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GEOMETRIC SYNTOMIC COHOMOLOGY AND VECTOR BUNDLES ON THE
FARGUES-FONTAINE CURVE

WIES LAWA NIZIO L

Abstract. We show that geometric syntomic cohomology lifts canonically to the category of Banach-

Colmez spaces and study its relation to extensions of modifications of vector bundles on the Fargues-

Fontaine curve. We include some computations of geometric syntomic cohomology Spaces: they are finite

rank Qp-vector spaces for ordinary varieties, but in the nonordinary case, these cohomology Spaces carry

much more information, in particular they can have a non-trivial C-rank. This dichotomy is reminiscent

of the Hodge-Tate period map for p-divisible groups.
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1. Introduction

As is well-known, syntomic cohomology is a p-adic analog of Deligne-Beilinson cohomology. Recall that
the latter is an absolute Hodge cohomology [2], i.e., it can be computed as Ext groups in the category

Date: December 20, 2016.

The author’s research was supported in part by the grant ANR-14-CE25.

1



2 WIES LAWA NIZIO L

of mixed Hodge structures; a feature that makes definition of regulators straightforward. In [9], it was
shown that this is also the case for syntomic cohomology of varieties over a p-adic local filed K: it is an
absolute p-adic Hodge cohomology, i.e., it can be computed as Ext groups in a category of admissible
filtered ϕ-modules of Fontaine. In this paper we prove an analog of this statement for geometric syntomic
cohomology (i.e. for varieties over K): it can be computed as Ext groups in the category of effective
filtered ϕ-modules over K (what Fargues would call “ϕ-modules jaugés”). It follows that it has an extra
rigid structure, namely, it comes from a complex of finite dimensional Banach-Colmez spaces; hence
the geometric syntomic cohomology groups are finite dimensional Banach-Colmez spaces. In the case of
ordinary varieties, these groups are of Dimension (0, h), i.e. are finite dimensional Qp-vector spaces, but
in the nonordinary case, these groups can have Dimension (d, h), with d ≥ 1, and thus carry much more
information, as we show on the example of the symmetric square of an elliptic curve.

We are now going to explain in more details what we have said above. Recall that, for a log-smooth
variety X over OK – a complete discrete valuation ring of mixed characteristic (0, p) with field of fractions
K and perfect residue field – the arithmetic syntomic cohomology of X is defined as a filtered Frobenius
eigenspace of its crystalline cohomology

(1.1) RΓsyn(X , r) := [RΓcr(X )ϕ=pr

→ RΓcr(X )/F r], r ≥ 0.

For a variety X over K, this sheafifies well in the h-topology 1 and yields syntomic cohomology RΓsyn(X, r),
r ≥ 0, of X [16]. This cohomology comes equipped with a period map to étale cohomology

ρsyn : RΓsyn(X, r)→ RΓét(X,Qp(r))

that is a quasi-isomorphism after taking the truncation τ≤r. Syntomic cohomology approximates better p-
adic motivic cohomology than étale cohomology does; in particular, étale p-adic regulators from K-theory
factor through syntomic cohomology.

As was shown in [9], syntomic cohomology is an absolute p-adic Hodge cohomology. Namely, the
data of the Hyodo-Kato cohomology RΓHK(XK) and the de Rham cohomology RΓdR(XK) together with
the Hyodo-Kato quasi-isomorphism ιdR : RΓHK(XK) ⊗Fnr K

∼
→ RΓdR(XK), where F is the maximal

absolutely unramified subfield of K and F nr – its maximal unramified extension, allows to canonically
associate to any variety X over K a complex RΓDFK

(X, r) of Fontaine’s admissible filtered (ϕ,N,GK)-
modules. One proves that

RΓsyn(X, r) ' HomDb(DFK)(1, RΓDFK
(X, r)), r ≥ 0.

Syntomic cohomology from (1.1) has a geometric version. Geometric syntomic cohomology is defined
as a filtered Frobenius eigenspace of geometric crystalline cohomology

(1.2) RΓsyn(XOK
, r) := [RΓcr(XOK

)ϕ=pr

→ RΓcr(XOK
)/F r], r ≥ 0,

where K is an algebraic closure of K and OK – its ring of integers. For a variety X over K, this also
sheafifies well in the h-topology2 and yields syntomic cohomology of X [16]

RΓsyn(X, r) = [RΓcr(X)pr=ϕ → RΓcr(X)/F r].

This cohomology comes equipped with a period map to étale cohomology

ρsyn : RΓsyn(X, r)→ RΓét(X,Qp(r))

that is a quasi-isomorphism after taking the truncation τ≤r. In particular, the groups Hi
syn(X, r), i ≤ r,

are finite rank Qp-vector spaces.
The first main result of this paper is that geometric syntomic is an absolute p-adic Hodge cohomology.

To explain what this means, we note that we have the isomorphisms

Hi
cr(X) ' Hi

HK(X)⊗Fnr B+
cr, H i

cr(X)/F r ' (Hi
dR(X)⊗K B+

dR)/F r,

1Contrary to crystalline cohomology itself which does not sheafify well. The sheafification process uses the fact that

h-topology has a basis consisting of smooth varieties with semistable compactifications [3].
2Here crystalline cohomology itself also sheafifies well and yields well-behaved crystalline cohomology RΓcr(X) of X.
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where B∗
∗ denotes rings of p-adic periods, and an isomorphism

ιdR : Hi
cr(X)⊗B+

cr
B+

dR
∼
→ Hi

dR(X)⊗K B+
dR.

Hence the data
(Hi

cr(X)⊗B+
cr

B+, (Hi
dR(X)⊗K B+

dR, F r), ιdR)

gives an effective filtered ϕ-module over K3. The category of such objects is equivalent to the category
of effective modifications of vector bundles on the Fargues-Fontaine curve4. For the above data: the
vector bundle is associated to the ϕ-module over B+

cr given by Hi
cr(X) and it is modified at infinity by

the B+
dR-lattice F r(Hi

dR(X)⊗K B+
dR). As in the arithmetic case this data can be lifted to complexes and

we obtain the first main result of this paper.

Theorem 1.1. (1) To every variety X over K one can associate a canonical complex of effective
filtered ϕ-modules RΓDFK

(X, r),r ≥ 0.
(2) There is a canonical quasi-isomorphism

RΓsyn(X, r) ' RHom+(1, RΓDFK
(X, r)), r ≥ 0,

where RHom+ denotes the derived Hom in the category of effective filtered ϕ-modules over K.

For an effective ϕ-module M , the complex RHom+(1,M) has nontrivial cohomology only in degrees
0, 1; we call them H0

+(K,M) and H1
+(K,M). Hence the above spectral sequence reduces to the short

exact sequence

(1.3) 0→ H1
+(K,H i−1

DFK
(X, r))→ Hi

syn(X, r)→ H0
+(K,H i

DFK
(X, r))→ 0.

This sequence can be easily seen to arise from the fundamental (long) exact sequence

(1.4) → (Hi−1
dR (X)⊗K B+

dR)/F r → Hi
syn(X, r)→ (Hi

HK(X)⊗Fnr B+)ϕ=pr ιdR−−→(Hi
dR(X)⊗K B+

dR)/F r →

The terms
(Hi

HK(X)⊗Fnr B+)ϕ=pr

, (Hi
dR(X)⊗K B+

dR)/F r

are the key examples of p-adic Banach spaces that are C-points, C = K̂, of finite dimensional Banach-
Colmez spaces [6]. The latter are defined, roughly, as finite rank C-vector spaces modulo finite rank
Qp-vector spaces, rigidified as functors on a subcategory of perfectoid spaces. The second main result of
this paper states that this is also the case for geometric syntomic cohomology.

Theorem 1.2. There exists a canonical complex of Banach-Colmez spaces RΓsyn(X, r) such that

(1) RΓsyn(X, r)(C) ' RΓsyn(X, r); in particular, HiRΓsyn(X, r)(C) ' Hi
syn(X, r).

(2) The fundamental exact sequence (1.4) lifts canonically to the category of Banach-Colmez spaces.
(3) The syntomic period map [16]

ρsyn : RΓsyn(X, r)→ RΓét(X,Qp(r))

can be lifted canonically to the category of Banach-Colmez spaces; the H0-term in the exact
sequence (1.3) is equal to the image of this period map.

(4) The exact sequence (1.3) can be lifted canonically to the category of Banach-Colmez spaces; the
H1-term is the identity component of HiRΓsyn(X, r), the H0-term – the space of its connected
components.

We also show that Theorem 1.1 and Theorem 1.2 have analogs for semistable formal schemes.

Acknowledgments. We would like thank Laurent Fargues for many very helpful discussions concerning
Banach-Colmez spaces and the Fargues-Fontaine curve. Special thanks go to Pierre Colmez for explaining
to us his work on Banach-Colmez spaces and helping us work out some of the examples included in this
paper. We have also profited from exchanges with Bhargav Bhatt, Frédéric Déglise, Tony Scholl, and
Peter Scholze.

3ϕ-module jaugé in the original terminology of Fargues.
4However the equivalence does not preserve relevant exact structures.
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1.0.1. Notation and conventions. For a field L, let V arL be the category of varieties over L.
We will use a shorthand for certain homotopy limits. Namely, if f : C → C ′ is a map in the dg derived

category of an abelian category, we set

[ C
f // C ′ ] := holim(C → C ′ ← 0).

We also set 






C1

��

f // C2

��
C3

g // C4








:= [[C1
f
→ C2]→ [C3

g
→ C4]],

where the diagram in the brackets is a commutative diagram in the dg derived category.

2. Preliminaries

Let OK be a complete discrete valuation ring with fraction field K of characteristic 0 and with perfect
residue field k of characteristic p. Let K be an algebraic closure of K and let OK denote the integral
closure of OK in K; set C := K

∧
and let C[ be its tilt with valuation v. Let W (k) = OF be the ring

of Witt vectors of k with fraction field F . Set GK = Gal(K/K), and let ϕ = ϕW (k) be the absolute

Frobenius on W (k).
In this section we will briefly recall some facts from p-adic Hodge Theory that may not yet be classical.

2.1. Finite dimensional Banach-Colmez spaces. ????small dim or capital Dim ????
Recall [6] that a finite dimensional Banach-Colmez space W is, morally, a finite dimensional C-vector

space up to a finite dimensional Qp-vector space. It has a Dimension5 Dim W = (a, b), where a =
dim W ∈ N, the dimension of W , is the dimension of the C-vector space and b = ht W ∈ Z, the height
of W , is the dimension of the Qp-vector space. More precisely, a Banach-Colmez space W is a functor
Λ 7→ W(Λ), from the category of sympathetic algebras (spectral Banach algebras, such that x 7→ xp is
surjective on {x, |x− 1| < 1}; such an algebra is, in particular, perfectoid) to the category of Qp-Banach
spaces. Trivial examples of such objects are:
• finite dimensional Qp-vector spaces V , with associated functor Λ 7→ V for all Λ,
• Vd, for d ∈ N, with Vd(Λ) = Λd, for all Λ.
A Banach-Colmez space W is finite dimensional if it “is equal to Vd, for some d ∈ N, up to finite

dimensional Qp-vector spaces”. More precisely, we ask that there exists finite dimensional Qp-vector
spaces V1, V2 and exact sequences

0→ V1 → Y→ Vd → 0, 0→ V2 → Y→W→ 0,

so that W is obtained from Vd by “adding V1 and moding out by V2”. Then dimW = d and htW =
dimQp V1 − dimQp V2. (We are, in general, only interested in W(C) but, without the extra structure, it
would be impossible to speak of its Dimension.)

Proposition 2.1. (i) The Dimension of a finite dimensional Banach-Colmez space is independant of the
choices made in its definition.

(ii) If f : W1 →W2 is a morphism of finite dimensional Banach-Colmez spaces, then Ker f , Coker f ,
and Im f are finite dimensional Banach-Colmez spaces, and we have

dimW1 = dimKer f + dim Im f and dimW2 = dimCoker f + dim Im f.

(iii) If dimW = 0, then htW ≥ 0.
(iv) If W has an increasing filtration such that the successive quotients are V1, and if W′ is a sub-

Banach-Colmez space of W, then htW′ ≥ 0.

5In [6], the dimension is called the “dimension principale”, noted dimpr, and the height is called the “dimension

résiduelle”, noted dimres, and the Dimension is called simply the “dimension”.
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Proof. The first two points are the core of the theory [6, Th. 0.4]. The third point is obvious and the
fourth is [7, Lemme 2.6]. �

2.2. Period rings.

2.2.1. Period rings. Main references for this section are [10], [11], [12]. Let B+
cr, B+

st, B+
dR, Bcr, Bst, BdR

be the Fontaine’s rings of crystalline, semistable, and de Rham periods, respectively. Let ι : Bst ↪→ BdR

be the canonical embedding.
Let E = W (C[)[1/p]. Define

Bb = {
∑

n�−∞

[xn]pn ∈ E | ∃K, ∀n |xn| ≤ K},

Bb,+ = {
∑

n�−∞

[xn]pn ∈ E |xn ∈ OC[} = W (OC[)[1/p].

For x =
∑

n[xn]pn ∈ Bb and ρ ∈]0, 1[, r ≥ 0, set

|x|ρ = sup
n
|xn|ρ

n, vr(x) = inf
n∈Z
{v(xn) + nr}.

If ρ = p−r ∈]0, 1[, we have |x|ρ = p−vr(x). For r ≥ 0, vr is a valuation on Bb; thus, for ρ ∈]0, 1], |∙|ρ is a
multiplicative norm. One defines the rings B and B+ as the completions of Bb and Bb,+, respectively,
with respect to (|∙|ρ)ρ∈]0,1[. For a compact interval I ⊂]0, 1[, the ring BI is the completion of Bb with
respect to (|∙|ρ)ρ∈I . It is a PID. The rings B, B+ are Qp-Frechet algebras and B+ is the closure of Bb,+

in B. The ring BI is a Qp-Banach algebra and we have B = lim←−
I∈]0,1[

BI .

We have

(1) B+ =
⋂

n≥0 ϕn(B+
cr).

6

(2) For an F -isocrystal D, (D ⊗F B+
cr)

ϕ=1 = (D ⊗F B+)ϕ=1 = (D ⊗F B)ϕ=1.
(3) For d < 0, Bϕ=pd

= 0. Bϕ=1 = Qp, and, for d ≥ 0, Bϕ=pd

= (B+)ϕ=pd

.
(4) There is a natural map ι : B→ B+

dR compatible with the embedding B+
cr → B+

dR.

Let B+
log be the period ring defined in the same way as B+

st but starting from B+ instead of from
B+

cr. We will denote by ι : B+
log → B+

dR the canonical imbedding. We have a canonical map B+
log → B+

st

compatible with all the structures. For an F -isocrystal D, we have

(2.1) (D ⊗F B+
st)

ϕ=1,N=0 = (D ⊗F B+
log)

ϕ=1,N=0.

The Robba ring R is defined as R = lim−→ρ→0
B]0,ρ], where B]0,ρ] := lim←−0<ρ′≤ρ

B[ρ′,ρ] is the completion of Bb

with respect to (|∙|ρ′)0<ρ′≤ρ. Since ϕ : B]0,ρ]
∼
→ B]0,ρp] the ring R is equipped with a bijective Frobenius.

By [15, Theorem 2.9.6], the ring B]0,ρ] is Bézout. Any closed ideal of B]0,ρ] is principal. Hence the ring
R is Bézout as well.

2.2.2. Period Rings and some Banach-Colmez spaces. Recall [6], that the above rings of periods can
be also defined starting from any sympathetic algebra instead of C. One obtains Rings (of periods)
B+,B+

st,B
+
dR and natural morphisms ι : B+

st ↪→ B+
dR, ι : B+ ↪→ B+

dR. We have B+ = B+(C), B+
st = B+

st(C),
B+

dR = B+
dR(C).

The category BC of finite dimensional Banach-Colmez spaces is abelian. The functor of C-points

BC → Banach, X 7→ X(C).

is exact and faithful. In particular, if C• ∈ Cb(BC ) is a complex of finite dimensional Banach-Colmez
spaces then we have that its cohomology Hi(C•) is a Banach-Colmez space as well and, for its C-points,
we have Hi(C•)(C) = Hi(C•(C)).

Recall that a ϕ-module (over F ) is a finite rank vector space over F equipped with a bijective semilinear
Frobenius ϕ : D → D. A (ϕ,N)-module (over F ) is a finite ϕ-module (over F ) equipped with a

6Hence B+ is the ring B+
rig from classical p-adic Hodge Theory.
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monodromy operator N : D → D such that Nϕ = pϕN . A filtered (ϕ,N)-module (over K) is a finite
(ϕ,N)-module over F such that DK := D ⊗F K is a filtered K-vector space.

To D, a finite filtered (ϕ,N)-module over K, and to r ≥ 0, one can associate Banach-Colmez spaces

D 7→ Xr
st(D) = (D ⊗F t−rB+

st)
ϕ=1,N=0 = (D ⊗F B

+
st)

ϕ=pr,N=0,

D 7→ Xr
dR(D) = (DK ⊗K t−rB+

dR)/F 0 = (DK ⊗K B
+
dR)/F r.

These are exact functors. We also have a natural transformation ι : Xr
st(D) → Xr

dR(D) induced by the
morphism ι : B+

st ↪→ B+
dR.

A filtered (ϕ,N,GK)-module is a tuple (D,ϕ,N, ρ, F •), where

(1) D is a finite dimensional F nr-vector space;
(2) ϕ : D → D is a bijective semilinear Frobenius map;
(3) N : D → D is a F nr-linear monodromy map such that Nϕ = pϕN ;
(4) ρ is a F nr-semilinear GK -action on D (hence ρ|IK is linear) that is smooth, i.e., all vectors have

open stabilizers, and that commutes with ϕ and N ;
(5) F • is a decreasing finite filtration of DK := (D ⊗Fnr K)GK by K-vector spaces.

The above functors extend to exact functors

D 7→ Xr
st(D) = (D ⊗Fnr t−rB+

st)
ϕ=1,N=0 = (D ⊗Fnr B+

st)
ϕ=pr,N=0,

D 7→ Xr
dR(D) = (DK ⊗K t−rB+

dR)/F 0 = (DK ⊗K B
+
dR)/F r.

from filtered (ϕ,N,GK)-modules to finite dimensional Banach-Colmez spaces. We also have a natural
transformation ι : Xr

st(D)→ Xr
dR(D).

Recall that we have (cf. [6, Prop. 10.6]),

dimXr
K(D) = (r dimK DK −

r∑

i=1

dim F iDK , 0),

dimXr
st(D) =

∑

ri≤r

(r − ri, 1), where the ri’s are the slopes of ϕ, repeated with multiplicity.

In particular, if F r+1DK = 0 and if all ri’s are ≤ r (we let r(D) be the smallest r with these properties),
then

dimXr
st(D) = (r dimFnr D − tN (D), dimFnr D) and dimXr

dR(D) = (r dimK DK − tH(DK), 0).

Here tN (D) = vp(det ϕ) and tH(D) =
∑

i≥0 i dimK(F iDK/F i+1DK).
The kernel of the map ι : Xr

st(D)→ Xr
dR(D) is Vpst(D) if r ≥ r(D) ([6, Prop. 10.14]), where Vpst(D) :=

(D ⊗Fnr Bst)ϕ=1,N=0 ∩ F 0(DK ⊗K BdR).

2.3. Vector bundles on the Fargues-Fontaine curve. Main references for this section are [10], [11],
[12].

2.3.1. Definitions. Let XFF be the (algebraic) Fargues-Fontaine curve associated to the tilt C[ and to
Qp. We have

XFF = Proj(P ) := Proj(⊕d≥0Pd), Pd := (B+
cr)

ϕ=pd

.

In the above definition we can replace B+
cr by B or B+. The map θ : B+

cr → C determines a distinguished
point∞ ∈ XFF(C). We have the canonical identification B+

dR
∼
→ ÔX,∞; let t be the uniformizing element

of B+
dR (t ∈ P1 − {0}) so that BdR = B+

dR[1/t]. XFF is a regular noetherian scheme of Krull dimension
one which is locally a spectrum of a Dedekind domain.

Let BunXFF denote the category of vector bundles on XFF. Since XFF is locally a spectrum of a
Dedekind domain BunXFF is a quasi-abelian category7 [1, 1.2.16]. It is thus equipped with the induced

7An additive category with kernels and cokernels is called quasi-abelian if every pullback of a strict epimorphism is

a strict epimorphism and every pushout of a strict monomorphism is a strict monomorphism. Equivalently, an additive

category with kernels and cokernels is called quasi-abelian if Ext(∙, ∙) is bifunctorial.
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kernel-cokernel exact structure: a short exact sequence

0→M
f
→ N

g
→ P → 0

is a pair of morphisms (f, g) such that M = ker(g), P = coker(f). This is the same as the natural exact
structure: locally, use the embedding of the category of torsion free modules of finite rank into its left
abelian envelope - the category of finitely generated modules8.

For every d ∈ Z, there exists a line bundle O(d) := P̃ [d]. This is a line bundle of degree d and every
line bundle on the curve XFF is isomorphic to some O(d). One defines degree of a vector bundle as the
degree of its determinant bundle; slope – as degree divided by rank. For every slope λ ∈ Q, there exists a
stable bundle O(λ) with slope λ. These vector bundles are constructed in the following way. For λ = d/h,
h ≥ 1, (d, h) = 1, one takes the base change XFF,h := XFF,Q

ph
, where Qph is the degree h unramified

extension of Qp, and defines O(λ) = O(d, h) := π∗O(d), π : XFF,h → XFF. We have

O(d, h) = M̃(d, h), M(d, h) =
⊕

i∈N

(B+)ϕh=pih+d

.

This is a vector bundle on XFF of rank h and degree d, hence of slope λ. The global sections functor
and the functor V 7→ V ⊗Qp

O induce an equivalence of categories between semistable vector bundles of
slope zero and finite dimensional Qp-vector spaces. Since semistable vector bundles of slope zero have
vanishing H1 this is an equivalence of exact categories.

2.3.2. Cohomology of vector bundles. We have

O(λ)⊗ O(μ) ' O(λ + μ); O(λ)∨ = O(−λ);

Hom(O(λ), O(μ)) = 0, λ > μ; Ext(O(λ), O(μ)) = H1(XFF, O(μ− λ)) = 0, λ ≤ μ.

Example 2.2. [10, 12.1,12.3]
We have

(2.2) H0(XFF, O(d)) =

{
Pd if d ≥ 0,

0 if d < 0.
H1(XFF, O(d)) =

{
0 if d ≥ 0,

B+
dR/(t−dB+

dR + Qp) if d < 0.

To obtain this we write XFF \{∞} = SpecBe, for Be = Bϕ=1
cr = (B+[1/t])ϕ=1 - a principal ideal domain.

There is an equivalence of exact categories

BunXFF

∼
→ C , E 7→ (Γ(XFF \ {∞}, E ), Ê∞).

Here C is the category of B-pairs [5], i.e., the category of pairs (M,W ), where W is a free B+
dR-module

of finite type and M ⊂W [1/t] is a sub free Be-module of finite type such that M ⊗Be BdR
∼
→W [1/t]. If

E corresponds to the pair (M,W ), then its cohomology can be computed by the following Čech complex

RΓ(XFF, E ) = (M ⊕W
∂
→W [1/t]), ∂(x, y) = x− y.

The line bundle O(d) corresponds to the pair (Be, t
−dB+

dR). Hence

RΓ(XFF, O(d)) = (Be ⊕ t−dB+
dR → BdR).

From this, since BdR = Be + B+
dR and Be ∩ B+

dR = Qp, we get (2.2). Both H0(XFF, O(d)) and
H1(XFF, O(d)) are C-points of finite dimensional Banach-Colmez spaces. These spaces have dimen-
sions (d, 1) resp. (0, 0), for d ≥ 0, and (0, 0) resp. (−d,−1), for d < 0. Hence the Euler characteristic
χ(XFF, O(d)) = (d, 1).

More generally, for λ = d/h, h ≥ 1, (d, h) = 1, we have
(2.3)

H0(XFF, O(d, h)) =

{
(B+)ϕh=pd

if d ≥ 0,

0 if d < 0.
H1(XFF, O(d, h)) =

{
0 if d ≥ 0,

B+
dR/(t−dB+

dR + Qph) if d < 0.

8Recall that a short sequence in a quasi-abelian category is exact if and only if it is exact in its left abelian envelope.
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The vector bundle O(d, h) corresponds to the pair ((B+[1/t])ϕh=pd

, (B+
dR)h), with the glueing map u :

(B+[1/t])ϕh=pd

→ (BdR)h defined as x 7→ (x, ϕ(x), . . . , ϕh−1(x)). Hence

RΓ(XFF, O(d, h)) = ((B+[1/t])ϕh=pd

⊕ (B+
dR)hu−can

−−→(BdR)h)

and computation (2.3) follows since BdR = Be + B+
dR and (B+[1/t])ϕh=1 ∩B+

dR = Qph .
Again, both H0(XFF, O(d, h)) and H1(XFF, O(d, h)) are C-points of finite dimensional Banach-Colmez

spaces. These spaces have dimensions (d, h) resp. (0, 0), for d ≥ 0, and (0, 0) resp. (−d,−h), for d < 0.
Hence the Euler characteristic χ(XFF, O(d, h)) = (d, h).

2.3.3. Classification of vector bundles. We have the following classification theorem for vector bundles
on XFF.

Theorem 2.3. (Fargues-Fontaine [11, Theorem 6.9])

(1) The semistable vector bundles of slope λ on XFF are the direct sums of O(λ).
(2) The Harder-Narasimhan filtration of a vector bundle on XFF is split.
(3) There is a bijection

{λ1 ≥ ∙ ∙ ∙ ≥ λn|n ∈ N, λi ∈ Q}
∼
→ BunXFF / ∼

(λ1, . . . , λn) 7→ [⊕n
i=1O(λi)].

Let ModR(ϕ) be the category of ϕ-modules over the Robba ring R, i.e., finite type projective R-
modules D9 equipped with a ϕ-linear isomorphism ϕ : D

∼
→ D. Since R is Bézout, this implies [1, 2.7.2]

that ModR(ϕ) is quasi-abelian. The induced kernel-cokernel exact structure is the same as the natural
exact structure: use the embedding of the category ModR into its left abelian envelope - the category of
finitely generated R-modules.

Let ModB(ϕ) be the category of finite type projective B-modules D equipped with a semi-linear
isomorphism ϕ : D→D. It is an exact category. We have the following diagram of equivalences of exact
categories [11, Prop. 7.16, Theorem 7.18]

(2.4) ModR(ϕ) ModB(ϕ)∼oo ∼ // BunXFF

The first map is induced by the inclusion B ⊂ R. Via this map, the classification theorem of Kedlaya
for ϕ-modules over R [15] yields that there is a bijection

{λ1 ≥ ∙ ∙ ∙ ≥ λn|n ∈ N, λi ∈ Q}
∼
→ ModB(ϕ)/ ∼(2.5)

(λ1, . . . , λn) 7→ [⊕n
i=1B(−λi)].

In particular, every ϕ-module over B is free of finite type10.
The second map in (2.4) is defined by sending

(2.6) D 7→ E (D),

where E (D) is the sheaf associated to the P -graded module ⊕d≥0D
ϕ=pd

. Hence E (B(i)) = O(−i) and

we have D ⊗ B+
dR

∼
→ Ê (D)∞. This equivalence of exact categories implies that the category ModB(ϕ)

is also quasi-abelian11. Since the canonical exact structure on BunXFF agrees with the quasi-abelian
kernel-cokernel exact structure it follows that this is also the case in ModB(ϕ). Since we know that this
is also the case in ModR(ϕ), it follows that the first map in (2.4) is an equivalence of exact categories.

9Since R is Bézout, an R-module D is projective of finite type if and only if it is torsion free of finite type if and only if

it is free of finite type.
10But, in general, projective B-modules are not free [10, 11.4.1].
11We note here that the ring B is not Bézout.
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2.3.4. Modifications of vector bundles and filtered ϕ-modules. We will recall the definitions of these cat-
egories [12]. A modification of vector bundles on the curve XFF is a triple (E1, E2, u), where E1, E2 are
vector bundles on XFF and u is an isomorphism E1|XFF\{∞} ' E2|XFF\{∞}. Modification (E1, E2, u) is
called effective if u(E1) ⊂ E2; it is called admissible if E1 is a semistable vector bundle of slope 0. Let M ,
M +, M ad denote the corresponding exact categories.

Modifications can be also described as pairs (E , Λ), where E is a vector bundle and Λ is a B+
dR-lattice

Λ ⊂ Ê∞[1/t]. To a modification (E1, E2, u) one associates the pair (E2, u(Ê1,∞)). Effective modifications
correspond to pairs (E , Λ) such that Λ ⊂ Ê∞. This correspondence preserves exact structures.

A filtered ϕ-module (over K) 12 (D, Λ) consists of a ϕ-module D over B+ and a B+
dR-lattice Λ ⊂

D ⊗ BdR. It is effective if Λ ⊂ D ⊗ B+
dR. A filtered ϕ-module is called admissible if Dϕ=1 ∩ Λ is a

Qp-vector space of rank equal to the rank of D over B+. Denote by DFK , DF+

K
, DFad

K
the corresponding

exact categories. We have an equivalence of categories DFK
∼
→M that induces equivalences between the

effective and admissible subcategories. We note that this is not an equivalence of exact categories.

3. Extensions of modifications

In this section we study extensions in the categories of modifications and of filtered ϕ-modules over
K.

3.1. Extensions of ϕ-modules. We start with extensions of ϕ-modules. Let ModB+ be the category
of free B+-modules of finite rank. It is an exact category (with a split exact structure) and we will
denote by DB+ , DB+ its derived dg category and derived category, respectively. We note that, since the
exact structure is split, all quasi-isomorphisms are actually homotopy equivalences. In particular, DB+ =
HB+ (the homotopy category). For D1, D2 ∈ Db

B+ , we have a quasi-isomorphism HomDb
B+

(D1, D2)
∼
→

HomB+(D1, D2). We have similar statements for analogous categories ModB+
dR

and ModBdR . We note

that, since B+
dR is a PID and BdR is a field, these two categories are quasi-abelian (with the kernel-

cokernel exact structure equal to the natural one) [1, 2.7.2]. In ModB+
dR

, a morphism is strict if and

only if its cokernel taken in the category of B+
dR-modules is torsion-free or, equivalently, its kernel is

t-saturated in the ambient module13.
Let ModB+(ϕ) be the category of free B+-modules D of finite rank equipped with an isomorphism

ϕ∗D
∼
→ D. It is an exact category. The exact structure is split, i.e., Ext1 in ModB+(ϕ) is trivial. To

see this, one first proves a classification of ϕ-modules over B+ analogous to the one for B in (2.5) then
computes Ext1 for the simple modules [12, Theorem 7.23, Proposition 7.25].

Let ModFnr(ϕ) be the category of finite rank modules over F nr with a semilinear isomorphism ϕ : D →
D. It is an exact category with split exact structure. There is an (exact) functor ModFnr(ϕ)→ ModB+(ϕ),
D 7→ D ⊗Knr

0
B+. Using the Dieudonné-Manin decomposition in ModFnr(ϕ) we see that this functor

induces bijection on objects of the two categories. Clearly though we have a lot more morphisms in
B+-modules.

We will denote by DB+(ϕ), DB+(ϕ) the derived categories of ModB+(ϕ). For D1, D2 ∈ ModB+(ϕ),
let HomB+,ϕ(D1, D2) denote the group of Frobenius morphisms. We have the exact sequence

0→ HomB+,ϕ(D1, D2)→ HomB+(D1, D2)
δ
→ HomB+(D1, ϕ∗D2)→ 0.(3.1)

where δ : x 7→ ϕD2x− ϕ∗(x)ϕD1 . Hence, HomB+,ϕ(D1, D2) = Cone(δ)[−1]. It follows that, for D1, D2 ∈
Db

B+(ϕ), we have a quasi-isomorphism HomDb
B+ (ϕ)(D1, D2)

∼
→ HomB+,ϕ(D1, D2), i.e.,

HomDb
B+ (ϕ)(D1, D2) = Cone(HomB+(D1, D2)

δ
→ HomB+(D1, ϕ∗D2))[−1]

12Fargues’ [12, 4.2.2] original name was ”ϕ-module jaugé”.
13A B+

dR-module N is called t-saturated in a B+
dR-module M , for N ↪→ M , if every x ∈ M such that tx ∈ N is actually

in N .
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We compute similarly that (with the obvious notation), for D1, D2 ∈ Db
B(ϕ), we have a quasi-

isomorphism

HomDb
B(ϕ)(D1, D2) = HomB,ϕ(D1, D2) := Cone(HomB(D1, D2)

δ
→ HomB(D1, ϕ∗D2))[−1]

The inclusion B+ ⊂ B defines an equivalence of categories [11, 7.7]

(3.2) ModB+(ϕ)
∼
→ ModB(ϕ).

This is shown in [11] by proving that the above functor is fully faithful [11, Prop. 7.20], what implies,
by the classification of ϕ-modules over B (2.5), an analogous classification of ϕ-modules over B+. The
wanted equivalence of categories follows. On the other hand, if we equip ModB+(ϕ) with the natural
exact structure, the functor (3.2) is not an equivalence of exact categories. It is because for the natural
exact structure Ext(B+,B+(1)) = 0 (by (3.1)) but for the quasi-abelian kernel-cokernel exact structure
Ext(B+,B+(1)) = Ext(B,B(1)) = Ext(O, O(−1)) = H1(XFF, O(−1)) = C/Qp. The corresponding
exact sequences have cokernel maps which are not surjective for the natural exact structure. In what
follows we will work exclusively with the natural exact structure.

3.2. Extensions of filtered ϕ-modules. Consider the quasi-abelian category FModB+
dR

of pairs (Λ,M),

Λ ⊂ M , where M ∈ ModB+
dR

, and Λ is a B+
dR-lattice in M [1/t]. We note that a morphism (fΛ, fM ) :

(Λ,M) → (Λ′,M ′) is strict [18, 1.1.3] if and only if so are the morphisms fΛ and fM . Since B+
dR is a

PID, elementary divisors theory, gives us that every exact sequence

0→ (Λ1,M1)→ (Λ2,M2)→ (Λ3,M3)→ 0

splits. Hence, for M1,M2 ∈ Db(FModB+
dR

), we have HomDb(FMod
B

+
dR

)(M1,M2) = HomFMod
B

+
dR

(M1,M2).

Similarly, we define the quasi-abelian category FModBdR of pairs (Λ,M), Λ ⊂M , where M ∈ ModBdR ,
and Λ is a B+

dR-lattice in M . Again, for M1,M2 ∈ Db(FModBdR), we have HomDb(FModBdR )(M1,M2) =
HomFModBdR

(M1,M2).
Let M = (D, Λ), T = (D′, Λ′) be two complexes in Cb(DF+

K
), Cb(DFK), respectively. Define the

complexes Hom+(M,T ), Hom(M,T ) as the following homotopy fibers

Hom+(M,T ) := [HomB+,ϕ(D,D′)⊕HomF Mod
B

+
dR

((Λ, DB+
dR

), (Λ′, D′
B+

dR
))

can− can
−−−−→HomB+

dR
(DB+

dR
, D′

B+
dR

)],

Hom(M,T ) := [HomB+,ϕ(D,D′)⊕HomF ModBdR
((Λ, DBdR), (Λ′, D′

BdR
))

can− can
−−−−→HomBdR(DBdR , D′

BdR
)]

Complexes Hom+, Hom compose naturally.

Proposition 3.1. We have (∗ = , ad)

HomDb(DF+,∗
K

)(M,T ) ' Hom+(M,T ), HomDb(DF∗
K

)(M,T ) ' Hom(M,T ).

Proof. Proof is analogous to the one of Proposition 2.7 in [9]: note that Cone(M
Id
→ M), for M ∈

Db(DF+

K
), M ∈ Db(DFK), is acyclic and that the category of semistable vector bundles of slope zero is

closed under extensions (in the category of vector bundles). �

Let 1 := (B+,B+
dR) be the unit filtered ϕ-module. For M = (D, Λ), M ∈ DF+

K
and M ∈ DFK we set

H∗
+(K,M) := H∗RHom+(1,M) and H∗(K,M) := H∗RHom(1,M), respectively. We have

(3.3)

Hi
+(K,M) =






Dϕ=1 ∩ Λ, i = 0,

D ⊗B+ B+
dR/(Λ + Dϕ=1) i = 1,

0 i ≥ 2.

Hi(K,M) =






Dϕ=1 ∩ ΛM i = 0,

D ⊗B+ BdR/(Λ + Dϕ=1) i = 1,

0 i ≥ 2.

Moreover, the complex

RHom+(1,M) := (Dϕ=1 → D ⊗B+ B+
dR/Λ)
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can be lifted canonically to a complex of finite dimensional Banach-Colmez spaces. To see that, set, for
a sympathetic algebra A,

D(A) := D ⊗B+ B+(A), Λ(A) := Λ⊗B+
dR
B+

dR(A),(3.4)

RHom+(1,M)(A) := (D(A)ϕ=1 → D ⊗B+ B+
dR(A)/Λ(A)).

The bottom complex is clearly a complex of Banach-Colmez spaces such that RHom+(1,M)(C) =
R Hom+(1,M). The fact that this is a complex of finite dimensional Banach-Colmez spaces follows from
section (2.2.2).

Remark 3.2. Let (E1, E2, u) be an effective modification and let M be the associated effective filtered
ϕ-module. We have an exact sequence of sheaves on XFF

0→ E1
u
→ E2 → i∞∗(Ê2,∞/u(Ê1,∞))→ 0

We get from it the long exact sequence of cohomology groups

0→H0(XFF, E1)→ H0(XFF, E2)→ Ê2,∞/u(Ê1,∞)

→ H1(XFF, E1)→ H1(XFF, E2)→ 0

Since H0(XFF, E (D)) = Dϕ=1, by (3.3), we have that

H0
+(K,M) = H0(XFF, E1),

H1
+(K,M) = ker(H1(XFF, E1)→ H1(XFF, E2)).

In particular, if (E1, E2, u) is effective and admissible then H1
+(K,M) = 0 because H1(XFF, E1) = 0.

Remark 3.3. We note that if M = 1, then H1
+(K,M) = 0 and H1(K,M) = BdR/B+

dR; hence effective
filtered ϕ-modules are not closed under extensions in the category of filtered ϕ-modules. On the other
hand, admissible filtered ϕ-modules are closed under extensions (because semistable vector bundles of
slope zero are closed under extensions in the category of vector bundles).

3.3. Extensions of modifications. Extensions of modifications of vector bundles can be computed
in an analogous way; we will just list the results. Let M = (D, Λ), T = (D′, Λ′) be two complexes
in Cb(M +), Cb(M ), respectively, with D,D′ – complexes of ϕ-modules over B. Define the respective
complexes Hom+(M,T ), Hom(M,T ) as the following homotopy fibers

Hom+(M,T ) := [HomB,ϕ(D,D′)⊕HomF Mod
B

+
dR

((Λ, DB+
dR

), (Λ′, D′
B+

dR
))

can− can
−−−−→HomB+

dR
(DB+

dR
, D′

B+
dR

)],

Hom(M,T ) := [HomB,ϕ(D,D′)⊕HomF ModBdR
((Λ, DBdR), (Λ′, D′

BdR
))

can− can
−−−−→HomBdR(DBdR , D′

BdR
)]

Complexes Hom+, Hom compose naturally.

Proposition 3.4. We have (∗ = , ad)

HomDb(M+,∗)(M,T ) ' Hom+(M,T ), HomDb(M∗)(M,T ) ' Hom(M,T ).

Let 1 := (B,B+
dR) be the unit modification. For M = (D, Λ), M ∈ M + and M ∈ M , we set

H∗
+(M ,M) := H∗RHom+(1,M) and H∗(M ,M) := H∗RHom(1,M), respectively. We have the follow-

ing long exact sequence (∗ = +, )

0→ H0
∗ (M ,M)→ Dϕ=1 → (D ⊗B∗

dR)/Λ→ H1
∗ (M ,M)→ D/(1− ϕ)D → 0

Moreover, for i ≥ 2, Hi
∗(M ,M) = 0.

We conclude that, for an effective filtered ϕ-module M = (D, Λ) over K, we have Hi
+(K,M) ↪→

Hi
+(M ,MB), where MB := (D ⊗B+ B, Λ). More specifically, we have

(1) H0
+(K,M) = H0

+(M ,MB),
(2) H1

+(K,M) ↪→ H1
+(M ,MB) with cokernel H1(XFF, E (D)) = D/(1− ϕ)D,

(3) Hi
+(K,M) = Hi

+(M ,MB) = 0, for i ≥ 2.
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The following proposition shows that cohomology of effective modifications recovers only the cohomol-
ogy of the ”smaller” modified vector bundle on the Fargues-Fontaine curve.

Proposition 3.5. Let T = (E1, E2, u) be an effective modification. We have a canonical quasi-isomorphism

RHomM+(1, T ) ' RΓ(XFF, E1).

Proof. Let T = (E1, E2, u) and T ′ = (E ′
1, E

′
2, u

′) be two of complexes of effective modifications. We have

RHomM+(T, T ′) = [RHomBunXFF
(E1, E

′
1)⊕ RHomBunXFF

(E2, E
′
2)

u′
∗−u∗

−−→RHomBunXFF
(E1, E

′
2)]

If we apply this to the unit modification 1 and T = (E1, E2, u) we find that

RHomM+(1, T ) = [RHomBunXFF
(O, E1)⊕ RHomBunXFF

(O, E2)
u∗−Id
−−→RHomBunXFF

(O, E2)]

= RHomBunXFF
(O, E1) = RΓ(XFF, E1),

as wanted. �

4. Geometric syntomic cohomology

We will recall the definition of geometric syntomic cohomology defined in [16] and list its basic prop-
erties.

4.1. Definitions. For X ∈ V arK , we have the rational crystalline cohomology RΓcr(X) defined in [4]
using h-topology. It is a filtered dg perfect B+

cr-algebra equipped with the Frobenius action ϕ. The Galois
group GK acts on V arK and it acts on X 7→ RΓcr(X) by transport of structure. If X is defined over K
then GK acts naturally on RΓcr(X).

For r ≥ 0, one defines [16] geometric syntomic cohomology of X as the r’th filtered Frobenius eigenspace
of crystalline cohomology

RΓsyn(X, r) := [F rRΓcr(X)
1−ϕr−−→RΓcr(X)].

In the case when X is the generic fiber of a proper semistable scheme X over OK , this agrees with the
(continuous) logarithmic syntomic cohomology of Fontaine-Messing-Kato.

The above definition is convenient to study period maps but for computations a different definition
is more convenient. We will explain it now. There is a natural map γ : RΓcr(X) → RΓdR(X) ⊗K B+

dR.
Here RΓdR(X) is the Deligne’s de Rham cohomology. It is a filtered perfect complex of K-vector spaces.
We equip it with the Hodge-Deligne filtration. It follows from the degeneration of the Hodge-de Rham
spectral sequence that the differentials in RΓdR(X) are strict for the filtration (cf. [14, Prop. 8.3.1]).

The complex RΓdR(X) ⊗K B+
dR is a perfect complex of free B+

dR-modules. It is filtered by a perfect
complex of B+

dR-lattices. The cohomology of F i(RΓdR(X) ⊗K B+
dR), i ≥ 0, is torsion-free: this follows

from the degeneration of the Hodge-de Rham spectral sequence. Moreover, this implies that this complex
is strict: kernels of differentials are t-saturated because the complex is perfect, images are t-saturated in
the kernels because cohomology is torsion-free; this implies that the images are t-saturated in the ambient
modules, as wanted.

For r ≥ 0, the geometric syntomic cohomology of X can be defined in the following way.

RΓsyn(X, r) :=

[

RΓcr(X)
(1−ϕr,γ) // RΓcr(X)⊕ (RΓdR(X)⊗K B+

dR)/F r

]

∼
←









RΓHK(X)⊗Fnr B+
st

(1−ϕr,ιdR⊗ι) //

N

��

RΓHK(X)⊗Fnr B+
st ⊕ (RΓdR(X)⊗K B+

dR)/F r

(N,0)

��
RΓHK(X)⊗Fnr B+

st

1−ϕr−1 // RΓHK(X)⊗Fnr B+
st









We set ϕi := ϕ/pi. Here RΓHK(X) is the Beilinson’s Hyodo-Kato cohomology of X [4]. It is a complex
of finite rank (ϕ,N)-modules over F nr. It comes equipped with the Hyodo-Kato quasi-isomorphism

ιdR : RΓHK(X)⊗Fnr K ' RΓdR(X).
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The second quasi-isomorphism in the above diagram uses the quasi-isomorphism

ιcr : RΓHK(X)⊗Fnr B+
st

∼
→ RΓcr(X)⊗B+

cr
B+

st

that is compatible with the action of ϕ and N . We will write RΓHK(X)τ
B+

cr
:= (RΓHK(X)⊗Fnr B+

st)
N=0.

We have a trivialization

RΓHK(X)⊗Fnr B+
cr

∼
→ RΓHK(X)τ

B+
cr

= (RΓHK(X)⊗Fnr B+
st)

N=0,

x 7→ exp(N(x) log([p̃])),

where p̃ is a sequence of pn’th roots of p. This yields a quasi-isomorphism RΓHK(X)τ
B+

cr
' RΓcr(X). Both

maps are compatible with Frobenius and monodromy.
We can rewrite the above in the following form

RΓsyn(X, r)
∼
→ [ RΓcr(X)ϕ=pr γ // (RΓdR(X)⊗K B+

dR)/F r ]

∼
← [ (RΓHK(X)⊗Fnr B+

st)
ϕ=pr,N=0

ιdR⊗ι // (RΓdR(X)⊗K B+
dR)/F r ],

where we set
RΓcr(X)ϕ=pr

:= [RΓcr(X)
pr−ϕ
−−→RΓcr(X)]

and

(RΓHK(X)⊗Fnr B+
st)

ϕ=pr,N=0 :=









RΓHK(X)⊗Fnr B+
st

1−ϕr //

N

��

RΓHK(X)⊗Fnr B+
st

N

��
RΓHK(X)⊗Fnr B+

st

1−ϕr−1// RΓHK(X)⊗Fnr B+
st









Alternatively, by formula (2.1), we can change the period ring B+
st to B+

log to obtain

RΓsyn(X, r)
∼
→ [ (RΓHK(X)⊗Fnr B+

log)
ϕ=pr,N=0 ιdR⊗ι // (RΓdR(X)⊗K B+

dR)/F r ].

We will write RΓHK(X)τ
B+ := (RΓHK(X)⊗FnrB+

log)
N=0; we have a canonical trivialization RΓHK(X)τ

B+ '
RΓHK(X)⊗Fnr B+ (compatible with Frobenius and monodromy). With this notation, we have

RΓsyn(X, r)
∼
→ [ RΓHK(X)τ,ϕ=pr

B+
// (RΓdR(X)⊗K B+

dR)/F r ].(4.1)

4.2. Basic properties. We will now list basic properties of geometric syntomic cohomology.

4.2.1. Syntomic period maps. Let X ∈ V arK . Recall that Beilinson [3], [4] defined comparison quasi-
isomorphisms

ρcr : RΓcr(X)⊗B+
cr

Bcr ' RΓét(X,Qp)⊗Qp
Bcr, ρHK : RΓHK(X)⊗Fnr Bst ' RΓét(X,Qp)⊗Qp

Bst,

ρdR : RΓdR(X)⊗K BdR ' RΓét(X,Qp)⊗Qp
BdR

that are compatible with the extra structures and with each other. For r ≥ 0, they give us the syntomic
period map [16]

ρsyn : RΓsyn(X, r)→ RΓét(X,Qp(r))

defined as follows

RΓsyn(X, r) ' [(RΓHK(X)⊗Fnr B+
st)

ϕ=pr,N=0 ιdR⊗ι
−−−−→(RΓdR(X)⊗K B+

dR)/F r](4.2)

→ [(RΓHK(X)⊗Fnr Bst)
ϕ=pr,N=0 ιdR⊗ι

−−−−→(RΓdR(X)⊗K BdR)/F r]

' [RΓét(X,Qp)⊗Qp
Bϕ=pr

cr
ιdR⊗ι
−−−−→RΓét(X,Qp)⊗Qp

BdR/F r]
∼
← RΓét(X,Qp(r)).

The last quasi-isomorphism follows from the fundamental exact sequence

0→ Qp(r)→ Bϕ=pr

cr → BdR/F r → 0
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In a stable range, the syntomic period map is a quasi-isomorphism.

Proposition 4.1. ([16, Prop. 4.6]) The syntomic period morphism induces a quasi-isomorphism

ρsyn : τ≤rRΓsyn(X, r)
∼
→ τ≤rRΓét(X,Qp(r)).

4.2.2. Homotopy property. Syntomic cohomology has homotopy invariance property.

Proposition 4.2. Let X ∈ V arK and let f : A1
X → X be the natural projection from the affine line over

X to X. Then, for all r ≥ 0, the pullback map

f∗ : RΓsyn(X, r)
∼
−−→RΓsyn(A1

X , r)

is a quasi-isomorphism.

Proof. It suffices to show that the pullback maps

f∗ : (Hi
HK(X)⊗Fnr B+

cr)
ϕ=pr

→ (Hi
HK(A1

X)⊗Fnr B+
cr)

ϕ=pr

,

f∗ : (Hi
dR(X)⊗K B+

dR)/F r → (Hi
dR(A1

X)⊗K B+
dR)/F r

are isomorphisms. But this follows immediately from the fact that we have a filtered isomorphism

f∗ : Hi
dR(X)

∼
→ Hi

dR(A1
X)

and hence, via the Hyodo-Kato isomorphism, also a Frobenius equivariant isomorphism

f∗ : Hi
HK(X)

∼
→ Hi

HK(A1
X).

�

4.2.3. Projective space theorem. For X ∈ V arK , we have the functorial syntomic Chern class map [16,
5.1]

csyn
1 : Pic(X)→H2

syn(X, 1).

For X ∈ V arK , it yields the syntomic Chern class map

csyn
1 : Pic(X)→H2

syn(X, 1).

We have the following projective space theorem for syntomic cohomology.

Proposition 4.3. Let E be a locally free sheaf of rank d + 1, d ≥ 0, on a scheme X ∈ V arK . Consider
the associated projective bundle π : P(E )→ X. Then we have the following isomorphism

d⊕

i=0

csyn
1 (O(1))i ∪ π∗ :

d⊕

i=0

Ha−2i(X, r − i)
∼
→ Ha(X, r), 0 ≤ d ≤ r.

Here, the class csyn
1 (O(1)) ∈ H2

syn(P(E ), 1) refers to the class of the tautological bundle on P(E ).

Proof. Just as in the proof of Proposition 5.2 from [16], the above projective space theorem can be
reduced to the projective space theorems for the Hyodo-Kato and the Hodge cohomologies. We refer to
loc. cit. for details and notation.

To prove our proposition it suffices to show that for any ss-pair (U, U) over K and the projective space
π : Pd

U
→ U of dimension d over U we have a projective space theorem for syntomic cohomology (a ≥ 0)

d⊕

i=0

csyn
1 (O(1))i ∪ π∗ :

d⊕

i=0

Ha−2i
syn ((U, U)K , r − i)

∼
→ Ha

syn((Pd
U ,Pd

U
)K , r), 0 ≤ d ≤ r,

where the class csyn
1 (O(1)) ∈ H2

syn((Pd
U ,Pd

U
), 1) refers to the class of the tautological bundle on Pd

U
.

By the distinguished triangle

RΓsyn((U, U)K , r)→ RΓcr((U, U)K)ϕ=pr

→ (RΓdR((U, U)K)⊗ B+
dR)/F r
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and its compatibility with the action of csyn
1 , it suffices to prove the following two isomorphisms for the

absolute log-crystalline complexes and for the filtered log de Rham complexes (0 ≤ d ≤ r)

d⊕

i=0

ccr
1 (O(1))i ∪ π∗ :

d⊕

i=0

Ha−2i
cr ((U, U)K)

∼
→ Ha

cr((P
d
U ,Pd

U
)K),(4.3)

d⊕

i=0

cdR
1 (O(1))i ∪ π∗ :

d⊕

i=0

(Ha−2i
dR (UK)⊗ B+

dR)/F r−i ∼
→ (Ha

dR(Pd
U,K

)⊗ B+
dR)/F r.

For the crystalline cohomology in (4.3), we can pass to the Hyodo-Kato cohomology. There the projective
space theorem

d⊕

i=0

cHK
1 (O(1))i ∪ π∗ :

d⊕

i=0

Ha−2i
HK ((U, U)K)⊗Fnr B+

cr
∼
→ Ha

HK((Pd
U ,Pd

U
)K)⊗Fnr B+

cr

follows immediately, via the Hyodo-Kato isomorphism, from the projective space theorem for the de
Rham cohomology.

For the de Rham cohomology in (4.3), passing to the grading we obtain

d⊕

i=0

cdR
1 (O(1))i ∪ π∗ :

d⊕

i=0

grr−i(Ha−2i
dR (UK)⊗K B+

dR)
∼
→ grr(Ha

dR(Pd
U,K

)⊗K B+
dR).(4.4)

Since, for a variety Y over K,

grr(Ha
dR(Y )⊗K B+

dR) =
r⊕

i=0

Ha−r+i
dR (Y, Ωr−i

Y )⊗K C,

the isomorphism (4.4) follows from the projective space theorem for Hodge cohomology. We are done. �

4.2.4. Bloch-Ogus Theory. The above implies that syntomic cohomology is representable by a motivic
ring spectrum S : the argument is the same as in Appendix B of [16]. We list the following consequences.

Proposition 4.4. (1) Syntomic cohomology is covariant with respect to projective morphisms of
smooth varieties. More precisely, to a projective morphism of smooth K-varieties f : Y → X one
can associate a Gysin morphism in syntomic cohomology

f∗ : Hi
syn(Y, r)→ Hi−2d

syn (X, r − d),

where d is the dimension of f .
(2) We have the syntomic regulator

rsyn : Hr,i
M (X)→ Hi

syn(X, r),

where Hr,i
M (X) demotes the motivic cohomology. It is compatible with product, pullbacks, and

pushforwards; via the period map it is compatible with the étale regulator.
(3) The syntomic cohomology has a natural extension to h-motives:

DMh(K,Qp)
op → D(Qp), M 7→ HomDMh(K,Qp)(M, S )

and the syntomic regulator rsyn can be extended to motives.
(4) There exists a canonical syntomic Borel-Moore homology Hsyn

∗ (−, ∗) such that the pair of functor
(H∗

syn(−, ∗), Hsyn
∗ (−, ∗)) defines a Bloch-Ogus theory.

(5) To the ring spectrum S there is associated a cohomology with compact support satisfying the
usual properties.
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4.3. Fundamental (long) exact sequence. In this section, we will discuss certain exact sequences
that involve syntomic cohomology. Recall that we have

RΓsyn(X, r) =[RΓcr(X)ϕ=pr γ
−−→RΓdR(X)⊗K B+

dR)/F r](4.5)

[(RΓHK(X)⊗F B+
st)

ϕ=pr,N=0 ιdR⊗ι
−−→(RΓdR(X)⊗K B+

dR)/F r]

This yields a long exact sequence of cohomology that simplifies quite a bit. Indeed, we have Hj((RΓHK(X)⊗F

B+
st)

ϕ=pr,N=0) = (Hj
HK(X) ⊗F B+

st)
ϕ=pr,N=0 [16, Corollary 3.25]. It follows that HjRΓcr(X)ϕ=pr

=
Hj

cr(X)ϕ=pr

' (RΓHK(X)⊗Fnr B+
cr)

ϕ=pr

. By the degeneration of the Hodge-de Rham spectral sequence,
we also have Hj((RΓdR(X)⊗K B+

dR)/F r) = (Hj
dR(X)⊗K B+

dR)/F r. Hence, from the mapping fiber (4.5),
we get the following fundamental long exact sequence

→ Hi−1
cr (X)ϕ=pr γi−1

→ (Hi−1
dR (X)⊗K B+

dR)/F r → Hi
syn(X, r)→ Hi

cr(X)ϕ=pr γi→ (Hi
dR(X)⊗K B+

dR)/F r →

that we will write alternatively as

→ (Hi−1
HK (X)⊗F B+

st)
ϕ=pr,N=0 γi−1→ (Hi−1

dR (X)⊗K B+
dR)/F r → Hi

syn(X, r)(4.6)

→ (Hi
HK(X)⊗F B+

st)
ϕ=pr,N=0 γi→ (Hi

dR(X)⊗K B+
dR)/F r →

It yields the exact sequence

(4.7) 0→ coker γi−1 → Hi
syn(X, r)→ ker γi → 0.

Example 4.5. Let X = Spec(K). We get the exact sequence

→(Hi−1
dR (K)⊗K B+

dR)/F r → Hi
syn(K, r)→ Hi

cr(K)ϕ=pr

→(Hi
dR(K)⊗K B+

dR)/F r →

Since Hi
cr(K) = Hi

cr(F ) ⊗F B+
cr, we get that H0

cr(K) = B+
cr and Hi

cr(K) = 0, for i > 0. Also, clearly,
H0

dR(K) = K and Hi
dR(K) = 0, for i > 0. Hence the above sequence becomes the fundamental exact

sequence
0→ Qp(r)→ (B+

cr)
ϕ=pr

→ B+
dR/F r → 0

It implies that H0
syn(K, r) ' Qp(r) and Hi

syn(K, r) = 0, for i > 0.

4.3.1. Relation to extensions of ϕ-modules over K. It turns out that the kernel and cokernel appearing
in the exact sequence (4.7) are extension groups in the category of filtered ϕ-modules over K. To
see this, set Di(r) := Hi

HK(X)τ
B+ with Frobenius ϕr = ϕ/pr and set Λi(r) := F r(Hi

dR(X) ⊗K B+
dR).

Let Hi
DFK

(X, r) := (Di(r), Λi(r)). Since Hi
HK(X) ⊗B+ B+

dR ' Hi
dR(X) ⊗K B+

dR (via the Hyodo-Kato

isomorphism), we have Hi
DFK

(X, r) ∈ DF+

K
.

Lemma 4.6. We have the following exact sequences

0→ H1
+(K,H i−1

DFK
(X, r))→ Hi

syn(X, r)→ H0
+(K,H i

DFK
(X, r))→ 0.

0→ Ker(H1(XFF, E (Hi−1
DFK

(X, r)))→ H1(XFF, E (Di−1(r))))→ Hi
syn(X, r)

→ H0(XFF, E (Hi
DFK

(X, r)))→ 0

Moreover, for i ≤ r + 1 or r ≥ d, there are natural isomorphisms

Hi
syn(X, r)

∼
→ H0

+(K,H i
DFK

(X, r)) ' H0(XFF, E (Hi
DFK

(X, r))).

Proof. Since ker γi = Di(r)ϕr=1 ∩ Λi(r) and coker γi = (Di(r) ⊗B+ B+
dR)/(Λi(r) + Di(r)ϕr=1), the first

exact sequence follows from (4.7) and (3.3). The second exact sequence follows from that and from the
exact sequence of sheaves on XFF

0→ E (Hi
DFK

(X, r))→ E (Di(r))→ i∞∗(D
i(r)⊗B+ B+

dR/Λi(r))→ 0.

The last statement of the lemma follows from the first exact sequence and the fact that, for i ≤ r or
r ≥ d, the filtered ϕ-module Hi

DFK
(X, r) is admissible. To see the last claim, note that the variety X

comes from a variety XL defined over some finite extension L of K. Hence, by comparison theorems, the
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pair (Hi
HK(XL), H i

dR(XL)) forms an admissible (ϕ,N,GL)-module. Since F r+1Hi
dR(X) = 0, we can now

simply quote [16, Cor. 2.10]. �

In the next section we will give a more conceptual reason for the existence of the sequences from the
above lemma. We note, that the above lemma implies that the fundamental (long) exact sequence (4.6)
splits in a stable range: for i ≤ r, we have the fundamental short exact sequences

0→ Hi
syn(X, r)→ (Hi

HK(X)⊗Fnr B+
st)

ϕ=pr,N=0 ιdR⊗ι
−−−−→(Hi

dR(X)⊗K B+
dR)/F r → 0

5. The p-adic absolute Hodge cohomology

We will show in this section that the geometric syntomic cohomology is a p-adic absolute cohomology,
that is, that to every variety over K one can associate a canonical complex of effective filtered ϕ-modules
over K and syntomic cohomology is RHom from the trivial module to that complex. We will describe
two methods of constructing such complexes.

5.1. Via geometric p-adic Hodge complexes.

5.1.1. The category of geometric p-adic Hodge complexes. Let Mod′
B+

dR
, F Mod′

B+
dR

be the categories

ModB+
dR

, F ModB+
dR

with the finiteness conditions dropped. These are exact categories. Consider the
exact monoidal functors

F0 : Mod′
B+(ϕ)→ ModB+

dR
, D 7→ D ⊗B+ B+

dR; FdR : F Mod′
B+

dR
→ ModB+

dR
, (Λ,M) 7→M.

We define the dg category DpH of p-adic Hodge complexes as the homotopy limit

DpH := holim(Db(ModB+(ϕ))
F0→ Db(Mod′

B+
dR

)
FdR← Db(F Mod′

B+
dR

))

We denote by DpH the homotopy category of DpH. An object of DpH consists of objects M0 ∈ Db(ModB+(ϕ)),
MK ∈ Db(F Mod′

B+
dR

), and a quasi-isomorphism

F0(M0)
aM→ FdR(MK)

in D(Mod′
B+

dR
). We will denote the object above by M = (M0,MK , aM ). The morphisms are given by

the complex HomDpH((M0,MK , aM ), (N0, NK , aN )):

Homi
Dg

pH
((M0,MK , aM ), (N0, NK , aN ))

= Homi
Db(ModB+ (ϕ))(M0, N0)⊕Homi

Db(F Mod′

B
+
dR

)(MK , NK)⊕Homi−1
Db(Mod′

B
+
dR

)
(F0(M0), FdR(NK))

(5.1)

A (closed) morphism (a, b, c) ∈ HomDpH((M0,MK , aM ), (N0, NK , aN )) is a quasi-isomorphism if and only
so are the morphisms a and b.

By definition, we get a commutative square of dg categories over Qp:

(5.2) DpH
TdR //

T0 ��

Db(F Mod′
B+

dR
)

FdR��
Db(ModB+(ϕ))

F0 // Db(Mod′
B+

dR
).

As pointed out above, a morphism f of p-adic Hodge complexes is a quasi-isomorphism if and only if
TdR(f) and T0(f) are quasi-isomorphisms.

For M ∈ Cb(DF+

K
), we can define θ(M) ∈ DpH to be the object

θ(M) := (D, (Λ, F0(D)), Id : F0(D) ' F0(D)).

Since θ preserves quasi-isomorphisms, it induces a compatible functor

θ : Db(DF+

K
)→ DpH.
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Definition 5.1. We will say that a p-adic Hodge complex M = (M0,MK , aM ) is geometric if the complex
M0 is in the image of the canonical functor Cb(ModFnr(ϕ)) → Cb(ModB+(ϕ)) and the complex MK is
strict with torsion-free finite rank cohomology groups (defined in the category of pairs of B+

dR-modules).
We note that we have the exact sequence (in the exact category F Mod′

B+
dR

)

(5.3) 0→ Im di−1→ ker di p
→ Hi → 0.

Denote by Dg
pH the full dg subcategory of DpH of geometric p-adic Hodge complexes.

We note that for a geometric complex M = (M0,MK , aM ) it makes sense to take its cohomology
groups:

Hi(M) := (Hi(M0), H
i(MK), aM : F0H

i(M0) ' FdRHi(MK)) ∈ DF+

K
, i ≥ 0.

Proposition 5.2. The functor θ induces an equivalence of dg categories

θ : Dg(DF+

K
)

∼
→ Dg

pH,

where Dg(DF+

K
) denotes the full dg subcategory of Db(DF+

K
) of geometric p-adic Hodge complexes.

Proof. First, we will show that θ is fully faithful. That is, that, given two complexes M , M ′ of Cg(DF+

K
),

the functor θ induces a quasi-isomorphism:

θ : HomDb(DF+
K

)(M,M ′)→ HomDg
pH

(θ(M), θ(M ′))

By Proposition 3.1, since F0(M0) = FdR(MK), F0(M ′
0) = FdR(M ′

K), we have the following sequence of
quasi-isomorphisms

HomDg
pH

(θ(M), θ(M ′)) = HomDg
pH

((M0,MK , IdM ), (M ′
0,M

′
K , IdM ′))

' (HomDb(ModB+ (ϕ))(M0,M
′
0)

F0→ HomDb(Mod
B

+
dR

)(F0(M), FdR(M ′))
FdR← HomDb(F Mod

B
+
dR

)(MK ,M ′
K))

' (HomB+,ϕ(M0,M
′
0)

F0→ HomB+
dR

(F0(M), FdR(M ′))
FdR← HomF Mod

B
+
dR

(MK ,M ′
K))

' HomDb(DF+
K

)(M,M ′).

Now, it remains to show that θ is essentially surjective. Let (M0,MK , aM ) be a geometric p-adic
Hodge complex. Then, by assumption,

(M0,MK , aM ) ' (⊕i≥0H
i(M0)[−i],⊕i≥0 Hi(MK)[−i],(5.4)

a′
M : ⊕i≥0F0H

i(M0)[−i] ' ⊕i≥0FdRHi(MK)[−i]).

Note that a′
M is actually an isomorphism of complexes. Essential surjectivity of θ follows. �

Remark 5.3. We note that the proof of Proposition 5.2 shows that every geometric p-adic Hodge complex
is quasi-isomorphic to a complex of its cohomology filtered ϕ-modules (with trivial differentials).

5.1.2. p-adic absolute Hodge cohomology via geometric p-adic Hodge complexes. Let X be a variety over
K. For r ≥ 0, consider the following complex in Dg

pH

RΓg
pH(X, r) := (RΓHK(X, r)τ

B+ , (RΓdR(X)⊗KB+
dR, F r), ιdR : RΓHK(X)τ

B+⊗B+B+
dR

∼
→ RΓdR(X)⊗KB+

dR),

where the r-twist in RΓHK(X, r)τ
B+ refers to Frobenius divided by pr. As explained at the beginning

of Section 4.1, the p-adic Hodge complex RΓg
pH(X, r) is geometric. We will call it the geometric p-adic

Hodge cohomology of X. Set

RΓDFK
(X, r) := θ−1RΓg

pH(X, r) ∈ Dg(DF+

K
).

The p-adic absolute Hodge cohomology of X is defined as

RΓH (X, r) := HomDg
pH

(1, RΓg
pH(X, r)).(5.5)

By Proposition 5.2, we have

RΓH (X, r) ' HomDb(DF+
K

)(1, RΓDFK
(X, r)).
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Theorem 5.4. There exists a natural quasi-isomorphism (in the classical derived category)

RΓsyn(X, r)
∼
→ RΓH (X, r), r ≥ 0.

Proof. We can write

RΓsyn(X, r)
∼
→ [ RΓHK(X)τ,ϕ=pr

B+ ⊕ F r(RΓdR(X)⊗K B+
dR)

ιdR⊗ι−can // RΓdR(X)⊗K B+
dR ]

By Proposition 5.2, we have

RΓsyn(X, r) ' HomDg
pH

(1, RΓg
pH(X, r)) ' HomDb(DF+

K
)(1, RΓDFK

(X, r)) ' RΓH (X, r),

as wanted. �

5.2. Via Beilinson’s Basic Lemma. Using Beilinson’s Basic Lemma as in [9] we can associate to every
X ∈ V arK (more generally, to any finite diagram of such X) the following functorial data

(1) RΓB
HK(X), a complex of finite (ϕ,N)-modules over F nr representing RΓHK(X).

(2) RΓB
dR(X), a complex of finite filtered K-vector spaces representing RΓdR(X).

(3) the Hyodo-Kato isomorphism of complexes

ιdR : RΓB
HK(X)⊗Fnr K

∼
→ RΓB

dR(X)

representing the original Hyodo-Kato map ιdR.

They yield a functorial complex RΓB
DFK

(X, r), r ≥ 0, of effective filtered ϕ-modules (RΓB
HK(X)τ

B+ , (RΓB
HK(X)⊗K

B+
dR, F r), ιdR). By construction, for every good pair (X,Y, i), the associated complex

RΓB
DFK

(X,Y, r) ' Hi
DFK

(X,Y, r) := (Hi
HK(X,Y, r)τ

B+ , (Hi
dR(X,Y )⊗K B+

dR, F r), ιdR).

We note that the complex RΓB
DFK

(X, r) is geometric. Indeed, Hodge Theory yields that ”geometric”
morphisms between de Rham cohomology groups are strict for the Hodge-Deligne filtration. Hence
the complex RΓB

dR(X) has strict differentials. This implies that this is also the case for the complex
RΓB

dR(X) ⊗K B+
dR. Moreover, the cohomology groups HiRΓB

DFK
(X, r) are effective filtered ϕ-modules.

Hence RΓB
DFK

(X, r) ∈ Dg(G+).
We set

RΓB
H (X, r) = RΓB

syn(X, r) := RΓ+(K, RΓB
DFK

(X, r))

The two syntomic complexes described above are naturally quasi-isomorphic.

Theorem 5.5. (1) There is a canonical quasi-isomorphism in Db(DF+

K
)

RΓDFK
(X, r)

∼
→ RΓB

DFK
(X, r), r ∈ N.

(2) There is a canonical quasi-isomorphism

RΓH (X, r) ' RΓB
H (X, r), r ∈ N.

Proof. The second statement follows immediately from the first one and Theorem 5.4. To prove the
first statement, we follow the proof of Corollary 3.7 from [9] and just briefly describe the argument
here. Consider the complex RΓB

pH(X, r) in Dg
pH defined using Beilinson’s Basic Lemma starting with

RΓpH(X, r). We note that, for a good pair (X,Y, j), we have

RΓg
pH((X,Y, j), r) ' (Hj

HK(X,Y, r)τ
B+ , (Hj

dR(X,Y )⊗KB+
dR, F r), ιdR : Hj

HK(X,Y )τ
B+⊗B+B+

dR
∼
→ Hj

dR(X,Y )⊗KB+
dR).

Hence RΓB
pH(X, r) is isomorphic to θRΓB

DFK
(X, r). Moreover, we get a functorial quasi-isomorphism in

Db(DF+

K
):

κX : RΓB
pH(X, r) ' θRΓDFK

(X, r).

It follows that RΓB
DFK

(X, r) ' RΓDFK
(X, r), as wanted. �
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6. Syntomic cohomology and Banach-Colmez spaces

We will show in this section that syntomic complex (of an algebraic variety) can be realized as a complex
of Banach-Colmez spaces. Similarly for the fundamental exact sequence and the syntomic period map:
both of them can be canonically lifted to the category of Banach-Colmez spaces. We will also discuss an
analog for formal schemes.

6.1. Syntomic complex as a complex of Banach-Colmez spaces.

6.1.1. Algebraic varieties. Let X be a variety over K.

Theorem 6.1. (1) There exists a complex RΓB
syn(X, r) ∈ Db(BC ) such that RΓB

syn(X, r)(C) =
RΓB

syn(X, r) and the distinguished triangle

RΓsyn(X, r)→ RΓHK(X)τ,ϕ=pr

B+

ιdR−−→(RΓdR(X)⊗K B+
dR)/F r

can be lifted canonically to a distinguished triangle of Banach-Colmez spaces.
(2) The syntomic period map ρsyn can be lifted canonically to a map of Banach-Colmez spaces, i.e.,

we have a map

ρsyn : RΓB
syn(X, r)→ RΓB

ét(X,Qp(r))(6.1)

such that the induced map on C-points is the classical syntomic period map. Here the complex
RΓB

ét(X,Qp(r)) is a a complex of finite-rank Qp-vector spaces defined using Beilinson’s Basic
Lemma.

(3) We have a canonical spectral sequence

Ei,j
2 := Hi

+(K,Hj
DFK

(X, r))⇒ Hi+j
syn (X, r)

that degenerates at E2. It can be canonically lifted to the category of Banach-Colmez spaces.

Proof. For the first claim, define

(6.2) RΓB
syn(X, r) = [RΓB

HK(X)τ,ϕ=pr

B+

ιdR−−→(RΓB
dR(X)⊗K B+

dR)/F r]

By Section 2.2.2,

RΓB
HK(X)τ,ϕ=pr

B+ = Xr
st(RΓB

HK(X))(C),

(RΓB
dR(X)⊗K B+

dR)/F r = Xr
dR(RΓB

dR(X))(C),

and the map ιdR can be lifted canonically to a map between complexes of Banach-Colmez spaces. We
can now define the following complex of Banach-Colmez spaces

RΓB
syn(X, r) := [Xr

st(RΓB
HK(X))

ιdR−−→Xr
dR(RΓB

dR(X))].(6.3)

We have RΓB
syn(X, r)(C) = RΓB

syn(X, r) and hence H∗(RΓB
syn(X, r))(C) = HiRΓB

syn(X, r).
To define the lift (6.1), it suffices to inspect the sequence of quasi-isomorphisms (4.2) defining the

syntomic period map and to

(1) replace the complexes RΓHK(X), RΓdR(X), and RΓét(X,Qp) by their analogs RΓB
HK(X), RΓB

dR(X),
and RΓB

ét(X,Qp) defined using Beilinson’s Basic Lemma;
(2) note that (RΓB

HK(X)⊗Fnr Bst)ϕ=pr,N=0 and (RΓB
dR(X)⊗K BdR)/F r are C-points of complexes of

Ind-Banach-Colmez spaces; and similarly for RΓB
ét(X,Qp)⊗Qp Bϕ=pr,N=0

st and RΓB
ét(X,Qp)⊗Qp

BdR/F r;
(3) note that, for a pst-pair (D,V ), the period isomorphisms

(D ⊗Fnr Bst)
ϕ=pr,N=0 ' V ⊗Qp Bϕ=pr,N=0

st , (DK ⊗K BdR)/F r ' V ⊗Qp BdR/F r

can be lifted canonically to the category of Ind-Banach-Colmez spaces.

The spectral sequence in the third claim is constructed from (6.2) and (6.3) and uses the computations
of extensions in effective filtered ϕ-modules from (3.3).

�
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6.1.2. Syntomic Euler characteristic. Let X be a variety over K. By Section 2.2.2, the syntomic Euler
characteristic of X is equal to

χ(RΓB
syn(X, r)) =

∑

i≥0

(−1)i dimXr
st(D

i)−
∑

i≥0

(−1)i dimXr
dR(Di)

=
∑

i≥0

(−1)i
∑

r′
i≤r

(r − r′i, 1)−
∑

i≥0

(−1)i(r dimK Di
K
−

r∑

j=1

dim F jDi
K

, 0),

where Di = (Di, Di
K

) = (Hi
HK(X), H i

dR(X)). For r large enough this stabilizes. That is, if F r+1Di
K

= 0,
i ≥ 0, and if all r′i’s are ≤ r, then

χ(RΓB
syn(X, r)) =

∑

i≥0

(−1)i(r dimFnr Di − tN (Di), dimFnr Di)−
∑

i≥0

(−1)i(r dimK Di
K − tH(Di

K), 0)

=
∑

i≥0

(−1)i(tH(Di
K)− tN (Di), dimFnr Di) = (

∑

i≥0

(−1)i(tH(Di
K)− tN (Di)), χ(RΓdR(X))).

Since the filtered (ϕ,N,GK)-module Di = (Di, Di
K

) is admissible, we have tN (Di) = tH(Di
K) and

χ(RΓB
syn(X, r)) = (0, χ(RΓdR(X))).

6.1.3. Formal schemes. Part of Theorem 6.1 has an analog for formal schemes. Let X be a quasi-
compact (p-adic) formal scheme over OK with strict semistable reduction. As shown in [8], for r ≥ 0,
one can associate to X a functorial syntomic cohomology complex RΓsyn(XK , r) defined be a formula
analogous to (4.1). We see X as a log-scheme and the Hyodo-Kato and the de Rham cohomologies used
are logarithmic.

Proposition 6.2. Assume that X is proper.

(1) Then there exists a complex RΓsyn(XK , r) ∈ Db(BC ) such that RΓsyn(XK , r)(C) = RΓsyn(XK , r)
and the distinguished triangle

RΓsyn(XK , r)→ RΓHK(X )τ,ϕ=pr

B+

ιdR−−→(RΓdR(XK)⊗K B+
dR)/F r

can be lifted canonically to a distinguished triangle of Banach-Colmez spaces.
(2) We have a canonical spectral sequence

Ei,j
2 := Hi

+(K,Hj
DFK

(XK , r))⇒ Hi+j
syn (XK , r)

that degenerates at E2. It can be canonically lifted to the category of Banach-Colmez spaces.

Proof. Consider the following complex in Dg
pH

RΓg
pH(XK , r) := (RΓHK(X , r)τ

B+ , (RΓdR(XK)⊗KB+
dR, F r), ιdR : RΓHK(X )τ

B+⊗B+B+
dR

∼
→ RΓdR(XK)⊗KB+

dR),

where the r-twist in RΓHK(X , r)τ
B+ refers to Frobenius divided by pr. The p-adic Hodge complex

RΓg
pH(XK , r) is geometric: the explanation at the beginning of Section 4.1 goes through once we have

the degeneration of the Hodge-de Rham spectral sequence and this was proved in [19, Theorem 8.4]. Set

RΓDFK
(XK , r) := θ−1RΓg

pH(XK , r) ∈ Dg(DF+

K
).

We set Hi
DFK

(XK , r) := HiRΓDFK
(XK , r).

By Proposition 5.2, we have

HomDg
pH

(1, RΓg
pH(XK , r)) ' HomDb(DF+

K
)(1, RΓDFK

(XK , r)).

Since

RΓsyn(XK , r)
∼
→ [ RΓHK(X )τ,ϕ=pr

B+ ⊕ F r(RΓdR(XK)⊗K B+
dR)

ιdR⊗ι−can // RΓdR(Xtr)⊗K B+
dR ]

' HomDg
pH

(1, RΓg
pH(XK , r)),
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we get that

RΓsyn(XK , r) ' HomDb(DF+
K

)(1, RΓDFK
(XK , r)).

The first claim of our proposition follows now from formula (5.4), Proposition 3.1, and (3.4). The second
– just as in the proof of Theorem 6.1. �

6.2. Identity component of syntomic cohomology. We will show that the image of the syntomic
cohomology Banach-Colmez space in the étale cohomology is the Qp-vector space of its connected com-
ponents.

Proposition 6.3. For a variety X ∈ V arK and i ≥ 0, we have the natural isomorphisms

ker(ρi
syn) ' H1

+(K,H i−1
DFK

(X, r)), Im(ρi
syn) ' H0

+(K,H i
DFK

(X, r)),

where ρi
syn : Hi

syn(X, r)→ Hi
ét(X,Qp(r)) is the syntomic period map.

Proof. Consider the following commutative diagram

// Hi
syn(X, r) //

ρi
syn

��

Hi
cr(X)ϕ=pr γi //

ρi
cr

��

(Hi
dR(X)⊗K B+

dR)/F r

ρi
dR

��

//

0 // Hi
ét(X,Qp(r)) // Hi

ét(X,Qp)⊗Bϕ=pr

cr
// Hi

ét(X,Qp)⊗K BdR/F r // 0

It follows that ρi
syn factors through H0

+(K,H i
DFK

(X, r)) and that H0
+(K,H i

DFK
(X, r)) ↪→ Hi

ét(X,Qp(r)).

Hence H1
+(K,H i−1

DFK
(X, r)) ' ker(ρi

syn) and H0
+(K,H i

DFK
(X, r)) ' Im(ρi

syn), as wanted. �

Corollary 6.4. For i ≤ r or r ≥ d, there are natural isomorphisms

Hi
syn(X, r)

∼
→ H0

+(K,H i
DFK

(X, r))
ρi
syn
−−→Hi

ét(X,Qp(r)).

Proof. The first isomorphism follows from Lemma 4.6. The second, from the above proposition and the
fact that, for i ≤ r or r ≥ d, the pair (Hi

HK(X), H i
dR(X)) comes from an admissible filtered (ϕ,N,GL)-

module (for a finite extension L/K) hence we can revoke [16, Prop. 2.10]. �

The exact sequence of Banach-Colmez spaces

0→ H1
+(K,H i−1

DFK
(X, r))→ HiRΓB

syn(X, r)→ H0
+(K,H i

DFK
(X, r))→ 0

has the following interpretation. The Banach-Colmez space H1
+(K,H i−1

DFK
(X, r)) is connected (as a quo-

tient of the connected Space Xr
dR(Hi−1

dR (X))) and the Space H0
+(K,H i

DFK
(X, r)) is a finite rank Qp-vector

space. Hence H1
+(K,H i−1

DFK
(X, r)) is the identity component of HiRΓB

syn(X, r) and H0
+(K,H i

DFK
(X, r)) =

π0(HiRΓB
syn(X, r)). The projection of Banach-Colmex spaces HiRΓB

syn(X, r)→ H0
+(K,H i

DFK
(X, r)) has

a noncanonical section.

7. Computations

In this section we will present several computations of geometric syntomic cohomology groups. They
show that these groups yield interesting invariants of algebraic varieties.

7.1. Ordinary varieties. We will show that geometric syntomic cohomology of ordinary varieties is a
finite rank Qp-vector space. For varying twists r, it yields a Galois equivariant filtration of the étale
cohomology.

Recall the following terminology from [17]. A p-adic GK -representation V is called ordinary if it admits
an equivariant increasing filtration Vj , j ∈ Z, such that an open subgroup of the inertia group acts on
Vj/Vj−1 by χ−j , χ being the cyclotomic character.

A filtered (ϕ,N,GK)-module is called ordinary if its Newton and Hodge polygons agree. Such a module
admits an increasing filtration by filtered (ϕ,N,GK)-submodules, Dj , j ∈ Z, such that Dj/Dj−1 = D[−j].
Here we set D[−j] := (D[−j], D[−j],K), where D[−j] = D ∩ (D ⊗Fnr W (k))[−j] for (D ⊗Fnr W (k))[−j] –
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a submodule of D ⊗Fnr W (k) generated by x such that ϕ(x) = p−jx. It is equipped with the trivial
monodromy and the filtration on D[−j],K := DGK

[−j],K
is given by F−jDK = DK , F−j+1DK = 0. The

categories of ordinary Galois representations and ordinary filtered (ϕ,N,GK)-modules are equivalent.
We have Vpst(D[−j]) ' V−j .

A variety X over K is ordinary if so are the pairs (Hi
HK(X), H i

dR(X)), i ≥ 0. A variety X over K is
ordinary if it comes from an ordinary variety defined over a finite extension of K.

Example 7.1. For r ≥ 0 and i ≥ 0, we have

Hi
syn(X, r) = H0

+(K,H i
DFK

(X, r))
∼
→ Hi

ét(X,Qp)r(r) ↪→ Hi
ét(X,Qp(r)).

In particular, it is a finite rank Qp-vector space.

Proof. For k ≥ 0, let D = F nre, ϕ(e) = pke, F kDK = DK , F k+1DK = 0. Equip it with the trivial action
of the monodromy and GK . The pair (D,DK) forms an admissible filtered (ϕ,N,GK)-module whose
associated Galois representation is Qp(−k).

If r < k, we have

(D ⊗Fnr B+
cr)

ϕ=pr

= (B+
cr)

ϕ=pr−k

= 0, (D ⊗Fnr B+
dR)/F r = B+

dR/B+
dR = 0.

Hence H0
+(K,D) = H1

+(K,D) = 0.
If r ≥ k, we have

[(D ⊗Fnr B+
cr)

ϕ=pr

→ (D ⊗Fnr B+
dR)/F r] = [(B+

cr)
ϕ=pr−k

→ B+
dR/F r−k]

∼
← Qp(r − k).

Hence H0
+(K,D) = Qp(r − k) and H1

+(K,D) = 0.
By devissage, it follows that, for any ordinary filtered (ϕ,N,GK)-module D, we have H1

+(K,D) = 0
and H0

+(K,D)
∼
→ Vst(Dr)(r) = Vr(r), as wanted. �

We note that in the étale cohomology group Hi
ét(X,Qp) we see the cyclotomic characters χj , 0 ≥ j ≥

−i; hence in the group Hi
ét(X,Qp(r)) - the characters χj , r ≥ j ≥ −i+ r. The above example shows that

syntomic cohomology Hi
syn(X, r), r ≥ 0, picks up the twists Qp(j), for r ≥ j ≥ 0, in the étale cohomology

Hi
ét(X,Qp(r)). If r is large, r ≥ i, we pick up the whole étale cohomology group.

7.2. Curves. Let X be a proper smooth curve over K. We will show that the geometric syntomic
cohomology of X recovers the ” étale p-rank of the special fiber of the Néron model of the Jacobian of
the curve”.

By Lemma 4.6,
Hi

syn(X, r) = H0
+(K,H i

DFK
(X, r)), r ≥ 1, i ≤ r + 1,

is a finite rank vector space over Qp that is a subspace of Hi
ét(X,Qp(r)). Moreover,

ρi
syn : Hi

syn(X, r)
∼
→ Hi

ét(X,Qp(r)), r ≥ 1, i ≤ r.

For r = 0, we have

H0
syn(X, 0)

∼
→ H0

ét(X,Qp(0)) ' Qp.

Since F 0(Hi
dR(X)⊗B+

dR) = Hi
dR(X)⊗B+

dR, we have

Hi
syn(X, 0) ' (Hi

HK(X)⊗Fnr B+
cr)

ϕ=1 ↪→ Hi
ét(X,Qp(0)).

Since H2
HK(X) ' F nr with Frobenius pϕ, we have H2

syn(X, 0) = 0 since

H2
syn(X, 0) ↪→ (B+

cr)
ϕ=p−1

= 0.

It remains to understand the inclusion H1
syn(X, 0) ↪→ H1

ét(X,Qp). Since the Frobenius slopes on
H1

HK(X) are ≥ 0, we have

H1
syn(X, 0) ' (H1

HK(X)⊗Fnr B+
cr)

ϕ=1 = (H1
HK(X)[0] ⊗Fnr B+

cr)
ϕ=1 = (H1

HK(X)[0] ⊗Fnr W (k))ϕ=1.
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This is a Qp-vector space, of the same rank as the F nr-rank of H1
HK(X)[0], that injects via the period

map into H1
ét(X,Qp). Since H1

ét(X,Qp) ' Vp(Jac(X))∗ (the Qp-dual), this rank is the ” étale p-rank of
the special fiber of the Néron model of the Jacobian of the curve”.

7.3. Product of elliptic curves. Varieties that are not ordinary give rise to geometric syntomic coho-
mology groups that have nontrivial C-dimension. We will start with some preliminary computations.

7.3.1. The group H0
+(∙). Let D be an admissible filtered (ϕ,N,GK)-module with F 0DK = DK (this

implies that the slopes of Frobenius are ≥ 0). Then the group H0
+((D ⊗Fnr B+

st)
N=0,ϕ=pr

, F r(DK ⊗K

B+
dR))) is the largest subrepresentation Vr of Vst(D)(r) with Hodge weights in [0, r]. It corresponds to the

largest (weakly) admissible submodule Dr of D with F r+1Dr,K = 0 (note that this is equivalent to all
Hodge weights being less or equal to r and it implies that all Frobenius slopes have the same property).

7.3.2. Trace map. Let X be a variety over K of dimension d. We claim that we have a canonical
isomorphism H2d

syn(X, d) ' Qp. Indeed, by Lemma 4.6, we have H2d
syn(X, d) = H0

+(K,H2d
DFK

(X, d)) and

H0
+(K,H2d

DFK
(X, d)) = Ker((H2d

HK(X)⊗Fnr B+
st)

N=0,ϕ=pd

→ (H2d
dR(X)⊗K B+

dR)/F d)

= (H2d
HK(X)⊗Fnr B+

st)
N=0,ϕ=pd

The last equality holds because F dH2d
dR(X) = H2d

dR(X). Since H2d
HK(X) ' F nr with Frobenius pdϕ, we

have (H2d
HK(X)⊗Fnr B+

st)
N=0,ϕ=pd

= B+,ϕ=1
cr = Qp, as wanted.

7.3.3. Product of elliptic curves. We are now ready to do computations for products of certain elliptic
curves.

Example 7.2. Let E be an elliptic curve over K with a supersingular reduction. Let X = E × E.

(1) We have the following exact sequence of Galois representations

0→ H2
syn(XK , 1)→ H2

ét(XK ,Qp(1))→ C(−1)→ H3
syn(XK , 1)→ 0

(2) If Sym2 H1
ét(EK) is an irreducible Galois representation, then

H2
ét(XK ,Qp(1))/H2

syn(XK , 1) ' Sym2 H1
ét(EK ,Qp)(1), H3

syn(XK , 1) ' C(−1)/ Sym2 H1
ét(EK ,Qp)(1).

Proof. We note that we have the following exact sequence of Galois representations

(7.1) 0→ H2
syn(XK , 1)→ (H2

HK(X)⊗F B+
cr)

ϕ=p ιdR−−→(H2
dR(X)⊗K B+

dR)/F 1 → H3
syn(XK , 1)→ 0

It is obtained from the fundamental long exact sequence. The exactness on the left follows from Lemma
4.6. For the exactness on the right, we note, that using the Künneth formula in Hyodo-Kato cohomology
and 7.3.2, we get that

(H3
HK(X)⊗F B+

cr)
ϕ=p = (H1

HK(E)⊗F B+
cr)

ϕ=1 ⊕ (H1
HK(E)⊗F B+

cr)
ϕ=1.

Using the fact that the slope of the Frobenius on H1
HK(E) is 1/2 we obtain

(H3
HK(X)⊗F B+

cr)
ϕ=p = (B+,ϕ=p−1/2

cr )4 = 0.

Consider now the following commutative diagram induces by the period maps

H2
syn(XK , 1) � � //

� _

ρsyn

��

(H2
HK(X)⊗F B+

cr)
ϕ=p //

� _

ρHK

��

(H2
dR(X)⊗K B+

dR)/F 1 // //
� _

ρdR

��

H3
syn(XK , 1)

H2
ét(XK ,Qp(1)) � � //

����

(H2
HK(X)⊗F Bcr)ϕ=p // //

����

(H2
dR(X)⊗K BdR)/F 1

����
C(−1) � � // coker ρHK

f // // coker ρdR
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The rows and columns are exact. The fact that ker(f) ' F 2H2
dR(X) ⊗K C(−1) ' C(−1) follows from

the fundamental exact sequence

0→ Qpt→ B+,ϕ=p
cr → B+

dR/F 1 → 0

Snake Lemma yields the following exact sequence

0→ H2
syn(XK , 1)→ H2

ét(XK ,Qp(1))→ C(−1)→ H3
syn(XK , 1)→ 0,

as claimed in the first part of our example.
We argue now for the second part. Since de Rham cohomology satisfies Künneth formula, the compu-

tations in 7.3.2 yield that (H2
dR(X) ⊗K B+

dR)/F 1 ' C. In a similar way, using the Künneth formula in
Hyodo-Kato cohomology and 7.3.2, we get that

(H2
HK(X)⊗F B+

cr)
ϕ=p = (H1

HK(E)⊗2 ⊗F B+
cr)

ϕ=p ⊕Q2
p

and the vector space Q2
p is in the kernel of ιdR (since F 1H2

dR(E) = H2
dR(E)). Hence we have the exact

sequence
0→ H2

syn(XK , 1)→ (H1
HK(E)⊗2 ⊗F B+

cr)
ϕ=p ⊕Q2

p → C → H3
syn(XK , 1)→ 0

Using the fact that the slope of the Frobenius on H1
HK(E) is 1/2 and B+,ϕ=1

cr = Qp, we compute that
(H1

HK(X)⊗2 ⊗F B+
cr)

ϕ=p ' Q4
p. Since H1

HK(E)⊗2 = Sym2 H1
HK(E)⊕ F , we have

(H1
HK(E)⊗2 ⊗F B+

cr)
ϕ=p = (Sym2 H1

HK(E)⊗F B+
cr)

ϕ=p ⊕Qp

and, by 7.3.1, Qp is in the kernel of ιdR. Hence we have the exact sequence

0→ H2
syn(XK , 1)→ (Sym2 H1

HK(E)⊗F B+
cr)

ϕ=p ⊕Q3
p → C → H3

syn(XK , 1)→ 0

It follows that, if Sym2 H1
ét(EK ,Qp) is an irreducible Galois representation, then H2

syn(XK , 1) ' Q3
p and

H2
ét(XK ,Qp(1))/H2

syn(XK , 1) ' Sym2 H1
ét(EK ,Qp)(1), as wanted. �

Remark 7.3. (1) The above proof shows that H3
syn(XK , 1) as a Galois representation is a quotient

of C(−1) and of C by a finite rank Qp-Galois representation. This type of curious phenomena
was studied by Fontaine in [13].

(2) If X is a variety that is not ordinary, similar computations to the ones we have done above, show
that the syntomic cohomology of the products Xn acquires nontrivial C-dimension as n becomes
large.

7.4. Galois descent. Let X be a variety over K. Then the syntomic complex RΓsyn(XK , r) is equipped
with a GK -action. Set14 RΓ\

syn(X, r) := RΓ(GK , RΓsyn(XK , r)). Since,

RΓét(X,Qp(r)) = RΓ(GK , RΓét(XK ,Qp(r))),

we have the induced syntomic period map

ρ\
syn : RΓ\

syn(X, r)→ RΓét(X,Qp(r)).

Proposition 7.4. There is a canonical distinguished triangle

(7.2) RΓ\
syn(X, r)

ρ\
syn
−−→RΓét(X,Qp(r))→ RΓ(GK , (RΓB

HK(XK)⊗Fnr Bcr/B
+
cr)

ϕ=pr

)

Proof. Consider the following complex

C+(XK) := [ (RΓB
HK(XK)⊗Fnr B+

st)
N=0,ϕ=pr ιdR⊗ι // (RΓB

dR(XK)⊗K B+
dR)/F r]

representing RΓsyn(XK , r). Define C(XK) by omitting the superscript + in the above definition. We
have

C(XK)/C+(XK) = [A(RΓB
HK(XK))

ιdR⊗ι
−−−−−−→B(RΓB

dR(XK))],

14See [16, 4.2] for the necessary formalities concerning continuous Galois cohomology and Hochschild-Serre spectral

sequence.
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where

A(RΓB
HK(XK)) := (RΓB

HK(XK)⊗Fnr Bst/B
+
st)

N=0,ϕ=pr

,

B(RΓB
dR(XK)) := (RΓB

dR(XK)⊗K BdR)/F r/(RΓB
dR(XK)⊗K B+

dR)/F r.

Hence

RΓ(GK , C(XK)/C+(XK)) = [RΓ(GK , A(RΓB
HK(XK)))

ιdR⊗ι
−−−−−−→RΓ(GK , B(RΓB

dR(XK)))]

and it suffices to show that the complex RΓ(GK , B(RΓB
dR(XK))) is acyclic. Since we have a quasi-

isomorphism RΓB
dR(X)⊗K K

∼
→ RΓB

dR(XK), it suffices to show that, for a finite rank K-vector space DK

with a descending filtration such that F 0DK = DK , the complex RΓ(GK , B(DK)) is acyclic. But the
complex B(DK) has a natural filtration with graded pieces equal to copies of C(j)’s for strictly negative
j’s. Since H∗(GK , C(j)) = 0, j < 0, the acyclicity of the complex RΓ(GK , B(DK)) follows.

�

Remark 7.5. It is not clear to us what is the relation between the distinguished triangle (7.2) and the
Bloch-Kato (dual) exponential exact sequence.
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[1] Y. André, Slope filtrations. Confluentes Math. 1 (2009), no. 1, 1–85.

[2] A. Beilinson, Notes on absolute Hodge cohomology. Applications of algebraic K-theory to algebraic geometry and

number theory, Part I, II (Boulder, Colo., 1983), 35-68, Contemp. Math., 55, Amer. Math. Soc., Providence, RI,

1986.

[3] A. Beilinson, p-adic periods and derived de Rham cohomology. J. Amer. Math. Soc. 25 (2012), no. 3, 715-738.

[4] A. Beilinson, On the crystalline period map, preprint arXiv:1111.3316.

[5] L. Berger, Construction de (ϕ, Γ)-modules: représentations p-adiques et B-paires. Algebra Number Theory 2 (2008),

no. 1, 91–120.

[6] P. Colmez, Espaces de Banach de dimension finie, J. Inst. Math. Jussieu 1 (2002), 331-439.

[7] P. Colmez, Espaces vectoriels de dimension finie et représentations de de Rham . Représentations p-adiques de

groupes p-adiques. I. Représentations galoisiennes et (ϕ, Γ)-modules. Astérisque No. 319 (2008), 117-186.

[8] P. Colmez, W. Nizio l, Syntomic complexes and p-adic nearby cycles, arXiv:1505.06471.
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[16] J. Nekovář, W. Nizio l, Syntomic cohomology and p-adic regulators for varieties over p-adic fields, Algebra Number

Theory 10 (2016), no. 8, 1695–1790.

[17] B. Perrin-Riou, Représentations p-adiques ordinaires. With an appendix by Luc Illusie. Périodes p-adiques (Bures-
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