Quantitative aspects of linear and affine closed lambda terms

Abstract : Affine $λ$-terms are $λ$-terms in which each bound variable occurs at most once and linear $λ$-terms are $λ$-terms in which each bound variables occurs once. and only once. In this paper we count the number of closed affine $λ$-terms of size $n$, closed linear $λ$-terms of size $n$, affine $β$-normal forms of size $n$ and linear $β$-normal forms of ise $n$, for different ways of measuring the size of $λ$-terms. From these formulas, we show how we can derive programs for generating all the terms of size $n$ for each class. For this we use a specific data structure, which are contexts taking into account all the holes at levels of abstractions.
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal-ens-lyon.archives-ouvertes.fr/ensl-01464047
Contributeur : Pierre Lescanne <>
Soumis le : dimanche 21 mai 2017 - 15:22:31
Dernière modification le : mardi 24 avril 2018 - 13:52:57
Document(s) archivé(s) le : mercredi 23 août 2017 - 10:53:02

Fichiers

counting_affine.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : ensl-01464047, version 5
  • ARXIV : 1702.03085

Collections

Citation

Pierre Lescanne. Quantitative aspects of linear and affine closed lambda terms. 2017. 〈ensl-01464047v5〉

Partager

Métriques

Consultations de la notice

97

Téléchargements de fichiers

24