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Abstract

A Barak-Erdős graph is a directed acyclic version of the Erdős-Rényi random graph. It is obtained
by performing independent bond percolation with parameter p on the complete graph with vertices
{1, ..., n}, in which the edge between two vertices i < j is directed from i to j. The length of the
longest path in this graph grows linearly with the number of vertices, at rate C(p). In this article,
we use a coupling between Barak-Erdős graphs and infinite-bin models to provide explicit estimates
on C(p). More precisely, we prove that the front of an infinite-bin model grows at linear speed, and
that this speed can be obtained as the sum of a series. Using these results, we prove the analyticity
of C for p > 1/2, and compute its power series expansion. We also obtain the first two terms of the
asymptotic expansion of C as p → 0, using a coupling with branching random walks with selection.

Résumé
Un graphe de Barak-Erdős est une version dirigée et sans cycle du graphe aléatoire d’Erdős-Rényi.

Ce graphe est construit en réalisant une percolation par arêtes de paramètre p sur le graphe complet
d’ensemble de sommets {1, . . . , n}, tel que l’arête entre deux sommets i < j est orientée de i vers j.
La longueur du plus long chemin dans ce graphe crôıt linéairement avec le nombre n de sommets, à
vitesse C(p). Dans cet article, nous utilisons un couplage entre le graphe de Barak-Erdős et un modèle
infini d’urnes pour obtenir des estimations explicites pour C(p). Plus précisément, on montre que le
front d’un modèle infini d’urne crôıt à vitesse linéaire, et que cette vitesse peut être obtenue comme
la somme d’une série. Grâce à ces résultats, on montre que la fonction C est analytique pour p > 1/2,
et on obtient son développement en série entière autour de p = 1. Nous calculons également les deux
premiers termes du développement limité de C au voisinage de p = 0, grâce à un couplage avec des
marches aléatoires branchantes avec sélection.

Keywords: Barak-Erdős graph; infinite-bin model; branching random walk; selection; coupling; stochas-
tic ordered graph.
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1 Introduction
Random graphs and interacting particle systems have been two active fields of research in probability in
the past decades. In 2003, Foss and Konstantopoulos [12] introduced a new interacting particle system
called the infinite-bin model and established a correspondence between a certain class of infinite-bin
models and Barak-Erdős random graphs, which are a directed acyclic version of Erdős-Rényi graphs.

In this article, we study the speed at which the front of an infinite-bin model drifts to infinity. These
results are applied to obtain a fine asymptotic of the length of the longest path in a Barak-Erdős graph.
In the remainder of the introduction, we first describe Barak-Erdős graphs, then infinite-bin models. We
then state our main results on infinite-bin models, and their consequences for Barak-Erdős graphs.

1.1 Barak-Erdős graphs
Barak and Erdős introduced in [4] the following model of a random directed graph with vertex set
{1, . . . , n} (which we refer to as Barak-Erdős graphs from now on) : for each pair of vertices i < j, add
an edge directed from i to j with probability p, independently for each pair. They were interested in the
maximal size of strongly independent sets in such graphs.
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However, one of the most widely studied properties of Barak-Erdős graphs has been the length of its
longest path. It has applications to mathematical ecology (food chains) [10, 27], performance evaluation
of computer systems (speed of parallel processes) [15, 16] and queuing theory (stability of queues) [12].

Newman [26] studied the length of the longest path in Barak-Erdős graphs in several settings, when
the edge probability p is constant (dense case), but also when it is of the form cn/n with cn = o(n)
(sparse case). In the dense case, he proved that when n gets large, the length of the longest path Ln(p)
grows linearly with n in the first-order approximation :

lim
n→∞

Ln(p)
n

= C(p) a.s., (1.1)

where the linear growth rate C is a function of p. We plot in Figure 1 an approximation of C(p).
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Figure 1: Plot of a an approximation of C(p), using 600, 000 iterations of an infinite-bin model, for values
of p that are integer multiples of 0.02.

Newman proved that the function C is continuous and computed its derivative at p = 0. Foss and
Konstantopoulos [12] studied Barak-Erdős graphs under the name of “stochastic ordered graphs” and
provided upper and lower bounds for C, obtaining in particular that

C(1− q) = 1− q + q2 − 3q3 + 7q4 +O(q5) when q → 0, (1.2)

where q = 1− p denotes the probability of the absence of an edge.
Denisov, Foss and Konstantopoulos [11] introduced the more general model of a directed slab graph

and proved a law of large numbers and a central limit theorem for the length of its longest path.
Konstantopoulos and Trinajstić [20] looked at a directed random graph with vertices in Z2 (instead of
Z for the infinite version of Barak-Erdős graphs) and identified fluctuations following the Tracy-Widom
distribution. Foss, Martin and Schmidt [13] added to the original Barak-Erdős model random edge
lengths, in which case the problem of the longest path can be reformulated as a last-passage percolation
question. Gelenbe, Nelson, Philips and Tantawi [15] studied a similar problem, but with random weights
on the vertices rather than on the edges.

Ajtai, Komlós and Szemerédi [1] studied the asymptotic behaviour of the longest path in sparse
Erdős-Rényi graphs, which are the undirected version of Barak-Erdős graphs.

1.2 The infinite-bin model
Foss and Konstantopoulos introduced the infinite-bin model in [12] as an interacting particle system
which, for a right choice of parameters, gives information about the growth rate C(p) of the longest path
in Barak-Erdős graphs. Consider a set of bins indexed by the set of integers Z. Each bin may contain
any number of balls, finite or infinite. A configuration of balls in bins is called admissible if there exists
m ∈ Z such that:

1. every bin with an index smaller or equal to m is non-empty ;

2. every bin with an index strictly larger than m is empty.

The largest index of a non-empty bin m is called the position of the front. From now on, all configurations
will implicitly be assumed to be admissible. Given an integer k ≥ 1, we define the move of type k as a
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map Φk from the set of configurations to itself. Given an initial configuration X, Φk(X) is obtained by
adding one ball to the bin of index bk + 1, where bk is the index of the bin containing the k-th ball of X
(the balls are counted from right to left, starting from the rightmost nonempty bin).
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(a) A configuration X, the numbers in-
side the balls indicate how they are
counted from right to left.

10−1−2 2 3

(b) The configuration Φ5(X).
10−1−2 2 3

(c) The configuration Φ2(X).

Figure 2: Action of two moves on a configuration.

Given a probability distribution µ on the set of positive integers and an initial configuration X0, one
defines the Markovian evolution of the infinite-bin model with distribution µ (or IBM(µ) for short) as
the following stochastic recursive sequence:

Xn+1 = Φξn+1(Xn) for n ≥ 0,

where (ξn)n≥1 is an i.i.d. sequence of law µ. We prove in Theorem 1.1 that the front moves to the right
at a speed which tends a.s. to a constant limit vµ. We call vµ the speed of the IBM(µ). Note that the
model defined in [12] was slightly more general, allowing (ξn)n≥1 to be a stationary-ergodic sequence.
We also do not adopt their convention of shifting the indexing of the bins which forces the front to always
be at position 0.

Foss and Konstantopoulos [12] proved that if µp is the geometric distribution of parameter p then
vµp = C(p), where C(p) is the growth rate of the length of the longest path in Barak-Erdős graphs
with edge probability p. They also proved, for distributions µ with finite mean verifying µ({1}) > 0,
the existence of renovations events, which yields a functional law of large numbers and a central limit
theorem for the IBM(µ). Based on a coupling result for the infinite-bin model obtained by Chernysh and
Ramassamy [9], Foss and Zachary [14] managed to remove the condition µ({1}) > 0 required by [12] to
obtain renovation events.

Aldous and Pitman [2] had already studied a special case of the infinite-bin model, namely what
happens to the speed of the front when µ is the uniform distribution on {1, . . . , n}, in the limit when
n goes to infinity. They were motivated by an application to the running time of local improvement
algorithms defined by Tovey [29].

1.3 Speed of infinite-bin models
The remainder of the introduction is devoted to the presentation of the main results proved in this paper.
In this subsection we state the results related to general infinite-bin models, and in the next one we state
the results related to the Barak-Erdős graphs.

We first prove that in every infinite-bin model, the front moves at linear speed. Foss and Konstan-
topoulos [12] had derived a special case of this result, when the distribution µ has finite expectation.

Theorem 1.1. Let (Xn) be an infinite-bin model with distribution µ, starting from an admissible con-
figuration X0. For any n ∈ N, we write Mn for the position of the front of Xn. There exists vµ ∈ [0, 1],
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depending only on the distribution µ, such that

lim
n→+∞

Mn

n
= vµ a.s.

In the next result, we obtain an explicit formula for the speed vµ of the IBM(µ), as a series. To give
this formula we first introduce some notation. Recalling that N is the set of positive integers, we denote
by A the set of words on the alphabet N, i.e. the set of all finite-length sequences of elements of N.
Given a non-empty word α ∈ A, written α = (α1, α2, . . . , αn) (where the αi are the letters of α), we
denote by L(α) = n the length of α. The empty word is denoted by ∅.

Fix an infinite-bin model configuration X. We define the subset PX of A as follows: a word α belongs
to PX if it is non-empty, and if starting from the configuration X and applying successively the moves
Φα1 , . . . ,Φαn , the last move Φαn results in placing a ball in a previously empty bin.

Given a word α ∈ A which is not the empty word, we set $α ∈ A to be the word obtained from α
by removing the first letter. We also set $∅ = ∅. We define the function εX : A → {−1, 0, 1} as follows:

εX(α) = 1{α∈PX} − 1{$α∈PX}.

Theorem 1.2. Let X be an admissible configuration and µ a probability distribution on N. We define
the weight of a word α = (α1, . . . , αn) by

Wµ(α) =
n∏
i=1

µ ({αi}) = P(α = (ξ1, . . . ξn)).

If
∑
α∈A |εX(α)|Wµ(α) < +∞, then

vµ =
∑
α∈A

εX(α)Wµ(α). (1.3)

Remark 1.3. One of the most striking features of (1.3) is that whereas for any α ∈ A, X 7→ εX(α) is a
non-constant function of X, vµ does not depend of this choice of configuration. As a result, Theorem 1.2
gives in fact an infinite number of formulas for the speed vµ of the IBM(µ).

Theorem 1.2 can be extended to prove the following result:

vµ = lim
n→+∞

1
n

n∑
k=1

∑
α∈A:L(α)≤k

εX(α)Wµ(α).

In other words, if we define
∑
α∈A εX(α)Wµ(α) as the Cesàro mean of its partial sums (on words of finite

length), (1.3) holds for any probability distribution µ and admissible configuration X.

1.4 Longest increasing paths in Barak-Erdős graphs
Using the coupling introduced by Foss and Konstantopoulos between Barak-Erdős graphs and infinite-
bin models, we use the previous results to extract information on the function C defined in (1.1). Firstly,
we prove that for p large enough (i.e. for dense Barak-Erdős graphs), the function C is analytic and we
obtain the power series expansion of C(p) centered at 1. Secondly, we provide the first two terms of the
asymptotic expansion of C(p) as p→ 0.

We deduce from Theorem 1.2 the analyticity of C(p) for p close to 1. For any word α ∈ A, we define
the height of α to be

H(α) =
L(α)∑
i=1

αi − L(α).

For any k ∈ N and admissible configuration X, we set

ak =
∑

α∈A:H(α)≤k,L(α)≤k+1

εX(α)(−1)k−H(α)
(

L(α)
k −H(α)

)
. (1.4)

Theorem 1.4. The function C is analytic on
( 1

2 , 1
]

and for p ∈
(

3−
√

2
2 , 1

]
,

C(p) =
∑
k≥0

ak(1− p)k.
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Similarly to what has been observed in Remark 1.3, this result proves that the value of ak does not
depend on the configuration X, justifying a posteriori the notation. In a recent work [25] accomplished
after the present article was completed, we show that C(p) is actually analytic on (0, 1], so the bound
1
2 in the above theorem is not optimal. Similarly, we do not expect the bound 3−

√
2

2 for the radius of
convergence of the Taylor expansion at 1 to be optimal. Numerical simulations tend to suggest that the
power series expansion of C(p) at p = 1 has a radius of convergence between 0.5 and 1.
Remark 1.5. Using (1.4) and Lemma 6.2, it is possible to explicitly compute as many coefficients of the
power series expansion as desired, by picking a configuration X and computing quantities of the form
εX(α) for finitely many words α ∈ A. For example, we observe that as q → 0,

C(1− q) = 1− q + q2 − 3q3 + 7q4 − 15q5 + 29q6 − 54q7 + 102q8 +O(q9).

It is clear from formula (1.4) that (ak) is integer-valued. Based on our computations, we conjecture that
((−1)kak, k ≥ 0) is non-negative and non-decreasing.

We now turn to the asymptotic behaviour of C(p) as p→ 0, i.e. the length of the longest increasing
path in sparse Barak-Erdős graphs. We precise the asymptotic estimate obtained by Newman [26],
namely that C(p) ∼ ep as p→ 0.

Theorem 1.6. We have C(p) = ep− π2e

2 p(− log p)−2 + o(p(− log p)−2).

In particular, this result proves that the function C(p) has no finite second derivative at point p = 0.
Theorem 1.6 is obtained by coupling the infinite-bin model with uniform distribution with a continuous-

time branching random walk with selection (as observed by Aldous and Pitman [2]) and by extending
to the continuous-time setting the results of Bérard and Gouéré [5] on the asymptotic behaviour of a
discrete-time branching random walk. Assuming that the conjecture of Brunet and Derrida [8] on the
speed of a branching random walk with selection holds, and that the coupling of Aldous and Pitman is
precise enough for the asymptotic expansion to be transferred to the infinite-bin model setting, the next
term in the asymptotic expansion should be given by 3eπ2p log(− log p)

(− log p)3 .
Remark 1.7. With arguments similar to the ones used to prove Theorem 1.6, we expect that one can
also obtain the asymptotic behaviour of Ln(p) as n→ +∞ and p→ 0 simultaneously, proving that:

Ln(pn) = nepn − n
π2e

2 pn(− log pn)2 + o(npn(log pn)−2) in probability,

as long as pn � (logn)3

n . We expect a different behaviour if pn ∼ λ (logn)3

n . We mention that Itoh [17]
studied the asymptotic behaviour of Ln(a/n) as n→∞.

Organisation of the paper
We state more precisely the notation used to study the infinite-bin model in Section 2. We also introduce
an increasing coupling between infinite-bin models, which is a key result for the rest of the article.

In Section 3, we prove that the speed of an infinite-bin model with a measure of finite support can
be expressed using the invariant measure of a finite Markov chain. This result is then used to prove
Theorem 1.1 in the general case. We prove Theorem 1.2 in Section 4 using a method akin to “exact
perturbative expansion”.

We review in Section 5 the Foss-Konstantopoulos coupling between Barak-Erdős graphs and the
infinite-bin model and use it to provide a sequence of upper and lower bounds converging exponentially
fast to C(p). This coupling is used in Section 6, where we prove Theorem 1.4 using Theorem 1.2. Finally,
we prove Theorem 1.6 in Section 7, by extending the results of Bérard and Gouéré [5] to compute the
asymptotic behaviour of a continuous-time branching random walk with selection.

2 Basic properties of the infinite-bin model
We write N for the set of positive integers, N = N ∪ {+∞}, Z+ for the set of non-negative integers and
Z+ = Z+ ∪ {+∞}. We denote by

S =
{
X ∈ (Z+)Z : ∃m ∈ Z : ∀j ∈ Z, X(j) = 0 ⇐⇒ j > m and

∀j ∈ Z, X(j) = +∞⇒ X(j − 1) = +∞

}
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the set of admissible configurations for an infinite-bin model. Note that the definition we use here is
more restrictive than the one used, as a simplification, in the introduction. Indeed, we impose here that
if a bin has an infinite number of balls, every bin to its left also has an infinite number of balls. However,
this has no impact on our results, as the dynamics of an infinite-bin model does not affect bins to the
left of a bin with an infinite number of balls. One does not create balls in a bin at distance greater than
1 from a non-empty bin.

We wish to point out that our definition of admissible configurations has been chosen out of conve-
nience. Most of the results of this article could easily be generalized to infinite-bin models with a starting
configuration belonging to

S0 =
{
X ∈ (Z+)Z : lim

k→+∞
X(k) = 0 and

∑
k∈Z

X(k) = +∞
}
,

see e.g. Remark 3.7. They could even be generalized to configurations starting with a finite number of
balls, if we adapt the dynamics of the infinite-bin model as follows. For any n ∈ N, if ξn is larger than the
number of balls existing at time n, then the step is ignored and the IBM configuration is not modified.
However, with this definition some trivial cases might arise, for example starting with a configuration
with only one ball, and using a measure µ with µ({1}) = 0.

For any X ∈ S and k ∈ Z, we call X(k) the number of balls at position k in the configuration X.
Observe that the set of non-empty bins is a semi-infinite interval of Z. In particular, for any X ∈ S,
there exists a unique integer m ∈ Z such that X(m) 6= 0 and X(j) = 0 for all j > m. The integer m is
called the front of the configuration.

Let X ∈ S, k ∈ Z and ξ ∈ N. We denote by

N(X, k) =
+∞∑
j=k

X(j) and B(X, ξ) = inf{j ∈ Z : N(X, j) < ξ}

the number of balls to the right of k and the leftmost position such that there are less than ξ balls to
its right respectively. Note that the position of the front in the configuration X is given by B(X, 1)− 1.
Observe that for any X ∈ S,

∀1 ≤ ξ ≤ ξ′, 0 ≤ B(X, ξ)−B(X, ξ′) ≤ ξ′ − ξ. (2.1)

For ξ ∈ N and X ∈ S, we set Φξ(X) =
(
X(j) + 1{j=B(X,ξ)}, j ∈ Z

)
the transformation that adds

one ball to the right of the ξ-th rightmost ball in X. We extend the notation to allow ξ ∈ N, by setting
Φ∞(X) = X. We also introduce the shift operator τ(X) = (X(j − 1), j ∈ Z). We observe that τ and Φξ
commute, i.e.

∀X ∈ S,∀ξ ∈ N,Φξ(τ(X)) = τ(Φξ(X)). (2.2)
Recall that an infinite-bin model consists in the sequential application of randomly chosen transfor-

mations Φξ, called move of type ξ. More precisely, given µ a probability measure on N and (ξn, n ≥ 1)
i.i.d. random variables with distribution µ, the IBM(µ) (Xn) is the Markov process on S starting from
X0 ∈ S, such that for any n ≥ 0, Xn+1 = Φξn+1(Xn).

We introduce a partial order on S, which is compatible with the infinite-bin model dynamics: for any
X,Y ∈ S, we write

X 4 Y ⇐⇒ ∀j ∈ Z, N(X, j) ≤ N(Y, j) ⇐⇒ ∀ξ ∈ N, B(X, ξ) ≤ B(Y, ξ).

The functions (Φξ) are monotone, increasing in X and decreasing in ξ for this partial order. More
precisely

∀X 4 Y ∈ S, ∀1 ≤ ξ ≤ ξ′ ≤ ∞, Φξ′(X) 4 Φξ(Y ). (2.3)
Moreover, the shift operator τ dominates every function Φξ, i.e.

∀X 4 Y ∈ S, ∀1 ≤ ξ ≤ ∞, Φξ(X) 4 τ(Y ). (2.4)

As a consequence, infinite-bin models can be coupled in an increasing fashion.

Proposition 2.1. Let µ and ν be two probability distributions on N, and X0 4 Y0 ∈ S0. If µ([1, k]) ≤
ν([1, k]) for any k ∈ N, we can couple the IBM(µ) (Xn) and the IBM(ν) (Yn) such that for any n ≥ 0,
Xn 4 Yn a.s.
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Proof. As for any k ∈ N, µ([1, k]) ≤ ν([1, k]), we can construct a pair (ξ, ζ) such that ξ has law µ,
ζ has law ν and ξ ≥ ζ a.s. Let (ξn, ζn) be i.i.d. copies of (ξ, ζ), we set Xn+1 = Φξn+1(Xn) and
Yn+1 = Φζn+1(Yn). By induction, using (2.3), we immediately have Xn 4 Yn for any n ≥ 0.

We extended in this section the definition of the IBM(µ) to measures with positive mass on {∞}.
As applying Φ∞ does not modify the ball configuration, the IBM(µ) and the IBM(µ(.|. < ∞)) are
straightforwardly connected.

Lemma 2.2. Let µ be a probability measure on N with p := µ({∞}) < 1. We write ν for the measure
verifying ν({k}) = µ({k})

1−p for all k ∈ N. Let (Xn) be an IBM(ν) and (Sn) be an independent random
walk with step distribution Bernoulli with parameter 1−p. Then the process (XSn , n ≥ 0) is an IBM(µ).

In particular, assuming Theorem 1.1 holds, we would have vµ = (1 − p)vν with the notation of the
previous lemma.

3 Speed of the infinite-bin model
In this section, we prove the existence of a well-defined notion of speed of the front of an infinite-bin
model. We first discuss the case when the distribution µ is finitely supported and the initial configuration
is simple, then we extend it to any distribution µ and finally we generalize to any admissible initial
configuration.

3.1 Infinite-bin models with finite support
Let µ be a probability measure on N with finite support, i.e. such that there exists K ∈ N verifying
µ([K + 1,+∞)) = 0. Let (Xn) be an IBM(µ), we say that (Xn) is an infinite-bin model with support
bounded by K. One of the main observations of this subsection is that such an infinite-bin model can be
studied using a Markov chain on a finite set. As a consequence, we obtain an expression for the speed
of this infinite-bin model.

Given K ∈ N, we introduce the set

SK =
{
x ∈ ZK−1

+ :
K−1∑
i=1

xi < K and ∀1 ≤ i ≤ j ≤ K − 1, xi = 0⇒ xj = 0
}
.

For any Y ∈ SK , we write |Y | =
∑K−1
j=1 Y (j). We introduce

ΠK : S −→ SK
X 7−→ (X(B(X,K) + j − 1), 1 ≤ j ≤ K − 1) .

For any n ∈ N, we write Yn = ΠK(Xn), that encodes the set of balls that are close to the front. As the
IBM has support bounded by K, the bin in which the (n + 1)-st ball is added to Xn depends only on
the position of the front and on the value of Yn. This reduces the study of the dynamics of (Xn) to the
study of (Yn, n ≥ 1).

Lemma 3.1. The sequence (Yn) is a Markov chain on SK with a unique stationary probability distribu-
tion.

Proof. For any 1 ≤ ξ ≤ K and Y ∈ SK , we denote by

B̃(Y, ξ) =
{

min{k ≥ 1 :
∑K−1
i=k Y (i) < ξ} if |Y | ≥ ξ

1 otherwise,

Φ̃ξ(Y ) =


(
Y (j) + 1{

j=B̃(Y,ξ)
}, 1 ≤ j ≤ K − 1

)
if |Y | < K − 1(

Y (j + 1) + 1{
j+1=B̃(Y,ξ)

}, 1 ≤ j ≤ K − 2, 0
)

if |Y | = K − 1.

For any X ∈ S and ξ ≤ K, we have B(X, ξ) = B(X,K) + B̃(ΠK(X), ξ) − 1. Moreover, we have
ΠK (Φξ(X)) = Φ̃ξ(ΠK(X)).
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Figure 3: “Commutation” of Π5 with Φ4 and Φ̃4.

Let (ξn) be i.i.d. random variables with law µ and X0 ∈ S. For any n ∈ N, we set Xn+1 = Φξn+1(Xn).
Using the above observation, we have

Yn+1 = ΠK(Xn+1) = ΠK(Φξn+1(Xn)) = Φ̃ξn+1(ΠK(Xn)) = Φ̃ξn+1(Yn),

thus (Yn) is a Markov chain.
Denote by k the smallest integer in the support of µ and set q :=

⌊
K
k

⌋
. One easily observes that,

starting the chain (Yn) at an arbitrary state and applying moves of type k sufficiently many times, one
reaches the state with q bins containing k balls each. This entails that the finite state-space Markov chain
(Yn) has a unique essential communicating class, hence it has a unique stationary probability distribution
(see e.g. [21, Proposition 1.26]).

For any n ∈ N, the set of bins that are part of Yn represents the set of “active” bins in Xn, i.e. the
bins in which a ball can be added at some time in the future with positive probability. The number of
balls in (Yn) increases by one at each time step, until it reaches K − 1. At this time, when a new ball is
added, the leftmost bin “freezes”, it will no longer be possible to add balls to this bin, and the “focus”
is moved one step to the right.

We introduce a sequence of stopping times defined by

T0 = 0 and Tp+1 = inf{n > Tp : |Yn−1| = K − 1}.

We also set Zp = K − |YTp | the number of balls in the bin that “freezes ” at time Tp. For any n ∈ N, we
write τn = p for any Tp ≤ n < Tp+1.
Lemma 3.2. Let X0 ∈ S such that B(X0,K) = 1, then

• for any p ≥ 0, X∞(p) = Zp,

• for any n ≥ 0 and ξ ≤ K, B(Xn, ξ) = τn +B(Yn, ξ).

Proof. By induction, for any p ≥ 0, B(XTp ,K) = p + 1. Consequently, for any n ≥ Tp, we have
Xn(p) = XTp(p) = K − |YTp | = Zp. Moreover, as

B(Xn,K) = τn + 1 and B(Xn, ξ) = B(Xn,K) +B(Yn, ξ)− 1,

we have the second equality.

Using the above result, we prove that the speed of an infinite-bin model with finite support does
not depend on the initial configuration. We also obtain a formula for the speed vµ, that can be used to
compute explicit bounds.
Proposition 3.3. Let µ be a probability measure with finite support and X be an IBM(µ) with initial
configuration X0 ∈ S. There exists vµ ∈ [0, 1] such that for any ξ ∈ N, we have

lim
n→+∞

B(Xn, ξ)
n

= vµ a.s.

Moreover, setting π for the invariant probability measure of (Yn) we have

vµ = 1
Eπ(T2 − T1) = 1

Eπ(Z1) . (3.1)
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Proof. Let X0 ∈ S, we can assume that B(X0,K) = 1, up to a deterministic shift. At each time n, a
ball is added in a bin with a positive index, thus for any n ∈ N, we have

+∞∑
j=1

Xn(j) = n+
+∞∑
j=1

X0(j).

Using the notation of Lemma 3.2, we rewrite it
∑τn
j=1 Zj + |Yn| = n +

∑+∞
j=1 X0(j). Moreover, as

0 ≤ |Yn| ≤ K and 0 ≤
∑+∞
j=1 X0(j) ≤ K, we have

1− K

n
≤
∑τn
j=1 Zj

n
≤ 1 + K

n
,

yielding limn→+∞

∑τn

j=1
Zj

n = 1 a.s. As limp→+∞ Tp = +∞ a.s., we obtain

lim
p→+∞

∑p
j=1 Zj

Tp
= 1 a.s.

Moreover limp→+∞
1
p

∑p
j=1 Zj = Eπ(Z1) and limp→+∞

Tp
p = Eπ(T2 − T1) by ergodicity of (Yn). Conse-

quently, if we set vµ := 1
Eπ(T2−T1) = 1

Eπ(Z1) , the constant vµ is well-defined.
We apply Lemma 3.2, we have

B(Xn, 1)
n

= τn
n

+ B(Yn, 1)
n

∈
[
τn
n
,
τn
n

+ K

n

]
.

Moreover, we have limn→+∞
τn
n = limp→+∞

p
Tp

= vµ a.s. This yields

lim
n→+∞

B(Xn, 1)
n

= vµ a.s. (3.2)

Using (2.1), this convergence is extended to limn→+∞
B(Xn,ξ)

n = vµ a.s.

Remark 3.4. If the support of µ is included in [1,K]∪{+∞}, it follows from Lemma 2.2 that the IBM(µ)
also has a well-defined speed vµ.

3.2 Extension to arbitrary distributions
We now use Proposition 3.3 to prove Theorem 1.1.

Proposition 3.5. Let µ be probability measure on N and (Xn) an IBM(µ) with initial configuration
X0 ∈ S. There exists vµ ∈ [0, 1] such that for any ξ ∈ N, we have limn→+∞

B(Xn,ξ)
n = vµ a.s.

Moreover, if ν is another probability measure we have

∀k ∈ N, ν([1, k]) ≤ µ([1, k])⇒ vν ≤ vµ. (3.3)

Proof. Let X0 ∈ S. We write (ξn, n ≥ 1) for an i.i.d. sequence of random variables of law µ. For
any n,K ≥ 1, we set ξKn = ξn1{ξn≤K} +∞1{ξn>K}. We then define the processes (XK

n ) and (XK

n ) by
XK

0 = X
K

0 = X0 and

XK
n+1 = ΦξKn+1

(XK
n ) and X

K

n+1 =
{

Φξn+1(XK

n ) if ξn+1 ≤ K
τ(XK

n ) otherwise.

By induction, we have XK
n 4 Xn 4 X

K

n for any n ≥ 0, using (2.3) and (2.4).
As (XK

n ) is an infinite-bin model with support included in [1,K]∪{+∞}, by Remark 3.4, there exists
vK ∈ [0, 1] such that for any ξ ∈ N

lim inf
n→+∞

B(Xn, ξ)
n

≥ lim
n→+∞

B(XK
n , ξ)
n

= vK a.s.
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Moreover, by definition of (XK

n ) and (2.2), for any ξ, n ≥ 1 we have

B(XK

n , ξ) = B(XK
n , ξ) +

n∑
j=1

1{K<ξj<+∞},

therefore, by the law of large numbers

lim sup
n→+∞

B(Xn, ξ)
n

≤ lim
n→+∞

B(XK

n , ξ)
n

= vK + µ([K + 1,+∞)) a.s.

By Proposition 2.1, we observe immediately that (vK) is an increasing sequence, bounded by 1, thus
converges. Moreover, limK→+∞ µ([K+1,+∞)) = 0. We conclude that lim

n→+∞
1
nB(Xn, ξ) = lim

K→+∞
vK =:

vµ a.s. By Proposition 2.1, (3.3) trivially holds.

Remark 3.6. Let µ be a probability measure on N, we set µK = µ(.|. ≤ K). We observe from the proof
of Proposition 3.5 and Lemma 2.2 that

µ([1,K])vµK ≤ vµ ≤ µ([1,K])vµK + µ([K + 1,+∞)).

As vµK is the speed of an IBM with support bounded byK, it can be computed explicitly using (3.1). This
provides tractable bounds for vµ. For example, we have vµ ≥ µ({K0})

K0
, where K0 = inf{k > 0 : µ(k) > 0}.

Remark 3.7. Proposition 3.5 can be extended to infinite-bin models starting with a configuration X ∈ S0.
Let µ be a probability measure and (Xn) an IBM(µ) starting with a configuration X ∈ S0. If µ has
a support bounded by K, then the projection (ΠK(Xn)) is a Markov chain that will hit the set SK in
finite time. Therefore, we can apply Proposition 3.3 and we have limn→+∞

1
nB(Xn, 1) = vµ a.s.

If µ has unbounded support, the IBM(µ) can still be bounded, in the same way as in the proof of
Proposition 3.5, by infinite-bin models with bounded support. As a consequence, Theorem 1.1 holds for
any starting configuration belonging to S0.

4 A formula for the speed of the infinite-bin model
In this section, we prove that we can write vµ as the sum of a series, provided that this series converges.
A non-rigorous heuristic for the proof goes along the following lines. Let η > 0 and µ be a probability
measure such that µ({1}) ≥ 1 − η, and (ξn : n ∈ N) be i.i.d. random variables with law µ. If η is
small enough then the sequence (ξn) consists in long time intervals such that ξn = 1 on these intervals,
separated by short patterns that appear at random. Every move of type 1 makes the front of the infinite-
bin model increase by 1, and each pattern induces a delay. Therefore, we expect the value of vµ to be
close to 1 minus the sum over every possible pattern of the delay caused by this pattern to the process
multiplied by its probability of occurrence.

This sum is an infinite sum and we hope that for η small enough, the contributions of the long
patterns will decay fast enough so that the series converges and its sum is equal to vµ. It appears that
in fact, this series often converges, even when µ(1) is not close to 1, and when it converges its sum is
equal to vµ.

We recall some notation from the introduction. We denote by A the set of finite words on the alphabet
N. For any α = (α1, . . . , αn) ∈ A, we define L(α) := n to be the length of α.

Let µ be a probability distribution on N and (ξj)j≥1 be i.i.d. random variables with law µ. We write

Wµ(α) :=
L(α)∏
j=1

µ({αj}) = P((ξ1, . . . ξL(α)) = α)

for the weight of the word α.
If α = (α1, . . . , αn) is a non-empty word, we denote by πα (respectively $α) the word (α1, . . . αn−1)

(resp. (α2, . . . αn)) obtained by erasing the last (resp. first) letter of α. We use the convention π∅ =
$∅ = ∅.

Given any X ∈ S, we define the function εX : A → {−1, 0, 1} by

εX(α) = 1{α∈PX} − 1{$α∈PX},
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where PX is the set of non-empty words β such that, starting from X and applying successively the
moves Φβ1 , . . . ,ΦβL(β) , the last move ΦβL(β) results in placing a ball in a previously empty bin.

For X ∈ S and α ∈ A, we denote by Xα the configuration of the infinite-bin model obtained after
applying successively moves of type α1, α2, . . . αn to the initial configuration X, i.e.

Xα = ΦαL(α)

(
ΦαL(α)−1

(
· · ·Φα2

(
Φα1

(
X
))
· · ·
))
,

and we set dX(α) = B(Xα, 1) − B(X, 1) the displacement of the front of the infinite-bin model after
performing the sequence of moves in α. Using this definition, we obtain an alternative expression for
εX(α).

Lemma 4.1. For any α ∈ A, we have

εX(α) = dX(α)− dX(πα)− dX($α) + dX(π$α). (4.1)

Proof. Observe that dX(α)− dX(πα) equals 0 (resp. 1) if the last move of α adds a ball in a previously
non-empty (resp. empty) bin. Therefore we have dX(α) − dX(πα) = 1{α∈PX}. Similarly, dX($α) −
dX(π$α) = 1{$α∈PX}. We conclude that

εX(α) = 1{α∈PX} − 1{$α∈PX} = dX(α)− dX(πα)− dX($α) + dX(π$α).

As a direct consequence of Lemma 4.1, for any α = (α1, . . . αn) we have

dX(α) =
n∑
k=1

n−k+1∑
j=1

εX((αk, αk+1, . . . , αk+j−1)), (4.2)

i.e., the displacement induced by α is the sum of ε(β) for any consecutive subword β of α (where the
subwords β are counted with multiplicity).
Remark 4.2. One could also go the other way round, start with dX and define εX to be the function
verifying

∀α ∈ A, dX(α) =
∑
β≺α

εX(β)m(β, α),

where β ≺ α denotes the fact that β is a factor of α (i.e. a consecutive subword of α) and m(β, α)
denotes the number of times β appears as a factor of α. In that case, one would obtain formula (4.1)
for εX as the result of a Mőbius inversion formula (see [28, Sections 3.6 and 3.7] for details on incidence
algebras and Mőbius inversion formulas).

Using these notation and results, we prove the following lemma.

Lemma 4.3. For any probability measure µ and X ∈ S, we have

vµ = lim
n→+∞

1
n

n∑
k=1

∑
α∈A:L(α)≤k

εX(α)Wµ(α).

This lemma straightforwardly implies Theorem 1.2 by Stolz-Cesàro theorem.

Proof. Let (Xn) be an IBM(µ) starting from the configuration X ∈ S. We have, by definition of dX ,
dX((ξ1, . . . ξn)) = B(Xn, 1)−B(X0, 1). Moreover, by Theorem 1.1 and dominated convergence,

lim
n→+∞

1
n

E (dX((ξ1, . . . ξn))) = vµ.

We easily compute E (dX((ξ1, . . . ξn))) using (4.2), we obtain

E (dX((ξ1, . . . ξn))) =
n∑
k=1

n−k+1∑
j=1

E (εX((ξk, ξk+1, . . . , ξk+j−1)))

=
n∑
k=1

n−k+1∑
j=1

∑
α∈A:L(α)=j

Wµ(α)εX(α)

=
n∑
k=1

∑
α∈A:L(α)≤k

Wµ(α)εX(α),

which concludes the proof.

11



In Section 6, we study in more details the function εX . In particular, we give sufficient conditions
on α to have εX(α) = 0, which allows to prove that in some cases, the series

∑
α∈A εX(α)Wµ(α) is

absolutely convergent.

5 Length of the longest path in Barak-Erdős graphs
In the rest of the article, we use the results obtained in the previous sections to study the asymptotic
behaviour of the length of the longest path in a Barak-Erdős graph. Let p ∈ [0, 1], we write µp for the
geometric distribution on N with parameter p, verifying µp(k) = p(1 − p)k−1 for any k ≥ 1. In this
section, we present a coupling introduced by Foss and Konstantopoulos [12] between an IBM(µp) and
a Barak-Erdős graph of size n, used to compute the asymptotic behaviour of the length of the longest
path in this graph.

Recall that a Barak-Erdős graph on the n vertices {1, . . . , n} with edge probability p is constructed
by adding an edge from i to j with probability p, independently for each pair 1 ≤ i < j ≤ n. We write
Ln(p) for the length of the longest path in this graph. Newman [26] proved that Ln increases at linear
speed. More precisely, there exists a function C such that for any p ∈ [0, 1],

lim
n→+∞

Ln(p)
n

= C(p) in probability.

Moreover, he proved that C(p) is continuous and increasing on [0, 1], and that C ′(0) = e.
Let p ∈ (0, 1) and (Xn) be an IBM(µp), we set vp = vµp the speed of (Xn), which is well-defined by

Proposition 3.5. Foss and Konstantopoulos [12] observed, through a coupling between this IBM and the
Barak-Erdős graph, that

C(p) = vp = lim
n→+∞

B(Xn, 1)
n

a.s. (5.1)

We now construct the coupling used to derive 5.1. We associate an infinite-bin model configuration
in S to each acyclic directed graph on vertices {1, . . . , n} as follows: for each vertex 1 ≤ i ≤ n, we add a
ball in the bin indexed by the length of the longest path ending at vertex i, and infinitely many balls in
bins with negative index (see Figure 4 for an example). We denote by `i the length of the longest path
ending at position i.

1 2 3 4 5 6

(a) An acyclic directed graph G.

1

3

2 4 5

6

-2 -1 0 1 2 3 4

(b) The infinite-bin model configu-
ration corresponding to this graph.

Figure 4: From a Barak-Erdős graph to an infinite-bin model configuration.

We now construct the Barak-Erdős graph as a dynamical process, which is run in parallel with its
associated infinite-bin model. At time n = 0, we start with the Barak-Erdős graph with no vertex, the
empty graph, and the infinite-bin model with infinitely many balls in bins of negative index, and no ball
in other bins (which is called configuration Y0). At time n = 1, we add vertex 1 to the Barak-Erdős graph.
As `1 = 0, we also add a ball in the bin of index 0 to the configuration Y0, to obtain the configuration
Y1.

At time n > 1, we add vertex n to the Barak-Erdős graph on {1, . . . , n− 1}. We compute the law of
`n conditionally on (`i, i ≤ n − 1). Let σ be a permutation of {1, . . . , n − 1} such that `σ(1) ≥ `σ(2) ≥
· · · ≥ `σ(n−1). The permutation is not necessarily uniquely defined by these inequalities, but this does
not matter for our purpose. For each 1 ≤ i ≤ n−1, there is an edge between n and σ(i) with probability
p, independently of any other edge. In this case, there is a path of length `i + 1 in the Barak-Erdős
graph that end at site n. The smallest number ξn such that there is an edge between σ(ξn) and n is
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distributed as a geometric random variable, where if ξn > n− 1, then there is no edge between n and a
previous vertex, thus `n = 0 and we add a ball at position 0. As a consequence, the state associated to
the graph of size n is given by Yn = Φξn(Yn−1).

We have coupled the IBM(µp) (Yn) with a growing sequence of Barak-Erdős graphs, in such a way
that for any n ∈ N, the length of the longest path in the Barak-Erdős graph of size n is given by B(Yn, 1).
Therefore, (5.1) is a direct consequence of Proposition 3.5.

We now use (3.3) to bound the function C. We recall from the introduction that in [12], Foss and
Konstantopoulos obtained upper and lower bounds for C(p), that are tight enough for p close to 1 to
give the first five terms of the Taylor expansion of C around p = 1 (see (1.2)). We use measures with
finite support to approach µp, as in the proof of Proposition 3.5. We obtain two sequences of functions
that converge exponentially fast toward C on [ε, 1] for any ε > 0. Let k ≥ 1, we set

µk
p
({j}) = p(1− p)j−11{j≤k} and µkp({j}) = p(1− p)j−11{j≤k} + (1− p)k1{j=k}.

We write Ck(p) = vµk
p

and Ck(p) = vµkp . By (3.3), for any k ≥ 1 we have Ck(p) ≤ C(p) ≤ Ck(p).
Moreover, as a (very crude) upper bound, for any p ∈ [0, 1] we have

0 ≤ Ck(p)− Ck(p) ≤ (1− p)k, (5.2)

see Remark 3.6. Hence Ck − Ck converges uniformly to the zero function at an exponential rate on
any interval of the form [ε, 1], with ε > 0. Moreover, note that Ck(0) = 1/k and Ck(0) = 0. Since the
sequence (Ck−Ck)k is decreasing, by Dini’s theorem it converges uniformly on [0, 1] to the zero function.

Using Proposition 3.3, the functions Ck and Ck can be explicitly computed. For example, taking
k = 3 we obtain

p(p2−3p+3)2(p4−6p3+14p2−16p+8)
3p6−26p5+96p4−196p3+235p2−158p+47 ≤ C(p) ≤ p3−2p2+p−1

p5−4p4+8p3−9p2+6p−3 .

For any k ∈ N, Ck and Ck are rational functions of p. Their convergence toward C is very fast, which
enables to bound values of C(p). For instance, taking k = 9, we obtain C(0.5) = 0.5780338 ± 2.10−8,
improving C(0.5) = 0.58± 10−2 given by the bounds in [12].

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

(a) C3 and C3.
0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

(b) C6 and C6.
0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

(c) C9 and C9.

Figure 5: Lower and upper bounds Ck and Ck for C, for k ∈ {3, 6, 9}.

The functions Ck and Ck are very close for p close to 1, which enables to compute the Taylor
expansion of C(1 − q) to any order as q → 0. For example, comparing the Taylor expansion of C6 and
C6, we obtain the first 14 terms of the Taylor expansion of C. However, Theorem 1.4 gives another way
to obtain this Taylor expansion.

6 Power series expansion of C in dense graphs
In this section, we prove that C is analytic for p > 1/2. Recall that for any word α ∈ A, we defined the
height of α to be

H(α) =
L(α)∑
i=1

αi − L(α).

For p ∈ [0, 1] we set
Wp(α) := Wµp(α) = pL(α)(1− p)H(α).

By Theorem 1.2, if
∑
α∈A |εX(α)|Wp(α) < +∞, then we have

C(p) =
∑
α∈A

εX(α)pL(α)(1− p)H(α). (6.1)
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We first prove that this series is absolutely convergent. To do so, we obtain sufficient conditions on α to
have εX(α) = 0. We say that a word α = (α1, . . . , αl) has a renovation event at position n ≥ 1 if for all
0 ≤ k ≤ l− n, αn+k ≤ k+ 1. This concept appeared first in [7], then in [12] where these events are used
to create time intervals on which the process starts over and is independent of its past. We first show
that the existence of a renovation event in α implies εX(α) = 0.
Lemma 6.1. Let X ∈ S, if α ∈ A with L(α) ≥ 2 has a renovation event at position n ≥ 2, then
εX(α) = 0.

Proof. Let α ∈ A be a word of length l with a renovation event at position n ≥ 2. When we run α
starting from the configuration X, the move αn = 1 creates a ball in a previously empty bin, of index
say b.

As αn+k ≤ k+ 1 for all 0 ≤ k ≤ l−n, we are capable of placing the balls produced by these moves in
bins of index b or greater, without knowing any information about the bins to the left of bin b (except
for the fact that the bin b− 1 contains at least one ball).

When we run $α starting from X, the move αn again creates a ball in a previously empty bin, of
index say b′. Running the moves αn+1, . . . , αl will produce the same construction as when we run α,
with everything just shifted by b′ − b. In particular, the last move of α places a ball in a previously
empty bin if and only if the last move of $α places a ball in a previously empty bin. Consequently
1{α∈PX} = 1{$α∈PX} so εX(α) = 0.

Using Lemma 6.1, we are able to prove that for all k ∈ N, the set of words of height smaller than k
such that εX(α) 6= 0 is finite.
Lemma 6.2. Let X ∈ S, for any α ∈ A such that L(α) > H(α) + 1, we have εX(α) = 0.

Proof. Let α be a word (α1, . . . , αl) such that l = L(α) > H(α) + 1. For any 1 ≤ k ≤ l, define
S(k) =

∑k
i=1(αi − 2). As L(α) > H(α) + 1 we have S(l) < −1. We set n = min {k : S(t) < −1 ∀t ≥ k}.

Observe that we have S(1) = α1 − 2 ≥ −1, thus n ≥ 2. By induction, for any 0 ≤ k ≤ l− n, we have
S(n + k) ≥ −k − 2 and αn+k ≤ k + 1. Thus α has a renovation event at position n ≥ 2, so εX(α) = 0
by Lemma 6.1.

Using Lemma 6.2, we prove the absolute convergence of the series in (6.1).
Lemma 6.3. Let X ∈ S. The series

∑
α∈A |εX(α)|Wp(α) converges for all p > 1/2.

Proof. Let p > 1/2. Define Ahl to be the set of words of length l and height h. Observe that Ahl is
the set of compositions of the integer h + l into l parts and it is well-known that #Ahl =

(
h+l−1
l−1

)
. By

Lemma 6.2, if α is a word such that |εX(α)| = 1, then L(α) ≤ H(α) + 1, thus

∑
α∈A
|εX(α)|Wp(α) ≤

∑
h≥0

h+1∑
l=1

∑
α∈Ah

l

Wp(α).

By definition of Wp(α), we have

∑
α∈A
|εX(α)|Wp(α) ≤

∑
h≥0

h+1∑
l=1

pl(1− p)h#Ahl

≤ p
∑
h≥0

h∑
l=0

pl(1− p)h
(
h+ l

l

)
.

Let (Sn) be a random walk on Z starting at 0 and doing a step +1 (resp. −1) with probability p (resp.
1− p). Then for all p > 1/2, we have

∑
h≥0

h∑
l=0

pl(1− p)h
(
h+ l

l

)
=
∑
n≥0

bn/2c∑
l=0

(
n

l

)
pl(1− p)n−l

=
∑
n≥0

bn/2c∑
l=0

P (Sn = 2l − n) =
∑
n≥0

P (Sn ≤ 0) < +∞.

Indeed, we have E(S1) = 2p − 1 > 0, and P(Sn ≤ 0) decays exponentially fast by Cramér’s large
deviations theorem.
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Using the above lemma and Theorem 1.2, we immediately obtain the following result.
Lemma 6.4. For any X ∈ S and p > 1/2, (6.1) holds.

We use this formula for C to prove that the function can be written as a power series around every
p > 1/2.

Proof of Theorem 1.4. Fix 1
2 < p ≤ r ≤ 1 and write x = r−p ≥ 0. We write C(p) = C(r−x) as a power

series in x and determine its radius of convergence.

C(p) =
∑
α∈A

εX(α)pL(α)(1− p)H(α)

=
∑
α∈A

εX(α)(r − x)L(α)(1− r + x)H(α)

=
∑
α∈A

εX(α)
L(α)∑
i=0

(
L(α)
i

)
(−1)ixirL(α)−i

H(α)∑
j=0

(
H(α)
j

)
xj(1− r)H(α)−j .

Taking absolute values inside the last series, we obtain

∑
α∈A
|εX(α)|

L(α)∑
i=0

(
L(α)
i

)
xirL(α)−i

H(α)∑
j=0

(
H(α)
j

)
xj(1− r)H(α)−j

=
∑
α∈A
|εX(α)|(r + x)L(α)(1− r + x)H(α)

=
∑
α∈A
|εX(α)|(2r − p)L(α)(1− p)H(α).

By the same computations as in Lemma 6.3, we have

∑
α∈A
|εX(α)|(2r − p)L(α)(1− p)H(α) ≤ (1− p)

∑
h≥0

h∑
l=0

(2r − p)l(1− p)h
(
h+ l

l

)
.

If this quantity is finite, then the power series expansion of C around r has a radius of convergence at
least r − p. Writing (Sp,rn ) for a random walk on Z starting at 0 and doing a step +1 (resp. −1) with
probability 2r−p

2r+1−2p (resp. 1−p
2r+1−2p ), we have

∑
h≥0

h∑
l=0

(2r − p)l(1− p)h
(
h+ l

l

)
=
∑
n≥0

(2r + 1− 2p)nP (Sp,rn ≤ 0) . (6.2)

By Chernoff’s bound, we obtain

P (Sp,rn ≤ 0) ≤ inf
t>0

(
E
[
e−tS

p,r
1

])n
≤ inf
t>0

(
2r − p

2r + 1− 2pe
−t + 1− p

2r + 1− 2pe
t

)n
≤

(
2
√

(2r − p)(1− p)
2r + 1− 2p

)n
.

Thus the series in (6.2) converges as soon as 2
√

(2r − p)(1− p) < 1, i.e. if

r + 1
2 −

√
r2 − r + 1

2 < p ≤ r ≤ 1.

For r > 1/2, we have r+ 1
2 −
√
r2 − r + 1

2 < r, thus the power series expansion of C centered at r has
a positive radius of convergence. Therefore C is analytic on

( 1
2 , 1
]
. In particular, for r = 1, expanding

the expression in (6.1) in powers of (1− p), we conclude that for p larger than 3−
√

2
2 , we have

C(p) =
∑
k≥0

ak(1− p)k,

with (ak) defined in (1.4).
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7 Longest directed path in sparse graphs
We study in this section the asymptotic behaviour of C(p) as p → 0. Newman proved in [26] that
C(p) ∼ pe. We link in Section 7.1 this result with the estimate obtained by Aldous and Pitman [2] for
the speed of an IBM with uniform distribution. Let k ∈ N, we write νk for the uniform distribution on
{1, . . . , k} and wk for the speed of the IBM(νk), Aldous and Pitman proved that

(kwk, k ∈ N) increases toward e as k → +∞. (7.1)

This result is obtained by observing that the IBM(νk) can be coupled with a continuous-time branching
random walk with selection.

Recent developments were obtained on the asymptotic behaviour of the speed of a discrete-time
branching random walk with selection. This behaviour was conjectured by Brunet and Derrida [8], and
proved recently by Bérard and Gouéré [5]. The result of Bérard and Gouéré was extended by Mallein
[23, 24] to more general discrete-time branching random walks. In discrete-time branching random walks
with selection, multiple reproduction events may occur at the same time, while in the infinite-bin model,
which is also a discrete-time process, only one reproduction event occurs at each time step.

We thus consider the infinite-bin model as the pure jump process of a continuous-time particle system
in which a move of type k happens at rate µ(k). This particle system can be coupled with a continuous-
time branching random walk with selection. In particular, the IBM(νk) corresponds to the jump process
of a system of k particles in which every particle gives birth to a child at rate 1/k, which is put one step
to its right. Simultaneously, the leftmost particle is removed from the process. We extend the results
obtained for discrete-time branching random walks to continuous-time versions, proving in this section
the following estimate.

Lemma 7.1. We have kwk = e− π2e
2 (log k)−2(1 + o(1)) as k → +∞.

Applying Lemma 7.1 to bound compute the asymptotic behaviour of C as p → 0, we are able to
prove Theorem 1.6 :

C(p) = ep

(
1− π2

2 (− log p)−2
)

+ o(p(− log p)−2) as p→ 0. (7.2)

The rest of the section is organized as follows. In Section 7.1, we prove Theorem 1.6 assuming
Lemma 7.1. In Section 7.2, we prove Lemma 7.1 assuming that the Brunet–Derrida behaviour of
continuous-time branching random walks with selection is known. Preliminary results on continuous-
time branching random walks with selection are derived in Section 7.3 and the speed of the cloud of
particles in a continuous-time branching random walk with selection is finally obtained in Section 7.4,
completing the proof of Theorem 1.6.

7.1 Proof of Theorem 1.6 assuming Lemma 7.1
We use the increasing coupling of Proposition 3.5 to link the asymptotic behaviours of wk and C(1/k)
as k → +∞.

Lemma 7.2. For any k ∈ N we have

∀p ∈ [ 1
k+1 ,

1
k ], C(p) ≤ wk

∀p ∈ [0, 1], C(p) ≥ kp(1− p)kwk.

Proof. Let k ∈ N and p ∈ [ 1
k+1 ,

1
k ]. We observe that for any j ∈ N,

µp([1, j]) =
j∑
i=1

p(1− p)i−1 ≤ (pj) ∧ 1 ≤ νk([1, j]).

Therefore C(p) ≤ wk by (3.3).
Let p ∈ [0, 1], we set x = kp(1− p)k−1. Observe that 0 ≤ x ≤ 1. For any j ∈ N, we have

µp([1, j]) =
j∑
i=1

p(1− p)i−1 ≥ (j ∧ k)p(1− p)k−1 ≥ kνk([1, j])p(1− p)k−1.
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Therefore, writing νxk = xνk + (1 − x)δ∞, we have µp([1, j]) ≥ νxk ([1, j]) for any j ∈ N. We apply (3.3)
to µp and νxk . By Lemma 2.2, the speed of the IBM(νxk ) is xwk. We conclude that for any k ∈ N and
p ∈ [0, 1], we have

C(p) ≥ kp(1− p)k−1wk.

We now prove Theorem 1.6 assuming that Lemma 7.1 holds.

Proof of Theorem 1.6. For any k ∈ N and p ∈ [ 1
k+1 ,

1
k ], by Lemma 7.2, we have C(p)/p ≤ (k + 1)wk,

therefore Lemma 7.1 yields

lim sup
p→0

(log p)2
(
C(p)
p
− e
)
≤ lim sup

k→+∞
(log k)2 ((k + 1)wk − e) ≤ −

π2e

2 .

By Lemma 7.2 again, we have C(p)/p ≥ (1 − p)k(kwk) for any k ∈ N and p ∈ [0, 1]. Let δ > 0, we
set k =

⌈
1/p1−δ⌉. Then

(log p)2
(
C(p)
p
− e
)
≥ (log k)2

(1− δ)2

(
(1− p)k(kwk)− e

)
.

Using again Lemma 7.1 and the fact that (1− p)k − 1 ∼ −pδ as p→ 0, we have

lim inf
p→0

(log p)2
(
C(p)
p
− e
)
≥ − π2e

2(1− δ)2 .

Letting δ → 0 concludes the proof.

7.2 Proof of Lemma 7.1 using branching random walks
As said in the introduction to the section, to obtain the asymptotic behaviour of its speed, Aldous and
Pitman compared the IBM(νk) with a continuous-time branching random walk with selection, that we
now define more precisely. Let k ∈ N, we define a continuous-time system of k particles on Z as follows.
At time 0, the positions of particles are ranked in a non-increasing order as Y k0 (1) ≥ Y k0 (2) ≥ · · · ≥ Y k0 (k).
Particles stay in place for all their lifetime. Each particle, independently of all others, reproduces at rate
1. A the first reproduction time t, the parent particle creates a new daughter particle one step to its
right. Simultaneously, the leftmost particle is erased so that the total number of particles remains equal
to k. The positions of particles are then updated as Y kt (1) ≥ · · · ≥ Y kt (k), setting Y ks (j) = Y k0 (j) for
j ≤ k and s < t. After this reproduction event, particles in the process continue to reproduce and be
deleted according to the same procedure.

The process Y k is called a (continuous-time) branching random walk with selection. Indeed, the
particles reproduce independently of one another, but the total size of the population is capped to a fixed
number k by removing particles from the left at each time a new particle is born. Using proof techniques
coming from discrete-time branching random walks with selection, we will show in the forthcoming
sections the following estimate for the speed of the cloud of particles (Y kt (j), j ≤ k) as t→∞.

Lemma 7.3. For all k ∈ N, there exists ck ∈ R such that

lim
t→∞

Y kt (1)
t

= lim
t→∞

Y kt (k)
t

= ck a.s.

Moreover, we have ck − e ∼ −π
2e
2 (log k)−2 as k →∞.

The existence of the speed ck of the branching random walk with selection Y k is proved in Section 7.3,
and its asymptotic behaviour as k → ∞ is obtained in Section 7.4 by adapting the proofs used in
[5, 24]. Assuming for now that Lemma 7.3 holds, we prove Lemma 7.1 using the Aldous-Pitman coupling
described below.

Proof of Lemma 7.1. Let k ∈ N. We write (Nt, t ≥ 0) for a Poisson process of parameter k and (Xn, n ≥
0) for an independent IBM(νk). For any t > 0, we denote by (Yt(j), j ≤ k) the positions of the rightmost
k balls in the configuration XNt , ranked in a non-increasing order.

We observe that (Yt(u), u ≤ k) evolves as follows: every ball stays put until an exponential random
time with parameter k. At that time T , a ball with index u ≤ k is chosen uniformly at random, a new
ball is added at position YT (u) + 1 and the leftmost ball is erased.
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By classical properties of exponential random variables, this evolution admits the following alternative
description. To each ball is associated a clock with parameter 1. When a clock rings, the corresponding
ball makes a “child” to the right of its current position, and the leftmost ball is erased. Therefore, the
law of (Y kt (u), u ≤ k) is the same as the continuous-time branching random walk with selection described
above. As a result, we deduce from Lemma 7.3 that:

lim
t→∞

B(XNt , 1)
t

= ck a.s.

Using the fact that Nt ∼ kt a.s. as t → ∞, by the law of large numbers we deduce that kwk = ck.
Therefore, Lemma 7.1 is a direct consequence of Lemma 7.3.

7.3 Speed of the k-branching random walk
In this section, we present an increasing coupling for branching random walks with selection, introduced
by Bérard and Gouéré [5]. This increasing coupling is similar in nature to Proposition 2.1 but cannot
be obtained as a straightforward corollary of it. Loosely speaking, we aim to couple here branching
random walks with selection with different numbers of particles. The coupling expresses that the larger
the population is in that branching process, the faster it moves to the right. To state this coupling,
we extend the definition of branching random walk with selection to authorize the maximal size of the
population to vary.

To do so, we first define the branching random walk without selection. This is a particle system on
Z in which the particles behave independently of each other. After an exponential time of parameter 1,
a particle creates a child one step to its right. For all t ≥ 0, we denote by Nt the set of particles alive at
time t, and by Yt(u) the position in Z of the particle u ∈ Nt. The process (Yt(u), u ∈ Nt)t≥0 is referred
to as the continuous-time branching random walk.

Let H be a càdlàg integer-valued process adapted to the filtration of the branching random walk
(Yt(u), u ∈ Nt)t≥0. We define the H-branching random walk as the following process. At time 0, if there
are more than H0 particles in N0, we kill particles, together with their offspring, except the H0 rightmost
ones (with ties broken uniformly at random). Next, at each time t such that the remaining number of
particles in the process becomes larger than Ht (either because Ht < Ht− or because a birth occurred
in the system), we kill particles (and their offspring) from the left until only Ht remain. At every time
t ≥ 0, we set Y Ht (1), . . . Y Ht (Ht) to be the positions of the particles alive at time t in this process, ranked
in a non-increasing order. We set Y Ht (j) = −∞ by convention if there are less than j particles alive
at that time in the process. The process (Y Ht (j), j ≤ Ht)t≥0 is referred to as the H-branching random
walk, or H-BRW for short.

Note that if H is a constant process, equal to k ∈ N, then the process Y H is the same as Y k the
branching random walk with selection defined in the previous section. The notation we chose is thus
consistent. We now state the coupling process result, which is the main result of the section.

Lemma 7.4. Let Y H be an H-BRW and Ỹ K be a K-BRW. We assume that

∀x ∈ R,#{j ≤ H0 : Y H0 (j) ≥ x} ≤ #{j ≤ K0 : Ỹ K0 (j) ≥ x}.

Then there exists a coupling between Y H and Ỹ K such that a.s. for any t > 0, on the event {Hs ≤
Ks, s ≤ t},

∀x ∈ R, #{j ≤ Ht : Y Ht (j) ≥ x} ≤ #{j ≤ Kt : Ỹ Kt (j) ≥ x}. (7.3)

This lemma, obtained as a straightforward adaptation of [5, Lemma 1], expresses that the partial
order defined in Section 2 is preserved by the dynamics of the branching random walk with selection,
provided that the total number of particles alive remains always smaller for the smaller configuration.

Proof. The coupling procedure is the following: for any j ≤ Ht, the jth rightmost particle in the
processes Y H and Ỹ K carry the same exponential clock governing their reproduction. We show that the
first change in the composition of the population after time 0 preserves the property (7.3). We write

m = sup{j ≤ H0 : Y H0 (j) > −∞}
and n = sup{j ≤ K0 : Ỹ K0 (j) > −∞},

the number of particles alive at time 0 in Y H and Ỹ K respectively. By assumption, we have m ≤ H0,
and m ≤ n ≤ K0 and for all j ≤ m, Y H0 (j) ≤ Ỹ K0 (j).
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We associate exponential clocks to particles in the processes in such a way that the particles in position
Y H0 (j) and Ỹ K0 (j) reproduce at the same time, for any j ≤ m. We denote by Tb (resp. Ta) the first time
one of these particles reproduces (resp. the first time a particle located at position Ỹ0(m+ 1), . . . Ỹ0(n)
reproduces). We also set

S = inf{t > 0 : Ht 6= H0 or Kt 6= K0} and R = Ta ∧ Tb ∧ S.

We observe that Y H and Ỹ K are constant processes until time R, that R > 0 a.s. and that Ta 6= Tb a.s.
One of three things can happen at time R. Firstly, if R = Ta, there is a reproduction event in Ỹ K

but not in Y H . If we rank in a non-increasing order these new particles, they again satisfy the partial
ordering. Moreover, as HR ≤ KR, applying the selection procedure to both models preserves this partial
ordering, therefore

∀x ∈ R, #{j ≤ HR : Y HR (j) ≥ x} ≤ #{j ≤ KR : Ỹ KR (j) ≥ x}.

If R = Tb, then there is a reproduction event in Y H and Ỹ K . We use the same point process to
construct the child of the particle that reproduces in each process. Once again, ranking in a non-increasing
order these new particles, then applying the selection, we have

∀x ∈ R, #{j ≤ HR : Y HR (j) ≥ x} ≤ #{j ≤ KR : Ỹ KR (j) ≥ x}.

Finally, if R = S 6∈ {Ta, Tb}, the maximal size of at least one of the populations is modified. Even if
this implies the death of some particles in Y H and/or Ỹ K , the property (7.3) is preserved at time R.

Now fix t > 0 and assume that Hs ≤ Ks for every 0 ≤ s ≤ t. As H and K are integer-valued càdlàg
processes, they attain their maxima on compact sets. Therefore, they are both a.s. finite on the interval
[0, t], so the number of particles is a.s. finite in both processes Y H and Ỹ K . Thus there is a.s. a finite
sequence of times (Rk) smaller than t such that Y H or Ỹ K is modified at each time Rk. Using this
coupling on each time interval of the form [Rk, Rk+1] yields (7.3).

Using this lemma, we can prove that the cloud of particles in a k-BRW drifts at linear speed ck. Note
that by the coupling described in the proof of Lemma 7.1, this result can be obtained as a consequence
of Theorem 1.1. However, we believe the following proof to be of independent interest, as it can be
generalized to more diverse continuous-time branching random walks with selection.

Lemma 7.5. For any k ∈ N, there exists ck ∈ R such that

lim
t→+∞

Y kt (1)
t

= lim
t→+∞

Y kt (k)
t

= ck a.s.

Moreover, if Y k0 (1) = Y k0 (2) = . . . = Y k0 (k) = 0, we have

ck = inf
t>0

E [Yt(1)]
t

= sup
t>0

E [Yt(k)]
t

. (7.4)

The proof of this lemma is adapted from [5, Proposition 2].

Proof. We prove that (Y kt (1)) is a sub-additive process. We then use Kingman’s sub-additive ergodic
theorem (see [19, Theorem 4] and [18, Theorem 9.14]), stating that if (Xs,t, 0 ≤ s ≤ t) is a càdlàg family
of random variables satisfying

∀0 ≤ s ≤ t ≤ u, Xs,u ≤ Xs,t +Xt,u a.s (7.5)

∀h ≥ 0, (Xs+h,t+h, 0 ≤ s ≤ t)
(d)= (Xs,t, 0 ≤ s ≤ t) (7.6)

∀h ≥ 0, (Xs+h,t+h, 0 ≤ s ≤ t) is independent of (Xs,t, 0 ≤ s ≤ t ≤ h) (7.7)
∃A > 0,∀t ≥ 0, −At ≤ E(X0,t) <∞ (7.8)

E
(∣∣∣∣ sup

0≤s≤t≤1
Xs,t

∣∣∣∣) <∞, (7.9)

then γ := limt→∞
1
t E(X0,t) exists, is finite and is equal to inft≥0

E(X0,t)
t (by sub-additivity), and

lim
t→∞

1
t
X0,t = γ a.s. and in L1. (7.10)
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We construct on the same probability space a family (Y ks,t(j), 0 ≤ s ≤ t, j ≤ k), such that for all s ≥ 0,
(Y ks,s+t, t ≥ 0) is a k-branching random walk, and (Y ks,t(1), 0 ≤ s ≤ t) is sub-additive.

Let N1, . . . , Nk be k i.i.d. Poisson processes with unit intensity. For all s ≥ 0, we set Y ks,s(1) =
Y ks,s(2) = · · · = Y ks,s(k) = 0, i.e. particles start at position 0 at time s. Then the process evolves as
follows: at each time t such that N j

t 6= N j
t−, the jth largest particle alive at time t− in Y ks,• creates a

new child, and the leftmost particle is erased.
By definition, we observe that for all s ≥ 0, (Y ks,s+t, t ≥ 0) is a k-branching random walk starting

with k particles at position 0 at time 0. In particular, (7.6) is satisfied. Moreover, Y ks,• is measurable
with respect to the Poisson processes (N j

t+s − N j
s , t ≥ s, j ≤ k), therefore is independent of (Y ku,v, 0 ≤

u ≤ v ≤ s). This shows (7.7), i.e. that this process is ergodic.
Moreover, one can observe that the construction described here is the same as the one given in

the proof of Lemma 7.4. Therefore, for all s ≤ t this process couples the k-branching random walks
(Y ks,t+h, h ≥ 0) and (Y kt,t+h, h ≥ 0) in such a way that for all j ≤ k and h ≥ 0, one has

Y ks,t+h(j) ≤ Y kt,t+h(j) + Y ks,t(1) a.s.

Indeed, the k-branching random walk (Y ks,t+h, h ≥ 0) is coupled with the k-branching random walk
(Y kt,t+h+Ys,t(1), h ≥ 0) which starts with k particles at position Ys,t(1). In particular, we have Y ks,u(1) ≤
Y ks,t(1) + Y kt,u(1) a.s., proving (7.5).

To prove the last two conditions, we observe that Ys,•(1) increases by at most 1 at each time one of
the Poisson processes jumps. Moreover, t 7→ Ys,t is non-decreasing, thus, for all t ≥ 0,

E
(∣∣∣∣ sup

0≤s≤t≤1
Ys,t(1)

∣∣∣∣) ≤ k and 0 ≤ E(Y0,t(1)) <∞,

proving both (7.8) and (7.9).
As a result, by Kingman’s sub-additive ergodic theorem, setting

ck = lim
t→∞

E [Yt(1)]
t

= inf
t>0

E [Yt(1)]
t

,

we have limt→∞
Y0,t(1)
t = ck a.s.

With the same construction, one can observe that (Y ks,t(k), 0 ≤ s ≤ t) is a super-additive sequence,
satisfying similar integrability assumptions as Ys,t(1). Therefore, setting

dk = lim
t→∞

E [Y0,t(k)]
t

= sup
t>0

E [Y0,t(1)]
t

,

we have limt→∞
Y0,t(k)

t = dk a.s. As Ys,t(k) ≤ Ys,t(1), we have dk ≤ ck. We now prove these two
quantities to be equal.

We define a sequence of hitting times (Tn, n ≥ 0) by setting T0 = 0, and Tn+1 is the first time
after time Tn where the last k children are born from the same particle, and that this particle was the
rightmost particle before the series of branching events. The probability that the next k branching events
are as such is 1/kk > 0, therefore Tn <∞ a.s. Moreover, by definition, we have Y0,Tn(1) = Y0,Tn(k) a.s.,
all particles being at the same position at that time. As a result, we have

lim inf
t→∞

Y0,t(1)− Y0,t(k)
t

= 0 a.s.

proving that ck = dk, and that Y0,t(1)
t and Y0,t(k)

t have the same limit.
Finally, we consider a k-branching random walk Y k starting from an arbitrary initial configuration.

After a finite amount of time t, the process contains k particles. From that point on, the process can be
bounded from above and from below by k-branching random walks starting with k particles at position
Y kt (1) and Y kt (k) respectively. Therefore, by the previous results, we also obtain

lim
s→∞

Y ks (1)
s

= lim
s→∞

Y ks (k)
s

= ck a.s.

completing the proof.

20



7.4 End of the proof of Lemma 7.3
In this section, we use Lemma 7.4 to compare the asymptotic behaviour of the continuous-time branching
random walk with selection Y k with a discrete-time branching random walk with selection. This latter
model being well-studied, we are able to deduce Lemma 7.3 from it. The discrete-time branching random
walk with selection of the rightmost k individuals was introduced by Brunet and Derrida in [8] to study
noisy FKPP equations. In that article, they conjecture that the cloud of particles drifts at speed vk,
that satisfies

vk − v = − χ

(log k + 3 log log k + o(log log k))2 , as k →∞, (7.11)

for some explicit constants v ∈ R and χ > 0.
We now describe more precisely the discrete-time k-branching random walk. Let k ∈ N and M be

the law of a point process on Z. The system starts with k particles on Z. At each integer time n, every
particle dies while giving birth to offspring. The children of a given individual are positioned around
their parent according to an i.i.d. point process with law M. Among all the children of the individuals
at generation n, the rightmost k ones survive to form the new generation, with ties broken in an uniform
fashion.

For every n ≥ 0, we set Zkn(1) ≥ Zkn(2) ≥ · · · ≥ Zkn(k) to be the ranked positions of particles alive
at generation n in this branching random walk with selection. To avoid the possibility of the process
dying out, we assume that every individual always has at least one child, and that the mean number
of children is larger than 1. Note that the formulation of the discrete-time process is slightly different
from the one of the continuous-time process, since the parents get immediately killed in the discrete-time
setting but not in the continuous-time setting. We could easily adapt the definition of the continuous-
time process by saying that when a particle reproduces, it has two children, one at its current location
and one immediately to its right, and that the parent gets killed just after reproducing.

We now introduce some notation. Let M be a point process of law M. We assume that

κ(θ) := log E
(∑
m∈M

eθm

)
<∞ for all θ > 0. (7.12)

Note that the function κ is then infinitely differentiable and convex on (0,∞) as

κ′′(θ) = E
(∑
m∈M

(m− κ′(θ))2eθm−κ(θ)

)
≥ 0. (7.13)

We assume that there exists θ∗ > 0 such that

θ∗κ′(θ∗)− κ(θ∗) = 0, (7.14)

and we write v := infθ>0
κ(θ)
θ = κ(θ∗)

θ∗ = κ′(θ∗) and σ2 := κ′′(θ∗).
Bérard and Gouéré studied the asymptotic behaviour of the speed of the k-branching random walk

as k → ∞ under the assumption that the point process M is binary. This result was then extended by
Mallein [24] to more general reproduction laws. We use the following result, which is a special case of
[24, Theorem 1.1], applied to the process (θ∗Zkn − nκ(θ∗), n ≥ 0).

Theorem 7.6. Let Zk be a discrete-time branching random walk with selection of the rightmost k
particles, whose reproduction law satisfies (7.12) and (7.14). We additionally assume that

E
(∣∣∣∣max

m∈M
m

∣∣∣∣2
)
< +∞ (7.15)

E

∑
m∈M

eθ
∗m

(
log

∑
m∈M

eθ
∗m

)2
 < +∞. (7.16)

Then there exists vk such that

lim
n→+∞

Yn(1)
n

= lim
n→+∞

Yn(k)
n

= vk a.s. (7.17)

and moreover limk→+∞(log k)2(vk − v) = −π2θ∗σ2

2 .
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It is a straightforward computation to note that (θ∗m− κ(θ∗),m ∈ M) is a point process satisfying
the assumptions of Theorem 1.1 in [24]. Precisely, equation (1.3) there is verified asM contains at least
one element a.s. and more than one element on average. Equation (1.4) comes from

E
( ∑
m∈M

eθ
∗m−κ(θ∗)

)
= E

( ∑
m∈M

eθ
∗m

)
e−κ(θ∗) = 1.

Moreover, the random variable X whose law is defined by

P(X ≤ x) = E
(∑
m∈M

1{θ∗m−κ(θ∗)≤x}e
θ∗m−κ(θ∗)

)

satisfies E(X2) <∞, as by (7.13) and (7.14),

E(X2) = E
(∑
m∈M

(θ∗m− κ(θ∗))2eθ
∗m−κ(θ∗)

)
= (θ∗)2κ′′(θ∗) <∞. (7.18)

Hence X is in the domain of attraction of the normal distribution, so that α from [24] is equal to 2, Y is
the normal distribution and (Yt, t ≥ 0) is a standard Brownian motion. Thus the function L∗ defined in
[24] verifies limx→∞ L∗(x) = (θ∗σ)2 (note that [24] contains a typo in formula (1.6), where Y should be
X) and the constant is C∗ = π2

2 . Finally (7.15) immediately implies (1.10) in [24], and (7.16) together
with (7.18) implies (1.9) there. Hence the conclusions of [24, Theorem 1.1] hold.

We combine Lemma 7.4 and Theorem 7.6 to bound the asymptotic behaviour of the speed of the
continuous-time branching random walk with selection. We start with the upper bound.

Lemma 7.7. Let ck be the speed of the continuous-time k-branching random walk defined in Lemma 7.3.
Then we have

lim sup
k→+∞

(log k)2(ck − e) ≤ −
π2e

2 .

Proof. Let (Yt(u), u ∈ Nt)t≥0 be a continuous-time branching random walk without selection, in which
particles create one child to their right at rate 1 and starting with k individuals at position 0 at time
0. Let k ∈ N, we define the càdlàg adapted process Kt as follows: at each integer time n ∈ N, we set
Kn = k and for all s ∈ [n, n+ 1], Ks is the number of descendants at time s of the k individuals alive at
time n in Y K . In other words, Y K is a continuous-time branching random walk with selection in which
at each integer time, the rightmost k particles are selected to survive. No additional killing of particles
is made.

It appears clear that Kt ≥ k a.s. for all t ≥ 0, therefore by Lemma 7.4, one can couple the branching
random walks with selection Y K and Y k in such a way that Y Kt (1) ≥ Y kt (1) a.s. As a result, we obtain

ck ≤ lim inf
t→∞

Y Kt (1)
t

a.s. (7.19)

We now observe that Y K can also be constructed as a discrete-time branching random walk with
selection. Indeed, each particle alive at time n ∈ N gives birth at time n + 1 to a point process of
individuals, distributed as (Ŷ1(u), u ∈ N̂1), where (Ŷt(u), u ∈ N̂t)t≥0 is a continuous-time branching
random walk without selection, in which particles create one child to their right at rate 1 and starting
with a single individual at position 0 at time 0. Then at time n+1, the rightmost k particles are selected.
We thus conclude that (Y Kn , n ≥ 0) is a discrete-time k-branching random walk.

Let θ ∈ C, we compute for all t ≥ 0, ft(θ) = E
(∑

u∈N̂t
eθŶt(u)

)
. As the first branching time of the

process is exponentially distributed with parameter 1, and after this reproduction event one particle at
position 0 and one particle at position 1 start independent copies of the branching process from their
position, we have

ft(θ) = e−t
(

1 +
∫ t

0
esfs(θ)(1 + eθ)ds

)
for all t ≥ 0. (7.20)

In particular, if θ ∈ iR, we have

|ft(θ)| ≤ E

∑
u∈N̂t

|eθŶt(u)|

 ≤ E
(

#N̂t
)

= et,

22



where we used that each particle creates one child at rate 1, so #N̂t has exponential distribution with
parameter e−t. Then, by the Cauchy-Lipschitz theorem applied to the linear differential equation (7.20),
we conclude that ft(iξ) = ete

iξ for all ξ ∈ R.
We then observe that we can rewrite

ft(iξ) =
∑
k∈Z

eiξk E

∑
u∈N̂t

1{
Ŷt(u)=k

} ,

so ft is the Fourier transform of a finite measure. We also observe that ξ 7→ ete
iξ is analytic in a

neighbourhood of 0 (and even on the whole plane). Then applying [22, Theorem 7.1.1], we deduce that
ξ 7→ ft(iξ) is analytic either on the whole plane, a half-plane or a strip. Therefore ft(θ) = ete

θ for all θ
in this domain. Moreover, by [22, Theorem 7.1.1] again, the boundaries of the domain of analyticity of
ft go through singular points that are on the real line. As θ ∈ C 7→ ete

θ has no singularity, we deduce
that ft is analytic on the whole plane.

As a result, we deduce that ft(θ) = ete
θ for all θ ∈ C. In particular, we obtain

E

∑
u∈N̂t

eθŶt(u)

 = ete
θ

for all θ ∈ R and t ≥ 0, (7.21)

This type of computation was first made in [30], we refer to [6, Lemma 4.5] for a similar computation,
as Ŷ can be thought of as a branching Lévy process with finite birth intensity, with characteristic triplet
(0, 0, δ(0,1,∞,...)).

As a result, we deduce that we have

κ(θ) := log E

∑
u∈N̂1

eθŶ1(u)

 = eθ.

From this, straightforward computations show that θ∗ = 1 and v = σ2 = e.
Moreover, (7.15) is verified: as the trajectories in Ŷt are non-decreasing, we have

P
(

max
u∈N̂1

Ŷ1(u) < 0
)

= 0

and by the above computations and the Markov inequality, for all y ≥ 0

P
(

max
u∈N̂1

Ŷ1(u) > y

)
≤ E

∑
u∈N̂1

eŶ1(u)−y

 ≤ eee−y,
proving that

∣∣∣max
u∈N̂1

Ŷ1(u)
∣∣∣ has exponential tails, hence a finite second moment.

We now show that (7.16) holds as well. Note there exists C > 0 such that x(log x)2 ≤ Cx2 + 1 for all
x > 0, therefore for all θ > 0,

E

∑
u∈N̂1

eθŶ1(u)

log
∑
u∈N̂1

eθŶ1(u)

2


≤ C E


∑
u∈N̂1

eθŶ1(u)

2
+ 1 =: Cgt(θ) + 1.

With the same reasoning as for the computation of ft, for all θ ∈ C and t ≥ 0, we have

gt(θ) = e−t
(

1 +
∫ t

0
es
(
gs(θ)(1 + e2θ) + 2eθfs(θ)2) ds) .
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This equation can be solved for θ ∈ iR as gt(θ) = eθ

eθ−2e
e2θt− 2

eθ−2e
2eθt. Moreover, we can again observe

that

gt(iξ) =
∞∑
k=0

eiξk
k∑
j=0

E

∑
u∈N̂t

∑
v∈N̂t

1{
Ŷt(u)=j,Ŷt(v)=k−j

} .

Therefore, once again ξ 7→ gt(iξ) is the Fourier transform of a finite measure (as gt(0) = 2e2t − et <∞).
Using again [22, Theorem 7.1.1], and that

θ 7→

{
eθee

2θt−2e2eθt

eθ−2 if θ 6= log 2
(4t+ 1)e4t if θ = log 2

is analytic on C, we deduce that this function is equal to gt(θ) for all θ ∈ C. In particular, this shows
that

E


∑
u∈N̂1

eθŶ1(u)

2
 <∞ for all θ ∈ R and t ≥ 0, (7.22)

and in particular g1(θ) <∞, completing the proof of (7.16).
As a result, we can apply Theorem 7.6 and we obtain

lim
n→∞

Y Kn (1)
n

= vk a.s.

with vk − e ∼ − π2e
2(log k)2 as k →∞. By (7.19), we have vk ≥ ck, which completes the proof.

The lower bound is obtained in a similar yet more involved fashion. The proof of this lemma is
adapted from [24, Section 4.4].

Lemma 7.8. Let ck be the speed of the continuous-time k-branching random walk defined in Lemma 7.3.
Then we have

lim inf
k→+∞

(log k)2(ck − e) ≥ −
π2e

2 .

Proof. In this proof, we construct a continuous-time particle process Ỹ that evolves similarly to a discrete-
time branching random walk with selection, with frequent renovation events, and that can be coupled with
the k-BRW Y k in such a way that its maximal displacement is smaller than the maximal displacement
of Y k. Given a ∈ (0, 1), the process typically evolves like a discrete-time dake-branching random walk,
and on a time scale of order (log k)3, every particle in the process is killed and replaced by dake particles
starting from the smallest position in Ỹ at that time.

Let a ∈ (0, 1), we set p = dake. Let (Yt(u), u ∈ Nt) (resp. (Ŷt(u), u ∈ N̂t)) be a continuous-time
branching random walk, starting from k particles (resp. a single particle) located at position 0. As
limt→0 E(#N̂t) + t = 1 < 1

a , there exists 0 < β < 1 such that E(#Nβ) < 1
a − β. We introduce the point

process Mβ := (Ŷβ(u), u ∈ N̂β).
Let (Zpn(j), j ≤ p)n be a discrete-time branching random walk with selection of the rightmost p

particles, with reproduction law Mβ , starting with p particles located at position 0 at time 0. Using
(7.21), we have κ(θ) = βeθ for every θ > 0 and

v = βe, θ∗ = 1 and σ2 = βe.

Let η > 0 and χp = β π2e
2(log p)2 . Using that the integrability condition (7.22) implies (1.9) in [24], we can

apply [24, Lemma 4.6] to obtain the existence of γ > 0 such that for all p ≥ 1 large enough, we have

P
(
∀n ≤ (log p)3, Zpn(p)− nβe ≤ −n(1 + η)χp

)
≤ exp(−pγ). (7.23)

To translate [24, Lemma 4.6] into (7.23), one should specialize the quantities defined in [24, Lemma 4.6]
similarly to what is done below Theorem 7.6, setting N = p, L the law of Mβ − βe, λ = βe, ε = η,
δ = γ, α = 2, and νN = χp, recalling that L∗(x) → βe as x → ∞. Lemma 4.6 in [24] is applied to the
branching random walk XN

n (N) = Zpn(p)− nβe.
Note that νN is defined in [24] by formula (4.1) and is, up to a sign, nothing but the right-hand

side of the formula in [24, Theorem 1.1]. The assumptions required for [24, Lemma 4.6] are the same as
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those of [24, Theorem 1.1] and one checks that they are satisfied exactly as in the proof of Lemma 7.7
since Mβ satisfies the assumptions appearing in and before the statement of Theorem 7.6. The estimate
(7.23) will be used later in the proof.

We observe that, as in the proof of Lemma 7.7, (Zpn(j), j ≤ p)n can also be constructed as the values
taken at discrete times by a continuous-time P -BRW, for a given adapted integer-valued càdlàg process
P . More precisely, we introduce (Pt) defined by Pnβ = p for any n ≥ 0 and for any t ∈ (nβ, (n + 1)β),
Pt is the number of descendants at time t of particles alive at time nβ. We have((

Y Pnβ(j), j ≤ p
)
, n ≥ 0

) (d)= ((Zpn(j), j ≤ p) , n ≥ 0) .

For any n ∈ N, we introduce the event Akn = {maxt≤βn Pt ≤ k}. By Lemma 7.4, we can couple Y k and
Y P in such a way that

∀x ∈ R, #{j ≤ P : Y Pnβ(j) ≥ x} ≤ #{j ≤ k : Y knβ(j) ≥ x} a.s. on Akn.

We bound from below the probability for Akn to occur. As every particle makes at least one child, the
process P is non-decreasing on each interval (nβ, (n + 1)β). Moreover, observe that Pβ− is the sum of
p i.i.d. random variables, each with the same distribution as the number #N̂β of particles alive at time
β in the continuous-time branching random walk (Ŷt). As #N̂β is a geometric random variable with
parameter e−β (see [3, p. 109]), by construction of β this random variable has mean smaller than 1/a and
has some exponential moments. By Cramér’s large deviations theorem, there exists ρ < 1 independent
of k such that P(Pβ− > k) < ρk. Therefore

P(Akn
c) ≤

n−1∑
j=0

P(Pjβ− > k) ≤ nρk. (7.24)

We now construct a continuous-time particle process Ỹ , based on the P -BRW Y P that bounds from
below the k-BRW Y k. Let np = (log p)3, we set T0 = 0. For any t ≥ 0, we write Ỹt(1), . . . the positions
of the particles in Ỹ at time t, ranked in a non-increasing order, and m̃t the position of the leftmost
particle at time t. The particle process Ỹ starts at time 0 with p particles at position 0 and behaves like
Y P until the waiting time

T1 = min(βnp, T (1)
1 , T

(2)
1 ), where T (1)

1 = inf {t ≥ 0 : Pt ≥ k}

and T
(2)
1 = β inf {n ∈ N : m̃nβ > n(βe− χp(1 + η))} .

At time T1, every particle in Ỹ is killed and p new particles are positioned at m̃T1− if PT1 > k (i.e.
T1 = T

(1)
1 ) and at position m̃T1 otherwise. By the above coupling between Y k and Y P , in both cases

there are at time T1 at least p particles in Y k to the right of the p newborn particles in Ỹ .
Let ` ∈ N, we assume the process Ỹ has been constructed until time T`. After this time, it evolves

as a P -BRW until time

T`+1 = min(T` + βnp, T
(1)
`+1, T

(2)
`+1), where T (1)

`+1 = inf {t ≥ T` : Pt ≥ k}

and T
(2)
`+1 = T` + β inf {n ∈ N : m̃T`+βn − m̃T` > n(βe− χp(1 + η))} .

At time T`+1, every particle in Ỹ is killed and p new particles are positioned at m̃T`+1− if PT`+1 > k (i.e.
T`+1 = T

(1)
`+1) and at position m̃T`+1 otherwise.

By induction and the construction of the process, we observe that Ỹ can be coupled with Y k in such
a way that for any t ≥ 0, we have

∀x ∈ R, #{j ≤ Pt : Ỹt(j) ≥ x} ≤ #{j ≤ k : Y kt (j) ≥ x}.

As Ỹt(Pt) ≤ Y kt (1) for any t > 0, we obtain lim sup
t→+∞

t−1(m̃t − te) ≤ ck − e, using Lemma 7.5.

Moreover, observe that (T`+1 − T`)` and (m̃T`+1 − m̃T`)` are i.i.d. sequences of random variables.
Consequently, by the law of large numbers we have

lim
`→∞

T`
`

= E(T1) and lim
`→∞

m̃T`

`
= E(m̃T1) a.s.,
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where E(T1) ≤ βnp <∞ by definition, and m̃T1 ≥ 0 a.s. Therefore, we have

lim
`→∞

m̃T` − T`e
T`

= E(m̃T1 − T1e)
E(T1) ≤ ck − e.

As a result, to conclude the proof it is enough to bound E(m̃T1 −T1e) from below. We introduce the
event G = {T1 = T

(2)
1 < T

(1)
1 }. By definition of T1,

E(m̃T1 − T1e) ≥ E
(
−T1

β χp(1 + η)1G
)

+ E ((m̃T1− − T1e)1Gc) . (7.25)

Observe that until time T1−, Ỹ behaves as a P -BRW. In particular, the trajectories of particles are
non-decreasing, therefore

E ((m̃T1− − T1e)1Gc) ≥ −E(T1e1Gc)

≥ −eβnp
(
e−p

γ

+ npρ
k
)

= o
(

(log k)−4
)
,

by (7.23) and (7.24).
As a consequence, (7.25) yields

lim inf
k→+∞

(log k)2(ck − e) ≥ lim inf
k→+∞

−(log k)2χp
β

(1 + η)E(T11G)
E(T1) ≥ −π

2e

2 (1 + η).

We conclude the proof by letting η → 0.

The last statement of Lemma 7.3 is a combination of Lemmas 7.7 and 7.8.
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