SYNTOMIC COMPLEXES AND p-ADIC NEARBY CYCLES

Abstract : We compute syntomic cohomology of semistable affinoids in terms of cohomology of (ϕ, Γ)-modules which, thanks to work of Fontaine-Herr, Andreatta-Iovita, and Kedlaya-Liu, is known to compute Galois cohomology of these affinoids. For a semistable scheme over a mixed characteristic local ring this implies a comparison isomorphism, up to some universal constants, between truncated sheaves of p-adic nearby cycles and syntomic cohomology sheaves. This generalizes the comparison results of Kato, Kurihara, and Tsuji for small Tate twists (where no constants are necessary) as well as the comparison result of Tsuji that holds over the algebraic closure of the field. As an application, we combine this local comparison isomorphism with the theory of finite dimensional Banach Spaces and finiteness ofétale ofétale cohomology of rigid analytic spaces proved by Scholze to prove a Semistable conjecture for formal schemes with semistable reduction.
Type de document :
Article dans une revue
Inventiones Mathematicae, Springer Verlag, 2017, pp.1-108
Liste complète des métadonnées

Littérature citée [57 références]  Voir  Masquer  Télécharger

https://hal-ens-lyon.archives-ouvertes.fr/ensl-01420358
Contributeur : Wieslawa Niziol <>
Soumis le : mardi 20 décembre 2016 - 14:48:58
Dernière modification le : mercredi 21 mars 2018 - 18:56:45
Document(s) archivé(s) le : mardi 21 mars 2017 - 06:05:37

Fichier

logvanishing6.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : ensl-01420358, version 1

Collections

Citation

Pierre Colmez, Wieslawa Niziol. SYNTOMIC COMPLEXES AND p-ADIC NEARBY CYCLES. Inventiones Mathematicae, Springer Verlag, 2017, pp.1-108. 〈ensl-01420358〉

Partager

Métriques

Consultations de la notice

141

Téléchargements de fichiers

68