AFM study of hydrodynamics in boundary layers around micro- and nanofibers - ENS de Lyon - École normale supérieure de Lyon Accéder directement au contenu
Article Dans Une Revue Physical Review Fluids Année : 2016

AFM study of hydrodynamics in boundary layers around micro- and nanofibers

Résumé

The description of hydrodynamic interactions between a particle and the surrounding liquid, down to the nanometer scale, is of primary importance since confined liquids are ubiquitous in many natural and technological situations. In this paper we combine three nonconventional atomic force microscopes to study hydrodynamics around micro-and nanocylinders. These complementary methods allow the independent measurement of the added mass and friction terms over a large range of probe sizes, fluid viscosities, and solicitation conditions. A theoretical model based on an analytical description of the velocity field around the probe shows that the friction force depends on a unique parameter, the ratio of the probe radius to the thickness of the viscous boundary layer. We demonstrate that the whole range of experimental data can be gathered in a master curve, which is well reproduced by the model. This validates the use of these atomic force microscopy modes for a quantitative study of hydrodynamics and opens the way to the investigation of other sources of dissipation in simple and complex fluids down to the submicron scale.
Fichier principal
Vignette du fichier
PhysRevFluids.1.044104.pdf (1.73 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

ensl-01474528 , version 1 (22-02-2017)

Identifiants

Citer

Julien Dupré de Baubigny, Michael Benzaquen, Caroline Mortagne, Clémence Devailly, Sébastien Kosgodagan Acharige, et al.. AFM study of hydrodynamics in boundary layers around micro- and nanofibers. Physical Review Fluids, 2016, 1, pp.44104 - 44104. ⟨10.1103/PhysRevFluids.1.044104⟩. ⟨ensl-01474528⟩
2283 Consultations
451 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More