
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Theorem 1.3. The maps (t; g; s) 7! ' g;s(t) and (g; s) 7! � g;s are measurable, and the
random measure� e;S is distributed like � p, the biased Brownian separable permuton of
parameter p.

This theorem is proved in section 3, along with a corollary which shows that the con-
vergence of theorem 1.1 can be rewritten without permutons, only in terms of functional
convergence. To any permutation� 2 S n , we associate a c�adl�ag, piecewise a�ne, measure-
preserving function' � : [0; 1] ! [0; 1] with ' � (x) = 1

n (� (bntc + 1) � 1) + 1
n f ntg.

Corollary 1.4. Let � n be a random permutation inS n for every n 2 N. If � � n converges
in distribution to � p, then for everyq 2 [1; 1 ), we have the convergence in distribution in
the spaceLq([0; 1]):

' � n

d���!
n!1

' e;S

This function ' e;S is well-de�ned as a random element ofL1 ([0; 1]), and although it has
a dense set of discontinuity points, it is continuous at every point which is not a one-sided
minimum of e (i.e. on a set which has almost surely measure 1). In section 4, we prove
the following result.

Theorem 1.5. Almost surely, the support of� p is totally disconnected, and its Hausdor�
dimension is 1 (with one-dimensional Hausdor� measure bounded above by

p
2).

The claim that the Hausdor� dimension is 1 also comes as a special case of a result of
Riera [19]: any permuton limit in distribution of random permutation in a proper class, if
it exists, almost surely has a support of Hausdor� dimension 1.

In section 5, we show that� p inherits the self-similarity properties of e, in that � p

contains a lot of rescaled distributional copies of itself. In particular, we get the following
theorem, illustrated in �g. 2, which states that � p can be obtained by cut-and-pasting three
independent Brownian separable permutons.

Theorem 1.6. Let (� 0; � 1; � 2) be a random variable ofDirichlet( 1
2 ; 1

2 ; 1
2) distribution. Let

� 0; � 1; � 2 be independent and distributed like� p, and conditionally on � 0, let (X 0; Y0) be a
random point of distribution � 0. Let � be an independent Bernouilli r.v. of parameterp.
We de�ne the piecewise a�ne maps of the unit square into itself:

(2)

� 0(x; y) = ( � 0(x); � 0(y)) = � 0(x; y) + (1 � � 0)(1[x>X 0 ]; 1[y>Y 0 ])

� 1(x; y) = ( � 1(x); � 1(y)) = � 1(x; y) + � 0(X 0; Y0) + � 2(0; � )

� 2(x; y) = ( � 2(x); � 2(y)) = � 2(x; y) + � 0(X 0; Y0) + � 1(1; 1 � � )

Then

(3) � 0� 0� � 0 + � 1� 1� � 1 + � 2� 2� � 2
d= � p;

We believe that a result by Albenque and Goldschmidt [1] about the Brownian CRT can
be adapted to show that thedistributional identity (3) characterizes� p (see remark 5.5.)

Finally, our construction allows us to compute the averaged permutonE � p, obtained by
taking E � p(A) = E[� p(A)]. We get the following result.
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Figure 2. The construction of � from three independent permutons dis-
tributed like � . Here � = 0 and (� 0; � 1; � 2) � (0:4; 0:5; 0:1).

Theorem 1.7. The permuton E � p is absolutely continuous w.r.t. the Lebesgue measure
on the unit square, with density function at(x; y) equal to
Z min( x;y )

max(0 ;x+ y� 1)

3p2(1 � p)2da

2� (a(x � a)(1 � x � y + a)(y � a))3=2
�

p2

a + (1� p)2

(x� a) + p2

(1� x� y+ a) + (1� p)2

(y� a)

� 5=2
:

We discuss a relationship with an existing result by Dokos and Pak on doubly-alternating
Baxter permutations at the end of this section.

1.5. Shu�ing of continuous trees. Through a classical construction (see [16]), a con-
tinuous excursiong encodes a continuous rooted tree equipped with a total ordering (ana-
loguous to the depth-�rst search order of a discrete tree) and a probability measure. This
is done by setting dg(x; y) = g(x) + g(y) � 2 min[x;y ] g on [0; 1] and identifying points
x; y 2 [0; 1] such that dg(x; y) = 0. This yields a quotient metric space (Tg; dg) with a
continuous canonical surjectionpg : [0; 1] 7! Tg. The root is � = pg(0), the order is de�ned
by x � g y () inf p� 1

g (x) � inf p� 1
g (y), and the measure is� g = pg� Leb[0;1]. When g = e,

we get the well-known Brownian CRT. Section 7 is devoted to the proof of the following
theorem, illustrated in �g. 3.

Theorem 1.8. There exists a random CRT excursion~e, de�ned on the same probability
space as(e; S), with the following properties:

(1) The excursion ~e has the distribution of a normalized Brownian excursion, with the
same �eld of local times at time 1 ase.

(2) Almost surely, the function' e;S is an isometry between the pseudo-distancesde and
d~e. In particular, ~e � ' e;S = e.

This result has an interpretation in terms of shu�ing of continuous trees, mirroring the
construction of separable permutations described in section 1.2.

When g is a CRT excursion, the construction ofTg puts the strict local minima of g in
bijection with the branching points ofTg. Hence, when (g; s) is a signed excursion, the order
� s

g can be de�ned on the treeTg by inverting at all branching points with a minus sign,
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Figure 3. A realization of (e; S) (here p = 1=2), and the associated func-
tions ' e;S and ~e, highlighting the property ~e � ' e;S = e.

as follows. Letx; y 2 Tg such that x � g y. If there exists a strict local minimum bi such
that sup p� 1

g (x) < bi < inf p� 1
g (y), with g(bi ) = inf f g(t); supp� 1

g (x) � t � inf p� 1
g (y)g, and

s(bi ) = 	 , then set x � s
g y. Otherwise, setx � s

g y. This de�nes a total order compatible
with the relation on [0; 1] de�ned in the previous section: whenx and y are g-comparable,
then x � s

g y () pg(x) < s
g pg(y).

This allows us to give an interpretation of theorem 1.8 in terms of trees. If we consider
the tree (T~e; d~e; � ~e; � ~e; � ~e), from theorem 1.8(2) we deduce, forx; y 2 [0; 1], that

pe(x) = pe(y) () de(x; y) = 0 () d~e(' e;S(x); ' e;S(y)) = 0 () p~e(' e;S(x)) = p~e(' e;S(y)) :

So there is a unique map| : Te ! T ~e such that | � pe = p~e � ' e;S. It is immediate than
| is an isometry (Te; de) $ (T~e; d~e). Moreover, | maps the root ofTe to the root of T~e, is
measure preserving and increasing w.r.t. (� S

e ; � ~e). This discussion can be summarized in
the following corollary of theorem 1.8.

Proposition 1.9. The map| : Te $ T ~e provides an isomorphism (of pointed, ordered, mea-
sured metric spaces) between the tree(Te; de; � e; � S

e ; � e) and the Brownian CRT(T~e; d~e; � ~e; � ~e

; � ~e) constructed from the Brownian excursion~e.

Combining this with the result of Duquesne on the uniqueness of coding functions of
trees [12, Thm 1.1], we directly get an abstract construction of� e;S.
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Proposition 1.10. Almost surely, the functions~e and | are uniquely determined by the fact
that ~e is continuous and| is an isomorphism between(Te; de; � e; � S

e ; � e) and (T~e; d~e; � ~e; � ~e

; � ~e). Any function � which veri�es p~e � � = | � pe must coincide with ' e;S on a set of
measure 1, hence still veri�es� e;S = (Id ; � )� Leb.

1.6. Comments and perspectives. Let us mention another natural family of permuta-
tions: the doubly-alternating Baxter permutations, which are also the doubly- alternating
separable permutations [17], and are counted by the Catalan numbers. The fact that
they enjoy a tree decomposition similar to separable permutations, along with simulations
[11], allows to boldly conjecture that they converge to the Brownian separable permuton
of parameter 1=2. Under the conjecture just stated, the main result of Dokos and Pak
[11, Thm 1.1] would provide another expression for the density function� of E � 1=2: for
0 � x � min(y;1 � y),

� (x; y) =
dxdy
4�

Z x

0
du

Z x� u

0
dv

1
[(u + v)(y � v)(1 � y � u)]3=2

;

the values on whole unit square being recovered through the invariance under isometries
of the square. We were unable to �nd a direct analytical proof of the equality with the
expression of theorem 1.7 forp = 1=2.

As already mentioned, the article [5] considerssubstitution-closed classes, which are
natural generalizations of the class of separable permutations. Depending on the class,
several possible limits appear, among which are the� p for p possibly di�erent from 1=2.
Another family of possible limits isthe � -stable permuton driven by� , for � 2 (1; 2) and
� itself a random permuton. We believe a continuum construction similar to the one
presented here is possible, by considering a� -stable tree, with an independent copy of� at
each branching point, driving the reordering of the (countably in�nite number of) branches
stemming from that point.

The structure of the paper is as follows. Section 2 contains various de�nitions that will be
needed in the rest of the paper, notably a characterization of� p through its marginals, that
highlight the link with the signed excursion. Section 3 contains the proof of theorem 1.3,
along with some facts about the random function' e;S that are reused later. Sections 4
to 7 are respectively devoted to the proofs of theorems 1.5 to 1.8.

1.7. Acknowledgements. I warmly thank Gr�egory Miermont for his dedicated super-
vision, enlightening discussions and his detailed reading of this paper. Many thanks to
Mathilde Bouvel, Valentin F�eray and S�ebastien Martineau for enriching discussions and
useful comments. I am grateful for the hospitality and support of the Forschungsinstitut
f•ur Mathematik at ETH Z•urich during a stay where part of this research was conducted.

2. Definitions

First we set a few notations : ifx1; : : : ; xk are strictly comparable elements of an ordered
set (E; � ), then rank� (x1; : : : ; xk) is the permutation � such that � (i ) < � (j ) () x i < x j

for every 1� i; j � k. The sequence (x � � 1 (1) < : : : < x � � 1 (k)) is called the order statistic
of (x1; : : : ; xk) and denoted (x(1) < : : : < x (k)).
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2.1. Marginals of a permuton. In this section we want to give a tractable de�nition of
the random permuton� p. This will take the form of a characterization through its �nite-
dimensional marginals, which we de�ne now. Ifk � 1 and � is a random permuton, let
subpermk(� ) = rank( Y1; : : : Yk) � rank(X 1; : : : X k)� 1 2 S k , where conditionally on� , the
(X i ; Yi ) for i 2 J1; kKare independent and distributed according to� . Then the distribution
of subpermk(� ) is called the k-dimensional marginal of � . The interest of this de�nition
lies in the following result, which is an extension of the main theorem of [14] to random
permutations. It

Proposition 2.1 (theorem 2.2 of [5]). If � n is a sequence of (possibly random) permutation
whose size goes to in�nity, then� n converges to some random permuton� in distribution
if and only if for every permutation � , E[occ(�; � )] converges to some number� � .

In this case, the law of� is characterized by the relationsP(subpermk(� ) = � ) = � � ,
for k � 1 and � 2 S k .

This is indeed the result used by [6] and [5] to prove permuton convergence. As a result,
the distribution of subpermk(� p) for every k is obtained as follows (see [6, prop. 9.1] and
[5, def. 5.1])

De�nition 2.2. The permuton � p is determined by the relations

(4) 8k � 1; subpermk(� p) d= perm( tk;p);

wheretk;p is a uniform binary tree with k leaves, whose internal vertices are decorated with
i.i.d. signs that are � with probability p.

In the rest of the section, we make apparent a connection with the signed Brownian
excursion.

2.2. A few facts about excursions. We start by constructing a measurable enumeration
as de�ned in de�nition 1.2. Let (pi ; qi ) i 2 N be a �xed enumeration ofQ2 \ [0; 1]. Let g be a
CRT excursion. For i � 1, de�ne wi = min f t 2 [pi ; qi ] : g(t) = min [pi ;qi ] gg, i 0 = 0, and for
k � 1, set recursively

i k = inf f i > i k� 1; wi 2 (pi ; qi ) , wi =2 f w1; : : : ; wi k � 1 gg:

Finally, for k 2 N, set bk(g) = wi k .

Lemma 2.3. This construction de�nes a measurable enumeration.

Proof. It is immediate that all inner local minima will appear in the sequence (wi ) i . The
way the subsequence (bi ) i of (wi ) i is chosen guarantees that only inner local minima appear,
and only once, in (bi ) i .

Measurability of g 7! bi (g) for every i follows from that of g 7! wi (g) and k 7! i k .
To prove (ME3) we see that thanks to item (CRT2), the functionECRT � [0; 1]2 ! N[f1g

(g; x; y) 7! min
�

i 2 N; g(bi (g)) = min
[x;y ]

g and bi (g) 2 (x; y) and min
[x;y ]

g < min(g(x); g(y))
�

is a measurable functional that maps (g; x; y) to i 2 N wheneverbi is the point in (x; y)
that is the only global minimum of g on [x; y], and 1 if no such i 2 N exists. �
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We now collect a few facts about CRT excursions. In section 1.5 we saw a that such
functions encode continuous trees. So we borrow the vocabulary of trees in a way that is
coherent with this encoding: thex 2 [0; 1] which are not one-sided local minima are called
leaves ofg. The bi for i 2 N are calledbranching points ofg and are identi�ed with N. Set

ai = supf t < b i : g(t) = g(bi )g;

ci = inf f t > b i : g(t) = g(bi )g;

hi = g(bi ) = g(ci ) = g(ai ):

By de�nition, for x 2 (ai ; bi ) [ (bi ; ci ), g(x) � hi , de�ning two subexcursions at respectively
the left and the right of bi . We collect an immediate consequence of (CRT2), which states
that these subexcursions are nested, with a binary tree structure (which comes from that
of Tg).

Lemma 2.4. For every i; j either [ai ; ci ] � [aj ; cj ] or [aj ; cj ] � [ai ; ci ] or [ai ; ci ]\ [aj ; cj ] = ; .
Furthermore, if [aj ; cj ] � [ai ; ci ] , then either j = i , [aj ; cj ] � (ai ; bi ) or [aj ; cj ] � (bi ; ci ).

If x < y are g-comparable, thebi in which g reaches its minimum betweenx and y at bi

is called themost recent common ancestorof x and y. We extend this notion to branching
points: if [ai ; ci ] \ [aj ; cj ] = ; , then bi and bj are g-comparable. We can always assume by
symmetry that bi < bj and call most recent common ancestorof i and j the k 2 N such
that [ai ; ci ] � (ak ; bk) and [aj ; cj ] � (bk ; ck).

2.3. Extraction of permutations and trees from a signed excursion. Let (g; s) be
a signed excursion. Recall thatx and y are g-comparable if the minimum ofg on [x; y] is
reached at a unique point, and that pointb is a strict local minimum with b 2 (x; y). If
x1; : : : xn are points of [0; 1], pairwiseg-comparable, then we de�ne

Permg;s(x1; : : : xn ) = rank � s
g
(x(1) ; : : : ; x(n)):

To understand the structure of these permutations, let us de�ne the (signed) trees ex-
tracted from a (signed) excursion. Following Le Gall [16], wheng is a CRT excursion
and t1 < : : : < t k are pairwiseg-comparable1, the discrete plane tree with edge-lengths
� (g; t1; : : : ; tk) is constructed recursively as follows:

� If k = 1, then � (g; t1) is a leaf labeledt1.
� If k � 2, then the minimum of g on [t1; tk ] is reached at a strict local mini-

mum bi for somei , and there is j 2 J2; kK such that f t1; : : : t j � 1g � (ai ; bi ), and
f t j ; : : : tkg � (bi ; ci ). Then � (g; t1; : : : ; tk) is a root labeledi , spanning two subtrees
� (g; t1; : : : ; t j � 1) and � (g; tj ; : : : ; tk).

This yields a binary tree whose internal vertices are put in correspondence with branching
points of g. Then, if (g; s) is a signed excursion, we set� � (g; s; t1; : : : tk) to be the tree
� (g; t1; : : : tk), to which we add, at each internal node labeledi , the sign si . The following
observation is capital:

1The de�nition there is stated di�erently and covers any continuous function g and choice of points
t1; : : : tk
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Observation2.5. For any signed excursion (g; s) and g-comparablex1; : : : ; xn ,

Permg;s(x1; : : : xn ) = perm( � � (g; s; x(1) ; : : : ; x(n))) :

If U1; : : : ; Uk are independent uniform random variables in [0; 1], then they are almost
surely leaves ofg thanks to (CRT3), henceg-comparable.

We recall that the signed Brownian excursion (e; S) is built by taking e to be a normalized
Brownian excursion, andS an independent i.i.d. sequence inf� ; 	g , whereP(S1 = � ) =
p. Then a consequence of [16, Theorem 2.11] is that the tree� � (e; S; U(1) ; : : : U(k)) is a
uniform binary tree with k leaves, independently decorated with i.i.d. signs of biasp.
From de�nition 2.2 and observation 2.5 follows a new characterization of� p, which we use
in this paper.

Proposition 2.6. The permuton� p is determined by the relations

(5) 8k � 1; subpermk(� p) d= Perme;S(U1; : : : Uk):

Remark 2.7. This connection with the Brownian excursion was present in [6] forp = 1=2.
The main result of that paper actually goes further: the conditional distribution of the
l.h.s. given � 1=2 equals (in distribution) the conditional distribution of the r.h.s given
(e; S), jointly for all k (see [6, thm. 1.6] and its proof). This indeed strongly hinted at the
existence of a direct construction of� 1=2 from (e; S), made explicit in the present paper.

3. The function '

Theorem 1.3 follows from the next two propositions.

Proposition 3.1. If g is a CRT excursion ands a sequence of signs, then(g; s; t) 7! ' g;s(t)
and (g; s) 7! � g;s are measurable. Furthermore,' g;s� Leb = Leb, hence� g;s is a permuton.

Proof. For the measurability, remark that ((g; s; t); u) 7! 1[u� s
g t] is a measurable function,

as a result of item (ME3). Then Fubini's theorem implies that its partial integral overu
is a measurable function of (g; s; t).

Now we only have to prove that' � Leb = Leb. Let (Z i ) i � 1 be independent uniformly
distributed random variables in [0; 1]. For k � 2, let U1;k = 1

k� 1# f i 2 J2; kK:Z i � s
g Z1g

and U1 = lim k!1 U1;k . We can apply the law of large numbers conditionally onZ1 to
the sequence1Z2 � s

g Z1 ; 1Z3 � s
g Z1 ; : : : (which is i.i.d given Z1) to show that this limit is well

de�ned and equal almost surely to Lebf t : t � s
g Z1g = ' (Z1). This means that U1 has

distribution ' � Leb. On the other hand, by exchangeability of theZ i , the U1;k are uniform
over f 1

k� 1 ; : : : ; k� 1
k� 1g so the distribution of the limit U1 must be uniform. This means

precisely that ' � Leb = Leb. �

Proposition 3.2. The Brownian separable permuton� p is distributed like � e;S.

Proof. By de�nition of � g;s, subpermk(� e;S) can be realized as rank(Y ) � rank(X )� 1 where
X 1; : : : X k are independent uniform in [0; 1] and Yi = ' e;S(X i ) for i 2 J1; kKSincex � S

e y
implies ' e;S(x) � ' e;S(y), and moreover since theYi are almost surely distinct, then almost
surely subpermk(� e;S) = Perm e;S(X 1; : : : X k). According to proposition 2.6, this property
characterizes� p among permutons. �



ON THE BROWNIAN SEPARABLE PERMUTON 11

We now collect a few results about the excursion and the function' . The �rst one states
that [0; 1] can almost be covered by a union of small subexcursions.

Lemma 3.3. Let g be a CRT excursion, and� > 0, � > 0. There exists a �nite I � N such
that the ([ai ; ci ])i 2 I are disjoint, ci � ai � � for every i , and Leb(

F
i 2 I [ai ; ci ]) =

P
(ci � ai ) >

1 � � .

Proof. Let x be a leaf of the excursiong. Let x0 < x be another leaf. De�ne recursivelybkn

to be the most recent common ancestor ofxn and x, and xn+1 to be a leaf in (maxf bkn ; x �
1
n g; x). This is possible by density of the leaves. Then necessarilyx 2 [akn ; ckn ] and
akn converges tox. Henceg(ckn ) = g(akn ) converges tog(x), which implies that ckn � akn

converges to 0 (otherwisex couldn't be a leaf). Hence there must be ai such that jci � ai j � �
and x 2 [ai ; ci ].

We deduce that
S

i :ci � ai � � [ai ; ci ] has measure 1. So a �nite union can be found with
measure� 1 � � . Now thanks to lemma 2.4, this union can be readily rewritten as a
disjoint union. �

Now we want to characterize how the function' g;s behaves on a pair of sibling subex-
cursions de�ned by an interval of the form [ai ; ci ]. Set a0

i = ' g;s(ai ), c0
i = a0

i + ci � ai ,
b0

i = a0
i + ( bi � ai ) 1[si = � ] + ( ci � bi ) 1[si = 	 ]. The numbersa0

i ; b0
i ; c0

i 2 [0; 1] can be
interpreted as the equivalent ofai ; bi ; ci for the shu�ed order.

Lemma 3.4. For i 2 N, we have

if t 2 [ai ; bi ] and si = � , then ' g;s(t) = a0
i + Lebf x 2 [ai ; bi ] : x � s

g tg 2 [a0
i ; b0

i ]:

if t 2 [bi ; ci ] and si = � , then ' g;s(t) = b0
i + Lebf x 2 [bi ; ci ] : x � s

g tg 2 [b0
i ; c0

i ]:

if t 2 [ai ; bi ] and si = 	 , then ' g;s(t) = b0
i + Lebf x 2 [ai ; bi ] : x � s

g tg 2 [b0
i ; c0

i ]:

if t 2 [bi ; ci ] and si = 	 , then ' g;s(t) = a0
i + Lebf x 2 [bi ; ci ] : x � s

g tg 2 [a0
i ; b0

i ]:

If t 2 [0; ai ) [ (ci ; 1], then

' g;s(t) = Leb f x 2 [0; ai ) [ (ci ; 1] : x � s
g tg + 1[ai � s

g t](ci � ai ) 2 [0; a0
i ] [ [c0

i ; 1]

Proof. We prove the �rst and last equalities, as the others have a symmetric proof. If
si = � , t 2 [ai ; bi ] and u is a leaf, thenu � s

g t if and only if u 2 [0; ai ) [ (ci ; 1] and u � s
g ai ,

or u 2 [ai ; bi ] and u � s
g t. The �rst claim follows by taking the measure of suchu.

For the last equality, we see that ift 2 [0; ai ) [ (ci ; 1] and u 2 [ai ; ci ], then u � s
g t if and

only if ai � s
g t. �

Lemma 3.5. If [aj ; cj ] � (ai ; bi ), then either si = � and [a0
j ; c0

j ] � [a0
i ; b0

i ], or si = 	 and
[a0

j ; c0
j ] � [b0

i ; c0
i ].

If [aj ; cj ] � (bi ; ci ), then either si = � and [a0
j ; c0

j ] � [b0
i ; c0

i ], or si = 	 and [a0
j ; c0

j ] �
[a0

i ; b0
i ].

Proof. The four claims have a symmetrical proof, hence we only prove the �rst. Ifsi = �
and [aj ; cj ] � (ai ; bi ), then the previous lemma implies readilya0

i � a0
j . We need to prove

c0
j � b0

i , that is a0
j + cj � aj � a0

i + bi � ai , which is equivalent toa0
j � a0

i � aj � ai + bi � cj .
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This is exactly the inequality of measures derived from the inclusionf x; ai � s
g x � s

g aj g �
[ai ; aj ] t [cj ; bi ] �

Now we can prove corollary 1.4.

Proof of corollary 1.4. We consider the Kolmogorov distance between probability mea-
sures, which is the uniform distance on the bivariate CDFs (dK (�; � ) = sup0� x;y � 1 j� �
� j([0; x] � [0; y])). We use the fact that convergence of permutons is metrized bydK [14,
lemma 5.3], and the following result:

Lemma 3.6. If � 2 S n , dK (� � ; (Id ; ' � )� Leb) � 2
n

Proof. It is enough to notice that both CDFs coincide on points whose coordinates are
entire multiples of 1=n and use the fact that CDFs of permutons are 1-Lipschitz [14, eq.
7] �

All together, this implies (Id; ' � n )� Leb d�! (Id ; ' e;S)� Leb. With the Skorokhod coupling
we can assume without loss of generality, that the convergence is in fact almost sure. Let
� and � be positive real numbers, and apply lemma 3.3. Then

Leb(x : j' � n (x) � ' e;S(x)j > � ) � Leb(x : x =2
G

i 2 I

[ai ; ci ])

+ Leb( x : 9i s.t. x 2 [ai ; ci ]; ' � n (x) =2 [a0
i ; c0

i ])

The �rst term is smaller than � by construction, and the second term converges to Leb(x :
9i s.t. x 2 [ai ; ci ]; ' e;S(x) =2 [a0

i ; c0
i ]) = 0 because of the narrow convergence of (Id; ' � n ) to

(Id ; ' e;S) and the Portmanteau theorem (indeed permutons put no mass on the boundary
of rectangles, because they have uniform marginals). So forq � 1, jj ' � n � ' e;Sjj q

L q �
� q + � + o(1). This last quantity can be made arbitrary small by choosing �rst� and � small

enough and thenn large enough. We have proven almost sure convergence of' � n

L p

�! ' e;S

in some coupling, hence the corollary. �

We end this section by considering the following property of signed excursions (g; s):

(A) 8i 6= j; [a0
j ; c0

j ] � [a0
i ; c0

i ] =) f hl : l � 1; [a0
l ; c0

l ] � [a0
i ; c0

i ] and [a0
j ; c0

j ] � [b0
l ; c0

l ]g

and f hl : l � 1; [a0
l ; c0

l ] � [a0
i ; c0

i ] and [a0
j ; c0

j ] � [a0
l ; b0

l ]g are dense in [hi ; hj ]

It is very similar to the "order-leaf-tight" property of continuum trees de�ned in [2]. Loosely
said, it means that it is impossible to �nd a nontrivial ancestral path in the treeTg without
a density of points both on the right and on the left where a subtree is grafted. "left" and
"right" are understood with regard to the shu�ed order � s

g. This is crucial to the proof
of theorem 1.8. We show that it holds almost surely in our setting.

Proposition 3.7. Let g be a CRT excursion,p 2 (0; 1) and S be a random i.i.d. sequence
of signs with biasp. Then with probability one,(g; S) veri�es property (A)
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Proof. By symmetry we prove only the �rst claim and by countable union we �x i and
j . Let K = f l � 1 : [al ; cl ] � [ai ; ci ] and [aj ; cj ] � [bl ; cl ]g, and eK = f l : l � 1; [a0

l ; c0
l ] �

[a0
i ; c0

i ] and [a0
j ; c0

j ] � [b0
l ; c0

l ]g. For y 2 (hi ; hj ) \ Q, considerx = supf t 2 [ai ; aj ] : g(t) = yg.
Then by de�nition g(x) = y and g(t) > y for t > x . Consider a sequence of leavesxn % x
and the minimum bkn of g betweenxn and ai . Then necessarilykn 2 K and xn < bkn < x .
Sohkn ! y.

Now with probability one a subsequence (k0
n )n of (kn )n can be found withsk0

n
= � for

every n. Then lemma 3.5 implies thatk0
n 2 eK , and hk0

n
! y. By countable union overy

we have shown thatf hl ; l 2 eK g countains (hi ; hj ) \ Q. So it contains [hi ; hj ] from which
the proposition follows. �

An immediate consequence of property (A) is the following improvement on lemma 3.5,
with strict inclusions.

Lemma 3.8. Suppose(g; s) veri�es (A) . Let i 6= j .
If [aj ; cj ] � (ai ; bi ), then either si = � and [a0

j ; c0
j ] � (a0

i ; b0
i ), or si = 	 and [a0

j ; c0
j ] �

(b0
i ; c0

i ).
If [aj ; cj ] � (bi ; ci ), then either si = � and [a0

j ; c0
j ] � (b0

i ; c0
i ), or si = 	 and [a0

j ; c0
j ] �

(a0
i ; b0

i ).
If [ai ; ci ] \ [aj ; cj ] = ; , then [a0

i ; c0
i ] \ [a0

j ; c0
j ] = ; .

4. The support of the permuton

Theorem 1.5 follows readily from the two propositions of this section.

Proposition 4.1. For every signed excursion(g; s), � g;s has Hausdor� dimension1 and
its 1-dimensional Hausdor� measure is�

p
2.

Proof. We start by showing that dimH (supp(� )) � 1. If � 1 is the projection of the unit
square to its �rst coordinate, then� 1(supp(� )) = [0 ; 1], otherwise� couldn't have a uniform
marginal. We conclude with the following lemma, which is immediate from the de�nition
of Hausdor� dimension:

Lemma 4.2. If � : (E; dE ) ! (F; dF ) is a contraction, then for X � E, dimH (X ) >
dimH (� (X ))

To prove the upper bound, we apply lemma 3.3 for some choice of� > � > 0. Let I be
the set of indices provided by the lemma. LetJ = f k : 9i; j 2 I; [ai ; ci ] � (ak ; bk); [aj ; cj ] �
(bk ; ck)g. Let K = I t J We have the following fact, which is a direct consequence of the
nested structure of the [ai ; ci ].

Fact 4.3. For every i 2 J , there exists ani l 2 K such that for everyj 2 K , [aj ; cj ] � [ai ; bi ]
implies [aj ; cj ] � [ai l ; ci l ] � [ai ; bi ]. Similarly for every i 2 J , there exists be ani r 2 K such
that for every j 2 K , [aj ; cj ] � [bi ; ci ] implies [aj ; cj ] � [ai r ; ci r ] � [bi ; ci ]. Also there exists
? 2 J such that for everyk 2 K , [ak ; ck ] � [a?; c?].
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We can de�ne the following subsets of the unit square, which we use to cover supp(� g;s):

A i = ([ ai ; ai l ] [ [ci l ; bi ]) � ([a0
i ; a0

i l
] [ [c0

i l
; b0

i ])

[ ([bi ; ai r ] [ [ci r ; ci ]) � ([b0
i ; a0

i r
] [ [c0

i r
; c0

i ]) if i 2 J and si = �

A i = ([ ai ; ai l ] [ [ci l ; bi ]) � ([b0
i ; a0

i l
] [ [c0

i l
; c0

i ])

[ ([bi ; ai r ] [ [ci r ; ci ]) � ([a0
i ; a0

i r
] [ [c0

i r
; b0

i ]) if i 2 J and si = 	

A i = [ ai ; ci ] � [a0
i ; c0

i ] if i 2 I

A0 = ([0 ; a?] [ [c?; 1]) � ([0; a0
?] [ [c0

?; 1])

By construction and fact 4.3,
S

i 2 K [f 0g � 1(A i ) = [0 ; 1], and lemma 3.4 implies that for
x 2 � 1(A i ), (x; ' g;s(x)) 2 A i . This one has:

(6) (Id ; ' g;s)[0; 1] �
[

i 2 K [f 0g

A i :

The rest of the proof is devoted to rewriting the right-hand side of (6) as an union of sets in

Figure 4. A0 in blue, A i for i 2 I in green, andA i for i 2 J in red.

which we control the sum of diameters. Now, fori 2 I , diam(A i ) = diam([ ai ; ci ] � [a0
i ; c0

i ]) =p
2(ci � ai ). We deduce that

(7)
X

i 2 I

diam(A i ) �
p

2:
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For i 2 J , A i is the union of 8 rectanglesA1
i ; : : : A8

i . We have that
8X

j =1

width( A j
i ) = 2[( ci � ai ) � (ci l � ai l ) � (ci r � ai r )]

8X

j =1

height(A j
i ) = 2[( c0

i � a0
i ) � (c0

i l
� a0

i l
) � (c0

i r
� a0

i r
)]:

And both these quantities are equal and their value is 2 Leb(� 1(A i )). Similarly, A0 is
the union of 4 rectanglesA1

0; : : : ; A4
0 whose widths and heights both sum to 2 Leb(� 1(A0)).

Hence
4X

j =1

diam(A j
0) +

X

i 2 J

8X

j =1

diam(A j
i ) �

4X

j =1

(width + height)( A j
0) +

X

i 2 J

8X

j =1

(width + height)( A j
i )

= 4 Leb(� 1(A0)) + 4
X

i 2 J

Leb(� 1(A i ))

= 4 Leb([0; 1] n
[

i 2 I

[ai ; ci ]) � 4�(8)

By taking the closure and rewriting the right-hand side in eq. (6), we get

(9) supp(� g;s) � (Id ; ' g;s)[0; 1] �

 
[

i 2 I

A i

!

[

 
4[

j =0

A j
0

!

[

 
[

i 2 J

8[

j =1

A j
i

!

Summing (7) and (8) shows that the sum of diameters in the cover (9) can't exceed 4� +
p

2.
Moreover, each square and rectangle in the cover has diameter bounded by

p
2� . This

implies that supp(� ) has 1-dimensional Hausdor� measure bounded above by
p

2. �

Proposition 4.4. If S is an i.i.d sequence of nondeterministic signs, thensupp(� g;S) is
almost surely totally disconnected.

Proof. We re-use the notations of the last proof, with� > � > 0. We now show that almost
surely, we can build sets�I � I and �J � J such that

(1) the statement of fact 4.3 is still true whenJ is replaced by �J and K by �K = �I t �J ,
(2) for all i 2 �I , ci � ai � � ,
(3) Leb([0; 1] n

F
i 2 �I [ai ; ci ]) < � ,

with the following added constraint:

(10) 8i 2 J; s(bi r ) = s(bi l ) 6= s(bi ):

This is done by adding successively indices toI in order to create new branching points
in between two branching points of the same sign. Condsideri 2 J and its left child i l ,
with si = si l = � . We can build, as in the proof of lemma 3.3, an in�nite sequence (br n )n

such that [ar n ; cr n ] � [ai ; bi ] and [br k ; cr k ] � [ai l ; ci l ]. Almost surely, one of thern , which
we denotej = j (i; i l ), is such that sj 6= � . We can then �nd, by the same reasoning, a
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k = k(j (i; i l )) such that [ak ; ck ] � [aj ; cj ] and sk = � . We proceed similarly fori 2 J such
that si = si r . We can now set

�I = I [ f k(i; i l ) : i 2 J; si 6= si l g [ f k(i; i r ) : i 2 J; si 6= si r g
�J = J [ f j (i; i l ) : i 2 J; si 6= si l g [ f j (i; i r ) : i 2 J; si 6= si r g:

By construction, fact 4.3 applies to�I and �J , and (10) is veri�ed.
Now we can de�ne the sets (A i ) i 2 �K [f 0g as in the previous proof, and we still have

supp� e;S � C =
[

i 2 �K [f 0g

A i :

We will show that the diameter of any connected component of C is almost surely bounded
by 4� + 2� . This is enough to show that supp(� g;S) is totally disconnected.

For x 2 C, let us denote byC(x) the connected component ofC containing x, and
for X � C, set C(X ) = [ x2 X C(x). We now set, for i 2 �I , B i = C(A i ), for i 2 �J
B i = C(A i ) n C(A i l ) n C(A i r ), and B0 = C(A0) n C(A � ). Then, immediate induction yields

C =
G

i 2 �K [f 0g

B i :

Now remark that the setsB i were obtained by inclusion and exclusion of full connected
components ofC. Hence each connected component ofC appears as a connected compo-
nent of one of theB i , that we now consider.

It turns out (see �g. 5) that for i 2 �I , B i has only one connected component, and its
diameter is bounded above by 4� + 2� . For i 2 �J , B i has three connected components,
whose diameter is bounded above by 2� . For i = 0, B0 has two connected components,
and their diameter is also bounded above by 2� . �

(a) B i for i 2 I , in the case
si = � , i = j l for somej . (b) B j for j 2 J , in the case

sj = � , j = j 0
l for somej 0.

(c) B0, in the cases? = � .

Figure 5. The proof of total disconnection.
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5. Self-similarity

Given a CRT excursiong and one of its branching pointsb , one can build three subex-
cursions by cut-and-pasting, which encode the three connected components ofTg n f pg(b)g.
The goal of this section is do the same procedure on signed excursions, and observe the
consequences on the associated permutons. This will allow us to prove theorem 1.6 in a
"reversed" fashion: we start from� , build � 1, � 2 and � 3 by cutting along a suitably chosen
branching point, as to be able to use a result of Aldous [3] and identify the distribution
and relative sizes of the subexcursions.

Let (g; s) be a signed excursion. Given �{ 2 N, we can obtain 3 excursions by looking at
the values ofg on [a�{; b�{], [b�{; c�{] and [0; a�{] t [c�{; 1]. More precisely, following [3], we de�ne

(11) � 0 = 1 � c�{ + a�{; � 1 = b�{ � a�{; � 2 = c�{ � b�{; X 0 =
a�{

� 0
; Y0 =

a0
�{

� 0
; � = s�{:

Given these constants, we can de�ne the contractions� k ; � k ; � k for k 2 f 0; 1; 2g, as in (2),
and

(12) gk =
1

p
� k

g � � k ; k 2 f 0; 1; 2g:

Because each� k is a piecewise a�ne function, it pulls back the strict local minima ofg
that are in the interior of Im( � k) onto strict local minima of gk . This is made explicit in
the following result:

Proposition 5.1. For k 2 f 0; 1; 2g, there is an injective map#k : N ! N, such that

8i 2 N; � k(bi (gk)) = b#k (i )(g):

Moreover, the#k(N), for k 2 f 0; 1; 2g, form a partition of Nnf �{g. Finally, for k 2 f 0; 1; 2g,
the map(g;�{; i) 7! #k(i ) is measurable.

Proof. We set#k(i ) = min f j 2 N : � k(bi (gk)) = bj (g)g, and the measurability claim follows
from measurability of (i; g) 7! bi (g), (�{; g) 7! � k and (�{; g) 7! gk . The other claims are
immediate by construction and from the de�nition of a measurable enumeration. �

We can now transport the signs ofg onto signs of thegk by setting sk
i = s#k (i ) for

k 2 f 0; 1; 2g and i 2 N. A result of this construction is the following crucial observations:

Observation5.2. For x < y 2 [0; 1], and k 2 f 0; 1; 2g, x � s
gk

y if and only if � k(x) � s
g � k(y).

Observation5.3. The map (g;�{; (si ) i 2 N) 7! sk
i is measurable for everyi 2 N andk 2 f 0; 1; 2g

Now we want to use lemma 3.4 to show that our function' g;s can be cut out into rescaled
copies of' gk ;sk , which translates immediately in termes of measures.

Proposition 5.4. For �{ 2 N, k 2 f 0; 1; 2g and t 2 [0; 1],

(13) ' g;s � � k(t) = � k � ' gk ;sk (t):

As a consequence,

� g;s =
2X

k=0

� k � (� k � � gk ;sk ):
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Proof. Let us prove (13) fork = 0.

' g;s(� 0(t)) = Leb f x 2 [0; a�{) [ (c�{; 1] : x � s
g � 0(t)g + 1[a�{ � s

g t](c�{ � a�{)

= Lebf x 2 [0; a�{) [ (c�{; 1] : x � s
g � 0(t)g

+ ( c�{ � a�{) 1
�
Lebf x 2 [0; a�{) [ (c�{; 1] : x � s

g � 0(t)g > a 0
�{

�

=� 0 Lebf y 2 [0; 1] : y � s0

e0
tg + (1 � � 0) 1

h
� 0 Lebf y 2 [0; 1] : y � s0

e0
tg > � 0Y0

i

= � 0(' e0 ;s0 (t))

Where the �rst two equalities come from lemma 3.4 and the third is the result of the change
of variable x = � 0(y). Now, for k = 1,

' g;s(� 1(t)) = a0
�{ + ( b0

�{ � a0
�{) 1[s�{ = 	 ] + Lebf x 2 [a�{; b�{] : x � s

g � 1(t)g

= � 0Y0 + � 2� + ( b�{ � a�{) Lebf y 2 [0; 1] : y � s1

g1
tg

= � 1(' g1 ;s1 (t))

where the �rst equality comes from lemma 3.4 and the second is the result of the change
of variable x = � 1(y). The casek = 2 is similar. �

This is all we need to show theorem 1.6.

Proof of theorem 1.6.If e is an Brownian excursion, andX l < X r are reordered uniform
independent random variables in [0; 1], independent ofe, then almost surely there is a �{
such that b�{ = argmin [X l ;X r ] e. De�ne � 0; � 1; � 2; X 0; Y0; � as in (11). This allows us to
de�ne the � k as in (2) and theek ; sk as before.

A result of Aldous [3, cor. 5] states thate0; e1; e2 are Brownian excursions, (�0; � 1; � 2)
is a Dirichlet( 1

2 ; 1
2 ; 1

2) partition of 1, and X 0 is uniform in [0; 1], all these random variables
being independent.

Now, as a consequence of observation 5.3, fork 2 [0; 1] and i 2 N, Sk
i is a random

variable. Giveneand �{, the Sk for k 2 [0; 1] and� are permutations of disjoint subsequences
of S. As a result, the Sk and � are independent (and independent of (e; Xl ; X r )), and
distributed as i.i.d. sequences of signs of biasp.

We �nally set � k = � ek ;Sk for k 2 f 0; 1; 2g and need only prove

(14) Y0 = ' e0 ;S0 (X 0) a.s.

to show that the collection of random variables ((�k)k2f 0;1;2g; (� k)k2f 0;1;2g; (X 0; Y0); � ) has
the joint distribution assumed in theorem 1.6. Proposition 5.4 then yields the theorem.
Let us now prove (14).

� 0Y0 = a0
i = Lebf x 2 [0; ai ) [ (ci ; 1) : x � S

e ai g = � 0 Lebf y 2 [0; 1] : y � S0
e0

� � 1
0 (ai )g

= � 0 Lebf y 2 [0; 1] : y � S0
e0

X 0g = � 0' e0 ;S0 (X 0): �

Remark 5.5. As seen in the proof, theorem 1.6 is a direct consequence of the self-similarity
property of the Brownian CRT [3, thm. 2]. It was shown [1] that this property actually
characterizes the Brownian CRT in the space of measuredR-trees. We believe that the
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arguments of Albenque and Goldschmidt can be transposed in our setting, to show that
the law of � p is the only distribution on permutons which veri�es (3). The main reason
backing that claim is the following: permutons are characterized by their �nite-dimensional
marginals, just like measuredR-trees are determined by their reduced trees (see section 3
in [1]).

6. Expectation of the permuton

In this section we shall compute the density function of the averaged permutonE � p for
p 2 (0; 1). We know that � p = � e;S, where e is a normalized Brownian excursion andS
is an independent sequence of i.i.d. signs with biasp. Since for �xed (g; s), the measure
� g;s is the distribution of the random pair (U; ' g;s(U)) with U uniform in [0; 1], then by
Fubini's theorem, we get the following:

Lemma 6.1. E � p is the distribution of the random pair(U; ' e;S(U)), where e is a nor-
malized Brownian excursion,S is an independent sequence of i.i.d. signs with biasp, and
U is uniform, those three random variables being independent.

Let (B t )0� t � 1 be a normalized Brownian bridge between 0 and 0. De�ne its local time
at 0 as follows: fort 2 [0; 1], set L t = lim " ! 0

1
2"

Rt
0 10�j B s j� " ds in probability. De�ne also

its right-continuous inverse (Tl ) l � 0.
We set � Tl = Tl � Tl � for l � 0. We suppose that eachl � 0 such that � Tl > 0 is

equipped with an independent sign� l with bias p. We will use a result of Bertoin and
Pitman [7] to rewrite the measureE � p as the distribution of some functional ofB .

Lemma 6.2. The measureE � p is the distribution of
�

P1+ P2
P1+ P2+ P3+ P4

; P1+ P4
P1+ P2+ P3+ P4

�
, where

(15)
P1 =

P
l<L 1=2;� l = � � Tl ; P2 =

P
l<L 1=2;� l = 	 � Tl

P3 =
P

l>L 1=2;� l = � � Tl ; P4 =
P

l>L 1=2;� l = 	 � Tl

Proof. We will build a suitable coupling of (e; S; U) on one hand, and (B; � ) on the other
hand. Start with the bridge B, and setU = TL 1=2. De�ne (K t )0� t � 1 as follows: K t = L t

for 0 � t � U and K t = L1 � L t when U � t � 1. Theorem 3.2 of [7] tells us that if we
set e = K + jB j, then (e; U) is distributed as a Brownian excursion with an independent
uniform variable in [0; 1]. Moreover, the following holds almost surely: for 0� t � U,
K t = inf t � s� U es and for U � t � 1, K t = inf U� s� t es. Finally let S be a sequence of i.i.d.
signs with biasp, independent of (B; e; U). The triple ( e; S; U) has the desired distribution.
We can transfer some of the signs ofS to form the marking process (� l ) l � 0;� l > 0. First remark
that almost surely, U is not a one-sided local minimum ofe. For l � 0 such that � Tl > 0,

� either l < L 1=2 and thenTl � < T l < U , in which caseTl is an inner local minimum
b{l of e for some{l 2 N. We then set� l = S{l .

� either l > L 1=2 and thenTl � < T l < U , in which caseTl � is an inner local minimum
b{l of e for some{l 2 N. We then set� l = S{l .
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The sequence ({l ) l :� Tl > 0 is a random injection into N that solely depends onB. So con-
ditional on B, the signs in (� l ) l :� Tl > 0 are i.i.d. and of biasp. Then (B; � ) has the desired
distribution.

We now show that in this coupling we have the almost sure equality (U; ' e;S(U)) =�
P1+ P2

P1+ P2+ P3+ P4
; P1+ P4

P1+ P2+ P3+ P4

�
. Then lemma 6.1 implies the present lemma. If we de�ne

P̂1 = Lebf t : 0 � t � U; t � S
e Ug; P̂2 = Lebf t : 0 � t � U; t � S

e Ug;

P̂3 = Lebf t : U � t � 1; t � S
e Ug; P̂4 = Lebf t : U � t � 1; t � S

e Ug;

then it is immediate that P̂1 + P̂2 + P̂3 + P̂4 = 1 almost surely, P̂1 + P̂2 = U and P̂1 + P̂4 =
' e;S(U). Now we need only show that thePi = P̂i for 1 � i � 4. For instance fori = 1,
we need to observe thatt 2 [0; 1] is such that t < U and t � S

e U if and only if there is
a bi 2 (t; U) such that bi is the unique minimum of e on [t; U] and Si = � . Such bi is
necessarily equal toTl for somel < L 1=2 such that Tl � < t < T l , and then Si = � l . We
have shown the following logical equivalence fort 2 [0; 1]:

t � U and t � S
e U () 9 l < L 1=2 s.t. Tl � < t < T l and � l = � :

Taking the Lebesgue measure on both sides yieldŝP1 = P1. For i = 2; 3; 4, the proof is
symmetric. �

Let U be the set of continuous excursions of variable length, withR : U ! R+ denoting
the length statistic. Let N be the Itô excursion measure of Brownian motion. For� � 0,
de�ne the measure �� (dr) = e� �r N (R 2 dr). Denote by (X �

l ) l � 0 the process of sums up to
time l of a Poisson point process of intensitydt� � . This is a well-de�ned process becauseR

� � (dr)(r ^ 1) is �nite. We can state the following rewriting of the distribution E � p.

Lemma 6.3. For any � > 0, E � p is the distribution of
�

P1+ P2
P1+ P2+ P3+ P4

; P1+ P4
P1+ P2+ P3+ P4

�
, where

conditional on a random variable� Y with exponential distribution of parameter
p

2� , we
de�ne the variablesP1, P2, P3 and P4 to be independent withP1

d= P3
d= X �

p� Y =2 and

P2
d= P4

d= X �
(1� p)� Y =2.

Proof. Let us reuse the notations of lemma 6.2. We make use of the results of Perman and
Wellner [18], which show that the most tractable object in terms of its excursions is not
the normalized Brownian bridge, but the random-length bridge (� t )t � 0 de�ned as follows:
� t = 10� t � Y

p
Y Bt=Y whereY is a random variable of distribution �(1=2; � ) independent

of B . Its local time � , inverse local time� and jump process �� are related to those of
B by � t =

p
Y Lt=Y , � l = Y Tl=

p
Y and � � l = Y� Tl=

p
Y . The marking process� can be

modi�ed accordingly by setting " l = � l=
p

Y for l � 0 such that � � l > 0.
Now if we set

P1 =
P

l<� 1=2;� l = � � � l ; P2 =
P

l<� 1=2;� l = 	 � � l

P3 =
P

l>� 1=2;� l = � � � l ; P4 =
P

l>� 1=2;� l = 	 � � l

then by construction,
�

P1+ P2
P1+ P2+ P3+ P4

; P1+ P4
P1+ P2+ P3+ P4

�
=

�
P1+ P2

P1+ P2+ P3+ P4
; P1+ P4

P1+ P2+ P3+ P4

�
.
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We now have to identify the joint distribution of the Pi . It results from [18, thm 1
and 4] that � Y is distributed as an exponential random variable of parameter

p
2� , and

that, conditional on � Y , the excursions of� away from 0, parametrized by the local time,
form a Poisson point process of intensitydle� �R (w)N (dw) over [0; � Y ] � U . The random set
f (l; � � l ); l � 0; � l > 0g, which is just the point process of excursion lengths, is then also
Poisson with intensity dl� � (dt) over [0; � Y ] � R+ . This results from the mapping property
of Poisson processes. Now, since the marking process (" l ) l � 0 is a choice of i.i.d. marks,
chosen independent ofB , the marking property of point processes [15, sect. 2.3] tells us
that f (l; � � l ; " l ); l � 0; � l > 0g is itself a Poisson process of intensitydl� � (dt)(p� � + (1 �
p)� 	 )(d") over [0; � Y ] � R+ � f� ; 	g .

Since they are functionals of the same Poisson process restricted to disjoint subsets, the
processesf � � l ; 0 � l � � Y =2; � l > 0; " l = �g , f � � l ; 0 � l � � Y =2; � l > 0; " l = 	g ,
f � � l ; � Y =2 � l � � Y ; � l > 0; " l = �g and f � � l ; � Y =2 � l � � Y ; � l > 0; " l = 	g ,
are independent. Moreover, by the mapping property, they are themselves Poisson, with
respective intensity measuresp� Y

2 � � (dr), (1� p)� Y
2 � � (dr), p� Y

2 � � (dr) and (1� p)� Y
2 � � (dr). The

lemma follows. �

Proof of theorem 1.7.By a classical argument using Girsanov's theorem2, X �
l is distributed

as the hitting time of level l by a Brownian motion with positive drift � , hence its density
is d

dt P(X �
l 2 dt) = y�

l (t) = 1t � 0
e� �t l e� l 2=(2 t )

e�
p

2�l
p

2�t 3 (see [9, ch. II.1, eq. 2.0.2]).
Then, going back to the notations of lemma 6.3, the joint density of (P1; P2; P3; P4) at

(t1; t2; t3; t4) 2 (R+ )4 equals

Z 1

0
d�

p
2�e �

p
2�� y�

p�= 2(dt1)y�
(1� p)�= 2(dt2)y�

(1� p)�= 2(dt3)y�
p�= 2(dt4)

=

p
2�p 2(1 � p)2

24(
p

2� )4

e� � (t1+ t2+ t3+ t4 )

(t1t2t3t4)3=2

Z 1

0
� 4e

� � 2=2
�

p2

4t 1
+ (1 � p) 2

4t 2
+ p2

4t 3
+ (1 � p) 2

4t 4

�

d�

=

p
2�p 2(1 � p)2

24(
p

2� )4

e� � (t1+ t2+ t3+ t4 )

(t1t2t3t4)3=2

3
p

2�

2
�

p2

4t1
+ (1� p)2

4t2
+ p2

4t3
+ (1� p)2

4t4

� 5=2
:

Now we de�ne the random variablesS = P1 + P2 + P3 + P4, Q = P1=S, U = ( P1 + P2)=S
and V = ( P1 + P4)=S. According to lemma 6.3,E � p is the distribution of the couple
(U; V). It follows from the Lebesgue change of variables theorem that the joint density of

2It also follows from Campbell's formula [15, sect. 3.2] and [9, ch. II.1, eq. 2.0.1]
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(S; Q; U; V) at ( s; q; u; v) 2 (R+ � R+ � [0; 1] � [0; 1]) is equal to

s3 1max(0 ;u+ v� 1)� q� min( u;v )
3
p

2�p 2 (1� p)2

25 (
p

2� )3 e� �s

(sq s(u � q) s(1 � u � v + q) s(v � q))3=2
�

p2

4sq + (1� p)2

4s(u� q) + p2

4s(1� u� v+ q) + (1� p)2

4s(v� q)

� 5=2

=

 p
�e � �s

p
�

p
s

!
3p2 (1� p)2

2� 1max(0 ;u+ v� 1)� q� min( u;v )

(q(u � q)(1 � u � v + q)(v � q))3=2
�

p2

q + (1� p)2

(u� q) + p2

(1� u� v+ q) + (1� p)2

(v� q)

� 5=2
:

Now we get the joint distribution of (U; V) by integrating with respect to s and q, which
immediately yields theorem 1.7. �

7. Shuffling of continuous trees

The goal of this section is to build, from a signed excursion (g; s), a shu�ed excursion f g;s,
that veri�es the conclusions of theorem 1.8 after setting ~e = f e;S. This will not be possible
for every choice of deterministic signed excursion, but we will show that it is possible for
signed excursions with property (A), which is the case of (e; S) with probability 1.

We start from the following observation: for every CRT excursiong, if we de�ne the
ai ; bi ; ci ; hi as before, then by density of the branching points it is easy to see that

g(t) = sup
i

hi 1[ai ;ci ](t):

Hence, given a sequence of signss, which provides us the numbersa0
i ; b0

i ; c0
i , it is natural to

de�ne a shu�ed version as such:

f g;s(t) = sup
i

hi 1[a0
i ;c

0
i ](t)

The map (g; s; t) 7! f g;s(t) is measurable because theg(ai ), a0
i and c0

i are measurable
functions of g and s.

From now on, we will drop the dependency in (g; s) in the proofs. So we setf = f g;s

and ' = ' g;s. The �rst step is to show that f is continuous whenever (g; s) veri�es (A).
We start with two lemmas. Let ! (g; � ) stand for the modulus of continuity ofg at radius
� .

Lemma 7.1. For a0
k � u � b0

k , hk � f (u) � hk + ! (g; b0
k � a0

k).
For b0

k � u � c0
k , hk � f (u) � hk + ! (g; c0

k � b0
k).

Proof. The two claims are symmetric, thus only the �rst is proved. Recall thatf (u) =
sup[a0

i ;c
0
i ]3 u hi and supposeu 2 [a0

k ; b0
k ]. For i such that [a0

i ; c0
i ] 3 u, either hi � hk , or hi > h k .

In the latter case, [a0
i ; c0

i ] � [a0
k ; b0

k ]. Hencejai � bk j < jb0
k � a0

k j, and hi � hk = g(ai ) � g(ak) �
! (g; bk � ak) = ! (g; b0

k � a0
k).

This shows that for everyi such that [a0
i ; c0

i ] 3 u, hi < h k + ! (g; b0
k � a0

k) Taking the
supremum gives the claim of the lemma. �

Lemma 7.2. The b0
i , for i 2 N, are dense in[0; 1].
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Proof. The leaves ofg are of full Lebesgue measure. Ifx and y are leaves, there is ai such
that ai < x < b i < y < c i . As a result of lemma 3.4,b0

i must lie between' (x) and ' (y).
Since' is measure-preserving, the images of leaves ofg by ' are of full measure, and hence
dense in [0; 1]. So theb0

i are dense. �

Proposition 7.3. Under (A) , the function f is continuous.

Proof. Let t be in [0; 1] and� > 0. By lemma 7.2, we can �ndb0
i < t < b 0

j with ( b0
j � b0

i ) � � .
Let k be the most recent common ancestor ofi and j , so that b0

i < b0
k < b0

j . We shall show
that there is a continuous functionf such that for u 2 [b0

i ; b0
j ],

(16) f (u) � f (u) � f (u) + ! (g; � )

Which is enough, since� was arbitrary, to show continuity in t. We build f and show (16)
on [b0

k ; b0
j ] only. The interval [b0

i ; b0
k ] can be treated with a symmetric proof.

Set f : [b0
k ; b0

j ] ! R+ , with

f = supf hl 1[a0
l ;c

0
l ]

j l : [a0
k ; c0

k ] � [a0
l ; c0

l ] � [a0
j ; c0

j ]g:

Clearly, f � f . It is also clear that f is increasing fromhk to hj , because the indicator
functions are nested andhl increases asa0

l decreases. Lemma 3.8 implies that thea0
l are all

distinct, while property (A) implies that the hl are dense in [hk ; hj ]. This implies continuity
of f .

Now we shall show (16) foru in [b0
k ; b0

j ].
Case 1: for everyl s.t. u 2 [a0

l ; c0
l ], we have[a0

l ; c0
l ] � [a0

j ; c0
j ]. Then f (u) = f (u).

Case 2: there existsl s.t. x 2 [a0
l ; c0

l ] and [a0
l ; c0

l ] + [a0
j ; c0

j ]. Then consider the most recent
common ancestorm of l and j . Necessarily,

b0
k < a 0

m < a 0
l < u < c 0

l < b0
m < a 0

j < c0
j < c0

m :

Then lemma 7.1 giveshm � g(u) � hm + ! (g; � ). It is clear that hm = f (u), proving
(16). �

Now that we have shown thatf is continuous, it becomes possible to de�ne the distance
df on [0; 1] and the structured real treeTf .

Proposition 7.4. Under (A) , we haveg = f � ' , and furthermore, ' is a ([0; 1]; dg) !
([0; 1]; df ) isometry.

Proof. Let t 2 [0; 1]. To showg(t) = f (' (t)) it is enough to see that

(17) f k : t 2 [ak ; ck ]g = f k : ' (t) 2 [a0
k ; c0

k ]g:

becausee(t) and f (' (t)) are just the sup of i 7! hi over these two respective sets. Ifk is
such that t 2 [ak ; ck ], then by lemma 3.4,' (t) 2 [a0

k ; c0
k ]. If on the other hand k is such

that t =2 [ak ; ck ], then by symmetry supposet < a k , it is then possible to �nd i such that
t < a i < a k < ck � ci . Then lemmas 3.4 and 3.8 imply that' (t) =2 [a0

k ; c0
k ].

Now to show that ' is a (dg; df ) isometry, we need only show that forx < y ,

min
[x;y ]

g = min
[' (x);' (y)]

f:
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Case 1: min[x;y ] g = g(x). Then for every i , x 2 [ai ; ci ] implies y 2 [ai ; ci ]. So' (x) 2 [a0
i ; c0

i ]
implies ' (y) 2 [a0

i ; c0
i ] and then [' (x); ' (y)] � [a0

i ; c0
i ]. The de�nition of f then yields

f (t) � f (' (x)) for every t 2 [' (x); ' (y)]. Hence

min
[' (x);' (y)]

f = f (' (x)) = g(x) = min
[x;y ]

g:

Case 2: min[x;y ] g = g(y). This case is similar by symmetry.
Case 3: min[x;y ] g = bi for somebi 2 (x; y). Then we conclude immediately by applying
case 2 on [x; bi ] and case 1 on [bi ; y]. �

Proposition 7.5. The random continuous functionf e;S has the distribution of a Brownian
excursion with the same local time at 1 ase.

Proof. The claim on the local time is an immediate consequence of the fact that for every
y � 0, Lebf t; f g;s(t) � yg = Lebf t; f g;s(' g;s(t)) � yg = Lebf t; g(t) � yg.

To show that the random continuous functionseand f = f e;S have the same distribution,
we shall show that for everyk � 1, if U(1) < : : : < U (k) are reordered uniform variables in
[0; 1], independent ofe; S, then

(18) (e(U(1) ); : : : ; e(U(k)))
d= ( f (U(1) ); : : : ; f (U(k))) :

Deriving e d= f from there is classical, see for instance the end of the proof of the direct
implication of [2, thm. 20].

Let us considerU(1) < : : : < U (k) the order statistics ofp uniform random variables in
[0; 1], independent ofe; S. Set Vi = ' (U(i )) for every 1� i � k. Then there exists� 2 S k

such that W1 = V� (1) < : : : < V � (k) = Wk . Since ' preserves the Lebesgue measure,
(W1; : : : ; Wk) has the distribution of the order statistic of p uniform variables.

We consider themarked trees, as per the de�nition of [16, sect. 2.5], associated to a CRT
excursion and a �nite number of points. For any sett = ( t1 < : : : < t k) of leaves ofg,
� (g; t ) is built from the tree � (g; t ) by adding edge-lengths compatible with the distances
in the tree Tg. Since the root of� (g; t ) has a positive height, a new root; is added below
it. It is characterized (among plane trees with edge-lengths up to isomorphism) by the
following fact:

(19) d� (g;t )(` i ; ` j ) = dg(t i ; t j ); d� (g;t )(; ; ` i ) = g(t i );

whered� (g;t ) denotes the graph distance, taking edge-lengths into account, and in any plane
tree `1; : : : ; `k is an enumeration of the leaves in the natural ordering.

Let T = � (e; U ), and let eT be obtained fromT by inverting the order of the children at
each branching point corresponding to abi where the signsi is a 	 . By de�nition there
is an isomorphism of rooted trees with edge-lengthseT $ T. This isomorphism necessarily
permutes the leaves: set� 2 S k such that ` i ( eT) $ ` � ( i )(T). Then by construction � is
such that ' e;S(U� (1) ) < : : : < ' e;S(U� (k)). We deduce� = � , and hence

deT (` i ; ` j ) = dT (` � ( i ) ; ` � ( j )) = de(U� ( i ) ; U� ( j )) = df (' (U� ( i )); ' (U� ( j ))) = d� (f ;W )(` i ; ` j )

deT (` i ; ; ) = dT (` � ( i ) ; ; ) = g(U� ( i )) = g(Wi ) = d� (f ;W )(` i ; ; ):
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So eT = � (f; W ).
Finally we consider the distribution of eT. Theorem 2.11 of [16] tells us that the structure

of T is that of a uniform planted binary tree with k leaves, and the edge-lengths are
exchangeable. So an independent shu�ing ofT is still distributed like T, and this is the
case ofeT. We deduce� (e; U ) = T d= eT = � (f ; W ). From there, (19) implies that we can
recover (18). �

Now theorem 1.8 follows from propositions 3.7 and 7.3 to 7.5, after settingee = f e;S.
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