The multiplicity problem for periodic orbits of magnetic flows on the 2-sphere

Abstract : We consider magnetic Tonelli Hamiltonian systems on the cotan-gent bundle of the 2-sphere, where the magnetic form is not necessarily exact. It is known that, on very low and on high energy levels, these systems may have only finitely many periodic orbits. Our main result asserts that almost all energy levels in a precisely characterized intermediate range (e 0 , e 1) possess infinitely many periodic orbits. Such a range of energies is non-empty, for instance, in the physically relevant case where the Tonelli Lagrangian is a kinetic energy and the magnetic form is oscillating (in which case, e 0 = 0 is the minimal energy of the system).
Type de document :
Article dans une revue
advanced nonlinear studies, 2017, 17, 〈10.1515/ans-2016-6003〉
Liste complète des métadonnées

https://hal-ens-lyon.archives-ouvertes.fr/ensl-01475309
Contributeur : Marco Mazzucchelli <>
Soumis le : jeudi 23 février 2017 - 15:50:50
Dernière modification le : jeudi 11 janvier 2018 - 06:12:31
Document(s) archivé(s) le : mercredi 24 mai 2017 - 14:26:32

Fichier

sphere.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Alberto Abbondandolo, Luca Asselle, Gabriele Benedetti, Marco Mazzucchelli, Iskander Taimanov. The multiplicity problem for periodic orbits of magnetic flows on the 2-sphere. advanced nonlinear studies, 2017, 17, 〈10.1515/ans-2016-6003〉. 〈ensl-01475309〉

Partager

Métriques

Consultations de la notice

39

Téléchargements de fichiers

19