The Hilbert-Galton board

Abstract : We introduce the Hilbert-Galton board as a variant of the classical Galton board. Balls fall into a row of bins at a rate depending on the bin, and at random times, each bin gets shifted one unit to the right and an empty bin is added to the left. We compute the stationary distribution of this Markov chain and show the existence of an enriched Markov chain on triangular arrays of numbers which projects down to the Hilbert-Galton board. We also define finite-ball projections of the Hilbert-Galton board, for which we compute the stationary distribution, the full spectrum and the grand coupling time.
Type de document :
Article dans une revue
ALEA : Latin American Journal of Probability and Mathematical Statistics, Instituto Nacional de Matemática Pura e Aplicada, 2018, 15 (2), pp.755-774. 〈10.30757/ALEA.v15-28〉
Liste complète des métadonnées

https://hal-ens-lyon.archives-ouvertes.fr/ensl-01651050
Contributeur : Sanjay Ramassamy <>
Soumis le : vendredi 3 août 2018 - 20:31:59
Dernière modification le : mardi 7 août 2018 - 01:01:45

Fichier

CompositionsMarkov23November17...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Arvind Ayyer, Sanjay Ramassamy. The Hilbert-Galton board. ALEA : Latin American Journal of Probability and Mathematical Statistics, Instituto Nacional de Matemática Pura e Aplicada, 2018, 15 (2), pp.755-774. 〈10.30757/ALEA.v15-28〉. 〈ensl-01651050v2〉

Partager

Métriques

Consultations de la notice

18

Téléchargements de fichiers

13