G. Allaire, Shape optimization by the homogenization method, Applied Mathematical Sciences, vol.146, 2002.
DOI : 10.1007/s002110050253

A. M. Anile, Relativistic fluids and magneto-fluids. Cambridge Monographs on mathematical Physics, 1989.
DOI : 10.1017/cbo9780511564130

J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Archive for Rational Mechanics and Analysis, vol.8, issue.4, pp.337-403, 1977.
DOI : 10.6028/jres.075B.007

J. Bony, Solutions globales bornées pour les modèles discrets de l'´ equation de Boltzmann en dimension 1 d'espace, Journées EDPs, 1987.
DOI : 10.5802/jedp.337

C. Cercignani, Global Weak Solutions of the Boltzmann Equation, Journal of Statistical Physics, vol.34, issue.1-2, pp.333-342, 2005.
DOI : 10.1007/s10955-004-8786-4

R. Coifman, P. Lions, Y. Meyer, and &. S. Semmes, Compacité par compensation et espaces de Hardy, C. R. Acad. Sci. Paris, pp.309-945, 1989.

C. Conca and M. Vanninathan, On uniform H-estimates in periodic homogenization, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, vol.131, issue.03, pp.131-499, 2001.
DOI : 10.1017/S0308210500000986

G. De-philippis and A. Figalli, The Monge???Amp??re equation and its link to optimal transportation, Bulletin of the American Mathematical Society, vol.51, issue.4, pp.51-527, 2014.
DOI : 10.1090/S0273-0979-2014-01459-4

R. Diperna and P. Lions, On the Cauchy Problem for Boltzmann Equations: Global Existence and Weak Stability, The Annals of Mathematics, vol.130, issue.2, pp.130-321, 1990.
DOI : 10.2307/1971423

H. Federer, Geometric measure theory, 1969.
DOI : 10.1007/978-3-642-62010-2

A. Figalli, F. Maggi, and A. Pratelli, A mass transportation approach to quantitative isoperimetric inequalities, Inventiones mathematicae, vol.34, issue.4, pp.167-211, 2010.
DOI : 10.1090/gsm/058

E. Gagliardo, Proprietà di alcune di funzioni inpì u variabili, Ricerche Mat, vol.7, pp.102-137, 1958.

M. D. Gromov, &. G. Milman, and . Schechtman, Isoperimetric inequalities in Riemannian manifolds. Appendix I in V Asymptotic theory of finite dimensional normed spaces, pp.114-129, 1986.

P. Lions and N. Masmoudi, From the Boltzmann Equations to the Equations of Incompressible Fluid Mechanics, II, Archive for Rational Mechanics and Analysis, vol.158, issue.3, pp.195-211, 2001.
DOI : 10.1007/s002050100144

T. Makino and S. Ukai, Local smooth solutions of the relativistic Euler equation, Journal of Mathematics of Kyoto University, vol.35, issue.1, pp.105-114, 1995.
DOI : 10.1215/kjm/1250518844

S. Müller, A surprising higher integrability property of mappings with positive determinant, Bulletin of the American Mathematical Society, vol.21, issue.2, pp.245-248, 1989.
DOI : 10.1090/S0273-0979-1989-15818-7

F. Murat, Compacit?? par compensation, Mémoires de la Société mathématique de France, vol.1, pp.489-507, 1978.
DOI : 10.24033/msmf.265

D. Serre, Shock reflection in gas dynamics Handbook of Mathematical Fluid Dynamics IV, pp.39-122, 2007.

D. Serre, Expansion of a compressible gas in vacuum, Bull. Inst. Math. Academia Sinica (New Series), vol.10, pp.695-716, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01138168

L. Tartar, Compensated compactness and applications to partial differential equations. Nonlinear analysis and mechanics: Heriot-Watt Symposium, IV, Res. Notes in Math, vol.39, pp.136-212, 1979.

L. Tartar, The general theory of Homogenization ; A personalized introduction, Lecture notes of the Unione Matematica Italiana, 2009.

C. Villani, Topics in optimal transportation, Graduate Studies in Mathematics Amer. Math. Society, vol.58, 2003.
DOI : 10.1090/gsm/058