C. Abraham and J. Gall, Excursion theory for Brownian motion indexed by the Brownian tree. ArXiv e-prints, 2015.

M. Albenque and C. Goldschmidt, The Brownian continuum random tree as the unique solution to a fixed point equation, Electronic Communications in Probability, vol.20, issue.0, 2015.
DOI : 10.1214/ECP.v20-4250

M. Albenque and J. Marckert, Some families of increasing planar maps, Electronic Journal of Probability, vol.13, issue.0, pp.1624-1671, 2008.
DOI : 10.1214/EJP.v13-563

URL : https://hal.archives-ouvertes.fr/hal-00193880

D. Aldous, The Continuum random tree II: an overview, In Stochastic analysis London Math. Soc. Lecture Note Ser, vol.167, pp.23-70, 1990.
DOI : 10.1017/CBO9780511662980.003

O. Angel and O. Schramm, Uniform Infinite Planar Triangulations, Communications in Mathematical Physics, vol.28, issue.2-3, pp.191-213, 2003.
DOI : 10.1007/s00220-003-0932-3

URL : http://arxiv.org/abs/math/0207153

A. D. Barbour and B. L. Granovsky, Random combinatorial structures: the convergent case, Journal of Combinatorial Theory, Series A, vol.109, issue.2, pp.203-220, 2005.
DOI : 10.1016/j.jcta.2004.09.001

URL : http://doi.org/10.1016/j.jcta.2004.09.001

J. P. Bell, S. N. Burris, and K. A. Yeats, Counting rooted trees: the universal law t(n) ? C? ?n n ?3/2, Electron. J. Combin, vol.13, issue.64, p.pp, 2006.

I. Benjamini and O. Schramm, Recurrence of distributional limits of finite planar graphs, Electron. J. Probab, vol.6, issue.13, p.pp, 2001.

F. Bergeron, G. Labelle, and P. Leroux, Combinatorial species and tree-like structures, volume 67 of Encyclopedia of Mathematics and its Applications, Translated from the 1994 French original by Margaret Readdy, 1998.

J. Bettinelli, Scaling limit of random planar quadrangulations with a boundary, Annales de l'Institut Henri Poincar??, Probabilit??s et Statistiques, vol.51, issue.2, pp.432-477, 2015.
DOI : 10.1214/13-AIHP581

URL : https://hal.archives-ouvertes.fr/hal-00646399

]. M. Bodirsky, ´. E. Fusy, M. Kang, and S. Vigerske, Boltzmann Samplers, P??lya Theory, and Cycle Pointing, SIAM Journal on Computing, vol.40, issue.3, pp.721-769, 2011.
DOI : 10.1137/100790082

URL : http://arxiv.org/abs/1003.4546

N. Broutin and P. Flajolet, The distribution of height and diameter in random non-plane binary trees. Random Structures Algorithms, pp.215-252, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00773369

D. Burago, Y. Burago, and S. Ivanov, A course in metric geometry, Graduate Studies in Mathematics, vol.33, 2001.
DOI : 10.1090/gsm/033

A. Caraceni, The scaling limit of random outerplanar maps, Annales de l'Institut Henri Poincar??, Probabilit??s et Statistiques, vol.52, issue.4
DOI : 10.1214/15-AIHP694

N. Curien, B. Haas, and I. Kortchemski, The CRT is the scaling limit of random dissections. Random Structures Algorithms, pp.304-327, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00823219

M. Drmota, Random trees. SpringerWienNewYork, Vienna, 2009. An interplay between combinatorics and probability
URL : https://hal.archives-ouvertes.fr/inria-00001281

M. Drmota and B. Gittenberger, The shape of unlabeled rooted random trees, European Journal of Combinatorics, vol.31, issue.8, pp.2028-2063, 2010.
DOI : 10.1016/j.ejc.2010.05.011

P. Duchon, P. Flajolet, G. Louchard, and G. Schaeffer, Random Sampling from Boltzmann Principles, Automata, languages and programming, pp.501-513, 2002.
DOI : 10.1007/3-540-45465-9_43

URL : https://hal.archives-ouvertes.fr/inria-00100938

P. Duchon, P. Flajolet, G. Louchard, and G. Schaeffer, Random generation of combinatorial structures: Boltzmann samplers and beyond, Proceedings of the 2011 Winter Simulation Conference (WSC), pp.4-5577, 2004.
DOI : 10.1109/WSC.2011.6147745

URL : https://hal.archives-ouvertes.fr/hal-00654267

]. P. Flajolet, ´. E. Fusy, and C. Pivoteau, Boltzmann Sampling of Unlabelled Structures, Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments and the Fourth Workshop on Analytic Algorithmics and Combinatorics, pp.201-211, 2007.
DOI : 10.1137/1.9781611972979.5

URL : https://hal.archives-ouvertes.fr/hal-00782866

P. Flajolet and R. Sedgewick, Analytic combinatorics, 2009.
DOI : 10.1017/CBO9780511801655

URL : https://hal.archives-ouvertes.fr/inria-00072739

A. Georgakopoulos and S. Wagner, Limits of subcritical random graphs and random graphs with excluded minors. ArXiv e-prints, 2015.

O. Gurel-gurevich and A. Nachmias, Recurrence of planar graph limits, Annals of Mathematics, vol.177, issue.2, pp.761-781, 2013.
DOI : 10.4007/annals.2013.177.2.10

B. Haas and G. Miermont, Scaling limits of Markov branching trees with applications to Galton???Watson and random unordered trees, The Annals of Probability, vol.40, issue.6, pp.2589-2666, 2012.
DOI : 10.1214/11-AOP686

URL : https://hal.archives-ouvertes.fr/hal-00464337

S. Janson and S. ¨. Stefánsson, Scaling limits of random planar maps with a unique large face, The Annals of Probability, vol.43, issue.3
DOI : 10.1214/13-AOP871

J. Gall and G. Miermont, Scaling limits of random trees and planar maps, Probability and statistical physics in two and more dimensions, pp.155-211
URL : https://hal.archives-ouvertes.fr/hal-00559461

J. Marckert and G. Miermont, The CRT is the scaling limit of unordered binary trees. Random Structures Algorithms, pp.467-501, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00364487

R. Otter, The Number of Trees, The Annals of Mathematics, vol.49, issue.3, pp.583-599, 1948.
DOI : 10.2307/1969046

K. Panagiotou and B. Stufler, Scaling limits of random Pólya trees. ArXiv e-prints, 2015.

K. Panagiotou, B. Stufler, and K. Weller, Scaling limits of random graphs from subcritical classes, The Annals of Probability, vol.44, issue.5, pp.3291-3334, 2016.
DOI : 10.1214/15-AOP1048

URL : https://hal.archives-ouvertes.fr/hal-01337777

B. Stufler, Random enriched trees with applications to random graphs
URL : https://hal.archives-ouvertes.fr/ensl-01461638

G. Szekeres, Distribution of labelled trees by diameter, Lecture Notes in Math, vol.4, pp.392-397, 1982.
DOI : 10.1147/rd.45.0473

M. Wang, Height and diameter of Brownian tree, Electronic Communications in Probability, vol.20, issue.0, p.15, 2015.
DOI : 10.1214/ECP.v20-4193

URL : https://hal.archives-ouvertes.fr/hal-01132277