Extensions of partial cyclic orders, Euler numbers and multidimensional boustrophedons

Abstract : We enumerate total cyclic orders on {x1,. .. , xn} where we prescribe the relative cyclic order of consecutive triples (xi, xi+1, xi+2), with indices taken modulo n. In some cases, the problem reduces to the enumeration of descent classes of permutations, which is done via the boustrophedon construction. In other cases, we solve the question by introducing mul-tidimensional versions of the boustrophedon. In particular we find new interpretations for the Euler up/down numbers and the Entringer numbers .
Document type :
Journal articles
Complete list of metadatas

Cited literature [12 references]  Display  Hide  Download

https://hal-ens-lyon.archives-ouvertes.fr/ensl-01651041
Contributor : Sanjay Ramassamy <>
Submitted on : Tuesday, November 28, 2017 - 4:00:59 PM
Last modification on : Monday, August 5, 2019 - 3:26:03 PM

File

Partial cyclic orders.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : ensl-01651041, version 1

Collections

Citation

Sanjay Ramassamy. Extensions of partial cyclic orders, Euler numbers and multidimensional boustrophedons. The Electronic Journal of Combinatorics, Open Journal Systems, 2018, 25 (1), Paper #P1.66. ⟨http://www.combinatorics.org/ojs/index.php/eljc/article/view/v25i1p66/pdf⟩. ⟨ensl-01651041⟩

Share

Metrics

Record views

58

Files downloads

16