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ON p-ADIC ABSOLUTE HODGE COHOMOLOGY AND SYNTOMIC
COEFFICIENTS, I.

FRÉDÉRIC DÉGLISE, WIES LAWA NIZIO L

Abstract. We interpret syntomic cohomology defined in [49] as a p-adic absolute Hodge cohomology.

This is analogous to the interpretation of Deligne-Beilinson cohomology as an absolute Hodge cohomol-

ogy by Beilinson [8] and generalizes the results of Bannai [6] and Chiarellotto, Ciccioni, Mazzari [15] in

the good reduction case. This interpretation yields a simple construction of the syntomic descent spectral

sequence and its degeneration for projective and smooth varieties. We introduce syntomic coefficients

and show that in dimension zero they form a full triangulated subcategory of the derived category of

potentially semistable Galois representations.

Along the way, we obtain p-adic realizations of mixed motives including p-adic comparison isomor-

phisms. We apply this to the motivic fundamental group generalizing results of Olsson and Vologodsky

[55], [69].
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1. Introduction

In [8], Beilinson gave an interpretation of Deligne-Beilinson cohomology as an absolute Hodge co-
homology, i.e., as derived Hom in the derived category of mixed Hodge structures. This approach is
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2 FRÉDÉRIC DÉGLISE, WIES LAWA NIZIO L

advantageous: absolute Hodge cohomology allows coefficients. It follows that Deligne-Beilinson coho-
mology can be interpreted as derived Hom between Tate twists in the derived category of Saito’s mixed
Hodge modules [38, A.2.7].

Syntomic cohomology is a p-adic analog of Deligne-Beilinson cohomology. The purpose of this paper
is to give an analog of the above results for syntomic cohomology. Namely, we will show that the
syntomic cohomology introduced in [49] is a p-adic absolute Hodge cohomology, i.e., it can be expressed
as derived Hom in the derived category of p-adic Hodge structures, and we will begin the study of syntomic
coefficients - an approximation of p-adic Hodge modules. This generalizes the results of Bannai [6] and
Chiarellotto, Ciccioni, Mazzari [15] in the good reduction case.

Let K be a complete discrete valuation field of mixed characteristic (0, p) with perfect residue field k.
Let GK = Gal(K/K) be the Galois group of K. For the category of p-adic Hodge structures we take
the abelian category DFK of (weakly) admissible filtered (ϕ,N,GK)-modules defined by Fontaine. For
a variety X over K, we construct a complex RΓDFK (XK , r) ∈ Db(DFK), r ∈ Z. The absolute Hodge
cohomology of X is then by definition

RΓH (X, r) := RHomDb(DFK)(K(0), RΓDFK
(XK , r)), r ∈ Z.

For r ≥ 0, it coincides with the syntomic cohomology RΓsyn(X, r) defined in [49]. Recall that the latter
was defined as the following mapping fiber

RΓsyn(X, r) = [RΓB
HK(X)ϕ=pr,N=0 ιdR−−→RΓdR(X)/F r],

where RΓB
HK(X) is the Beilinson-Hyodo-Kato cohomology from [10], RΓdR(X) is the Deligne de Rham

cohomology, and the map ιdR is the Beilinson-Hyodo-Kato map.
We present two approaches to the definition of the complex RΓDFK

(XK , r). In the first one, we follow
Beilinson’s construction of the complex of mixed Hodge structures associated to a variety [8]. Thus, we
build the dg category DpH of p-adic Hodge complexes (an analog of Beilinson’s mixed Hodge complexes)
which is obtained by gluing two dg categories, one, corresponding morally to the special fiber, whose
objects are equipped with an action of a Frobenius and a monodromy operator, and the other one,
corresponding to the generic fiber, whose objects are equipped with a filtration thought of as the Hodge
filtration on de Rham cohomology. It contains a dg subcategory of admissible p-adic Hodge complexes
with cohomology groups belonging to DFK . The category Dad

pH admits a natural t-structure whose heart
is the category DFK and Dad

pH is equivalent to the derived category of its heart. That is, we have the
following equivalences of categories

θ : DFK
∼
→ Dad,♥

pH , θ : Db(DFK)
∼
→ Dad

pH .

The interest of the category Dad
pH lies in the fact that, for r ∈ Z, a variety X over K gives rise to the

admissible p-adic Hodge complex

RΓpH(XK , r) := (RΓB
HK(XK , r), (RΓdR(X), F •+r), ιdR) ∈ Dad

pH

We define RΓDFK
(XK , r) := θ−1RΓpH(XK , r).

Since the category DFK is equivalent to that of potentially semistable representations [20], i.e., we
have a functor Vpst : DFK

∼
→ Reppst(GK), we can also write

RΓH (X, r) = HomDb(Reppst(GK))(Qp, RΓpst(XK , r)),

for RΓpst(XK , r) := VpstRΓDFK
(XK , r). Using Beilinson’s comparison theorems [10] we prove that

RΓpst(XK , r) ' RΓét(XK ,Qp(r)) as Galois modules. It follows that there is a functorial syntomic
descent spectral sequence (constructed originally by a different, more complicated, method in [49])

H Ei,j
2 := Hi

st(GK , Hj
ét(XK ,Qp(r)))⇒ Hi+j

H (X, r),

where Hi
st(GK , ∙) := Exti

Reppst(GK)(Qp, ∙). By a classical argument of Deligne [25], it follows from Hard
Lefschetz Theorem, that it degenerates at E2 for X projective and smooth.

A more direct definition of the complex RΓDFK
(XK , r), or, equivalently, of the complex RΓpst(XK , r)

of potentially semistable representations associated to a variety was proposed by Beilinson [11] using
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Beilinson’s Basic Lemma. This lemma allows one to associate a potentially semistable analog of a
cellular complex (of a CW-complex) to an affine variety X over K: one stratifies the variety by closed
subvarieties such that consecutive relative geometric étale cohomology is concentrated in the top degree
(and is a potentially semistable representation). For a general X one obtains Beilinson’s potentially
semistable complex by a Čech gluing argument.

All the p-adic cohomologies mentioned above (de Rham, étale, Hyodo-Kato, and syntomic) behave
well, hence they lift to realizations of both Nori’s abelian and Voevodsky’s triangulated category of
mixed motives. We also lift the comparison maps between them, thus obtaining comparison theorems for
mixed motives. We illustrate this construction by two applications. The first one is a p-adic realization
of the motivic fundamental group including a potentially semistable comparison theorem. We rely on
Cushman’s motivic (in the sense of Nori) theory of the fundamental group [22]. This generalizes results
obtained earlier for curves and proper varieties with good reduction [37], [1], [69], [55]. The second is
a compatibility result. We show that Beilinson’s p-adic comparison theorems (with compact support or
not) are compatible with Gysin morphisms and (possibly mixed) products.

To define a well-behaved notion of syntomic coefficients (i.e., coefficients for syntomic cohomology) we
use Morel-Voevodsky motivic homotopy theory, and more precisely the concept of modules over (motivic)
ring spectra. Recall that objects of motivic stable homotopy theory, called spectra, represent cohomology
theories with suitable properties. A multiplicative structure on the cohomology theory corresponds to
a monoid structure on the representing spectrum, which is then called a ring spectrum. These objects
should be be thought of as a generalization of (h-sheaves of) differential graded algebras. In fact, as we
will only consider ordinary cohomology theories (as opposed to K-theory or algebraic cobordism with
integral coefficients), we will always restrict to this later concept. Therefore modules over ring spectra
should be understood as the more familiar concept of modules over differential graded algebras.

One of the basic examples of a representable cohomology theory is de Rham cohomology in charac-
teristic 0. Denote the corresponding motivic ring spectrum by EdR. By [18], [28], working relatively
to a fixed complex variety X, modules over EdR,X satisfying a suitable finiteness condition correspond
naturally to (regular holonomic) DX -modules of geometric origin.

In [49] it is shown that syntomic cohomology can be represented by a motivic dg algebra Esyn, i.e., we
have

(1.1) RΓsyn(X, r) = RHomDMh(K,Qp)(M(X), Esyn(r)),

where M(X) is the Voevodsky’s motive associated to X and DMh(K,Qp) is the category of h-motives.
So we have the companion notion of syntomic modules, that is, modules over the motivic dg-algebra
Esyn. The main advantage of this definition is that the link with mixed motives is rightly given by the
construction and, most of all, the 6 functors formalism follows easily from the motivic one.

Now the crucial question is to understand how the category of syntomic modules is related to the
category of filtered (ϕ,N,GK)-modules, the existing candidates for syntomic smooth sheaves [30], [31],
[65], [61], and the category of syntomic coefficients introduced in [24] by a method analogous to the one
we use but based on Gros-Besser’s version of syntomic cohomology. In this paper we study this question
only in dimension zero, i.e., for syntomic modules over the base field. With a suitable notion of finiteness
for syntomic modules, called constructibility, we prove the following theorem.

Theorem (Theorem 5.13). The triangulated monoidal category of constructible syntomic modules over a
p-adic field K is equivalent to a full subcategory of the derived category of admissible filtered (ϕ,N,GK)-
modules.

It implies, by adjunction from (1.1), that p-adic absolute Hodge cohomology coincides with derived
Hom in the (homotopy) category of syntomic modules, i.e., we have

RΓH (X, r) = RHomEsyn−modX
(Esyn,X , Esyn,X(r)).

In the conclusion of the paper, we use syntomic modules to introduce new notions of p-adic Galois
representations (Definition 5.20). We define geometric representations which correspond to the common
intuition of representations associated to (mixed) motives, and constructible representations, correspond-
ing to cohomology groups of Galois realizations of syntomic modules.
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We expect that the categories of geometric, constructible, and potentially semistable representations
are not the same. This is at least what is predicted by the current general conjectures. Note that this
is in contrast to the case of number fields where the analogs of these notions are conjectured to coincide
with the known definition of “representations coming from geometry” [34].

1.0.1. Notation. Let OK be a complete discrete valuation ring with fraction field K of characteristic 0,
with perfect residue field k of characteristic p. Let K be an algebraic closure of K. Let W (k) be the ring
of Witt vectors of k with fraction field K0 and denote by Knr

0 the maximal unramified extension of K0.
Set GK = Gal(K/K) and let IK denote its inertia subgroup. Let ϕ be the absolute Frobenius on Knr

0 .
We will denote by OK , O×

K , and O0
K the scheme Spec(OK) with the trivial, canonical (i.e., associated to

the closed point), and (N→ OK , 1 7→ 0) log-structure respectively. For a scheme X over W (k), Xn will
denote its reduction mod pn, X0 will denote its special fiber. Let V arK denote the category of varieties
over K, i.e., reduced, separated, K-schemes of finite type.

For a dg category C with a t-structure, we will denote by C♥ the heart of the t-structure. We will use
a shorthand for certain homotopy limits. Namely, if f : C → C ′ is a map in the dg derived category of
abelian groups , we set

[ C
f // C ′ ] := holim(C → C ′ ← 0).

And, if

C1

��

f // C2

��
C3

g // C4

is a commutative diagram in the dg derived category of abelian groups , we set







C1

��

f // C2

��
C3

g // C4








:= [[C1
f
→ C2]→ [C3

g
→ C4]].

Acknowledgments. We would like to thank Alexander Beilinson, Laurent Berger, Bhargav Bhatt,
François Brunault, Denis-Charles Cisinski, Pierre Colmez, Gabriel Dospinescu, Bradley Drew, Veronika
Ertl, Tony Scholl, and Peter Scholze for helpful discussions related to the subject of this paper. We thank
Madhav Nori for sending us the thesis of Matthew Cushman. Special thanks go to Alexander Beilinson
for explaining to us his construction of syntomic cohomology, for allowing us to include it in this paper,
and for sending us Nori’s notes on Nori’s motives.

2. A p-adic absolute Hodge cohomology, I

2.1. The derived category of admissible filtered (ϕ,N,GK)-modules.

2.1. For a field K, let VK denote the category of K-vector spaces. It is an abelian category. We will
denote by Db(VK) its bounded derived dg category and by Db(VK) – its bounded derived category. Let
V K

dR denote the category of K-vector spaces with a descending exhaustive separated filtration F •. The
category V K

dR (and the category of bounded complexes Cb(V K
dR)) is additive but not abelian. It is an

exact category in the sense of Quillen [56], where short exact sequences are exact sequences of K-vector
spaces with strict morphisms (recall that a morphism f : M → N is strict if f(F iM) = F iN ∩ im(f)).
It is also a quasi-abelian category in the sense of [60] (see [59, 2] for a quick review). Thus its derived
category can be studied as usual (see [12]).

An object M ∈ Cb(V K
dR) is called a strict complex if its differentials are strict. There are canonical

truncation functors on Cb(V K
dR):

τ≤nM := ∙ ∙ ∙ →Mn−2 →Mn−1 → ker(dn)→ 0→ ∙ ∙ ∙

τ≥nM := ∙ ∙ ∙ → 0 ∙ ∙ ∙ → coim(dn−1)→Mn →Mn+1 → ∙ ∙ ∙
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with cohomology objects

τ≤nτ≥n(M) = ∙ ∙ ∙ → 0→ coim(dn−1)→ ker(dn)→ 0→ ∙ ∙ ∙

We will denote the bounded derived dg category of V K
dR by Db(V K

dR). It is defined as the dg quotient
[29] of the dg category Cb(V K

dR) by the full dg subcategory of strictly exact complexes [48]. A map of
complexes is a quasi-isomorphism if and only if it is a quasi-isomorphism on the grading. The homotopy
category of Db(V K

dR) is the bounded filtered derived category Db(V K
dR).

For n ∈ Z, let Db
≤n(V K

dR) (resp. Db
≥n(V K

dR)) denote the full subcategory of Db(V K
dR) of complexes that

are strictly exact in degrees k > n (resp. k < n)1. The above truncation maps extend to truncations
functors τ≤n : Db(V K

dR)→ Db
≤n(V K

dR) and τ≥n : Db(V K
dR)→ Db

≥n(V K
dR). The pair (Db

≤n(V K
dR), Db

≥n(V K
dR))

defines a t-structure on Db(V K
dR) by [60]. The heart Db(V K

dR)♥ is an abelian category LH(V K
dR). We have

an embedding V K
dR ↪→ LH(V K

dR) that induces an equivalence Db(V K
dR)

∼
→ Db(LH(V K

dR)). This t-structure
pulls back to a t-structure on the derived dg category Db(V K

dR).

2.2. Let the field K be again as at the beginning of this article. A ϕ-module over K0 is a pair (D,ϕ),
where D is a K0-vector space and the Frobenius ϕ = ϕD is a ϕ-semilinear endomorphism of D. We will
usually write D for (D,ϕ). The category MK0(ϕ) of ϕ-modules over K0 is abelian and we will denote by
Db

K0
(ϕ) its bounded derived dg category.

For D1, D2 ∈ MK0(ϕ), let HomK0,ϕ(D1, D2) denote the group of Frobenius morphisms. We have the
exact sequence

0→ HomK0,ϕ(D1, D2)→ HomK0(D1, D2)→ HomK0(D1, ϕ∗D2),(2.1)

where the last map is δ : x 7→ ϕD2x−ϕ∗(x)ϕD1 . Set Hom]
K0,ϕ(D1, D2) := Cone(δ)[−1]. Beilinson proves

the following lemma.

Lemma 2.3. ([10, 1.13,1.14])
For D1, D2 ∈ Db

K0
(ϕ), the map RHomK0,ϕ(D1, D2)→ Hom]

K0,ϕ(D1, D2) is a quasi-isomorphism, i.e.,

RHomK0,ϕ(D1, D2) = Cone(HomK0(D1, D2)
δ
→ HomK0(D1, ϕ∗D2))[−1]

Proof. Note that, for D1, D2 ∈ Db
K0

(ϕ), from the exact sequence (2.1), we get a map

α : RHomK0,ϕ(D1, D2)→ Cone(RHomK0(D1, D2)
δ
→ RHomK0(D1, Rϕ∗D2))[−1]

Since
RHomK0(D1, D2) ' HomK0(D1, D2), RHomK0(D1, Rϕ∗D2) ' HomK0(D1, ϕ∗D2)

it suffices to show that the map α is a quasi-isomorphism.
The forgetful functor MK0(ϕ) → VK0 has a right adjoint M → Mϕ, where the ϕ-module Mϕ :=∏

n≥0 ϕn
∗M with Frobenius ϕMϕ

: (x0, x1, . . . , ) → (x1, x2, . . .). The functor M → Mϕ is left exact and
preserves injectives. Since all K0-modules are injective, the map M → Mϕ, m 7→ (m,ϕ(m), ϕ2(m), . . .),
embeds M into an injective ϕ-module. It suffices thus to check that the map α is a quasi-isomorphism
for D1 any ϕ-module and D2 = Gϕ. We calculate

RHomK0,ϕ(D1, Gϕ)
∼
← HomK0,ϕ(D1, Gϕ)

∼
→ Cone(HomK0(D1, Gϕ)

δ
→ HomK0(D1, ϕ∗Gϕ))[−1]

∼
→ Cone(RHomK0(D1, Gϕ)

δ
→ RHomK0(D1, Rϕ∗Gϕ))[−1]

This proves the lemma. �

2.4. A (ϕ,N)-module is a triple (D,ϕD, N) (abbreviated often to D), where (D,ϕD) is a finite rank ϕ-
module over K0 and ϕD is an automorphism, and N is a K0-linear endomorphism of D such that NϕD =
pϕDN (hence N is nilpotent). The category MK0(ϕ,N) of (ϕ,N)-modules is naturally a Tannakian tensor
Qp-category and (M,ϕM , N) 7→ M is a fiber functor over K0. Denote by Db

ϕ,N (K0) and Db
ϕ,N (K0) the

corresponding bounded derived dg category and bounded derived category, respectively.

1Recall [60, 1.1.4] that a sequence A
e
→ B

f
→ C such that fe = 0 is called strictly exact if the morphism e is strict and

the natural map im e → ker f is an isomorphism.
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For (ϕ,N)-modules M,T , let Homϕ,N (M,T ) be the group of (ϕ,N)-module morphisms. Let Hom]
ϕ,N (M,T )

be the complex [10, 1.15]

HomK0(M,T )→ HomK0(M,ϕ∗T )⊕HomK0(M,T )→ HomK0(M,ϕ∗T )

beginning in degree 0 and with the following differentials

d0 : x 7→ (ϕ2x− xϕ1, N2x− xN1);

d1 : (x, y) 7→ (N2x− pxN1 − pϕ2y + yϕ1)

Clearly, we have Homϕ,N (M,T ) = H0 Hom]
ϕ,N (M,T ). Complexes Hom]

ϕ,N compose naturally and supply
a dg category structure on the category of bounded complexes of (ϕ,N)-modules.

Beilinson states the following fact.

Lemma 2.5. ([10, 1.15]) For D1, D2 ∈ Db
K0

(ϕ,N), the map RHomϕ,N (D1, D2) → Hom]
ϕ,N (D1, D2) is

a quasi-isomorphism, i.e.,

RHomϕ,N (D1, D2) =









HomK0(D1, D2)
δ1 //

δ2

��

HomK0(D1, ϕ∗D2))

δ′
2

��
HomK0(D1, D2)

δ′
1 // HomK0(D1, ϕ∗D2))









Here

δ1 : x 7→ ϕ2x− xϕ1, δ′1 : x 7→ pϕ2x− xϕ1;

δ2 : x 7→ N2x− xN1, δ′2 : x 7→ N2x− pxN1

Proof. We pass first to the category of (ϕ,N)-modules defined as above but with modules of any rank
and with the Frobenius being just an endomorphism. It suffices to prove our lemma in this (larger)
category. The forgetful functor MK0(ϕ,N) → VK0 has a right adjoint M 7→ Mϕ,N , where Mϕ,N is
the product

∏
i≥0 M i

ϕ, M i
ϕ = Mϕ. We will often write Mϕ,N =

∏
i,j≥0 Mij . The K0-action on Mϕ,N

is twisted by Frobenius: amij = ϕi(a)mij , a ∈ K0; the Frobenius is defined by ϕ = Id : Mij →
ϕ∗Mi,j−1 and the monodromy – as N = p−j : Mij → Mi−1,j . The functor M 7→ Mϕ,N is exact and
preserves injectives. We have the adjunction map M → Mϕ,N , m 7→ (mij = N iϕj(m)) that induces the
isomorphism HomK0(T,M)

∼
→ Homϕ,N (T,Mϕ,N ), T ∈ VK0 ,M ∈MK0(ϕ,N).

Consider the following injective resolution of a (ϕ,N)-module M

0→M →Mϕ,N
α
→ ϕ∗Mϕ,N ⊕Mϕ,N

β
→ ϕ∗M → 0

with

α(mij) = (ϕ(mij)−mi,j+1, Nmij − p−jmi+1,j),

β(x, y) = ((i, j) 7→ Nxij − p1−jxi+1,j − pϕyi,j + yi,j+1)

Hence RHomϕ,N (T,M) for M,T ∈MK0(ϕ,N), can be computed by the complex

Homϕ,N (T,Mϕ,N )
α
→ Homϕ,N (T, ϕ∗Mϕ,N )⊕Homϕ,N (T,Mϕ,N )

β
→ Homϕ,N (T, ϕ∗Mϕ,N )

Passing to the K0-linear morphisms we get the complex Hom](T,M). This suffices to prove the lemma.
�

2.6. A filtered (ϕ,N)-module is a tuple (D0, ϕ,N, F •), where (D0, ϕ,N ) is a (ϕ,N)-module and F • is
a decreasing finite filtration of DK := D0 ⊗K0 K by K-vector spaces. There is a notion of a (weakly)
admissible filtered (ϕ,N)-module [20]. Denote by

MF ad
K (ϕ,N) ⊂MFK(ϕ,N) ⊂MK0(ϕ,N)
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the categories of admissible filtered (ϕ,N)-modules, filtered (ϕ,N)-modules, and (ϕ,N)-modules, respec-
tively. We know [20] that the pair of functors

Dst(V ) = (Bst ⊗Qp
V )GK , DK(V ) = (BdR ⊗Qp

V )GK ;

Vst(D) = (Bst ⊗K0 D0)ϕ=Id,N=0 ∩ F 0(BdR ⊗K DK)

defines an equivalence of categories MF ad
K (ϕ,N) ' Repst(GK) ⊂ Rep(GK), where the last two categories

denote the subcategory of semistable Galois representations [32] of the category of finite dimensional Qp-
linear representations of the Galois group GK . The rings Bst and BdR are the semistable and de Rham
period rings of Fontaine [32]. The category MF ad

K (ϕ,N) is naturally a Tannakian tensor Qp-category
and (D0, ϕ,N, F •) 7→ D0 is a fiber functor over K0.

A filtered (ϕ,N,GK)-module is a tuple (D0, ϕ,N, ρ, F •), where

(1) D0 is a finite dimensional Knr
0 -vector space;

(2) ϕ : D0 → D0 is a Frobenius map;
(3) N : D0 → D0 is a Knr

0 -linear monodromy map such that Nϕ = pϕN ;
(4) ρ is a Knr

0 -semilinear GK -action on D (hence ρ|IK is linear) that is smooth, i.e., all vectors have
open stabilizers, and that commutes with ϕ and N ;

(5) F • is a decreasing finite filtration of DK := (D ⊗Knr
0

K)GK by K-vector spaces.

Morphisms between filtered (ϕ,N,GK)-modules are Knr
0 -linear maps preserving all structures. There is

a notion of a (weakly) admissible filtered (ϕ,N,GK)-module [20], [33]. Denote by

DFK := MF ad
K (ϕ,N,GK) ⊂MFK(ϕ,N,GK) ⊂MK(ϕ,N,GK)

the categories of admissible filtered (ϕ,N,GK)-modules (DF stands for Dieudonné-Fontaine), filtered
(ϕ,N,GK)-modules, and (ϕ,N,GK)-modules, respectively. The last category is built from tuples (D0, ϕ,N, ρ)
having properties 1, 2, 3, 4 above. We know [20] that the pair of functors

Dpst(V ) = inj lim
H

(Bst ⊗Qp V )H , H ⊂ GK − an open subgroup, DK(V ) := (V ⊗Qp BdR)GK ;

Vpst(D) = (Bst ⊗Knr
0

D0)
ϕ=Id,N=0 ∩ F 0(BdR ⊗K DK)

define an equivalence of categories MF ad
K (ϕ,N,GK) ' Reppst(GK), where the last category denotes the

category of potentially semistable Galois representations [32]. We have the abstract period isomorphisms

(2.2) ρpst : Dpst(V )⊗Knr
0

Bst ' V ⊗Qp Bst, ρdR : DK(V )⊗K BdR ' V ⊗Qp BdR,

where the first one is compatible with the action of ϕ,N , and GK , and the second one is compatible with
filtration. The category MF pst

K is naturally a Tannakian tensor Qp-category and (D0, ϕ,N, ρ, F •) 7→ D0

is a fiber functor over Knr
0 . We will denote by Db(DFK) and Db(DFK) its bounded derived dg category

and bounded derived category, respectively.
The category MK(ϕ,N,GK) is abelian. We will denote by Db

K(ϕ,N,GK) and Db
K(ϕ,N,GK) its

bounded derived dg category and bounded derived category, respectively. For (ϕ,N,GK)-modules M,T ,
let Homϕ,N,GK (M,T ) be the group of (ϕ,N,GK)-module morphisms and let HomGK (M,T ) be the group
of Knr

0 -linear and GK - equivariant morphisms. Let Hom]
ϕ,N,GK

(M,T ) be the complex

HomGK
(M,T )→ HomGK

(M,ϕ∗T )⊕HomGK
(M,T )→ HomGK

(M,ϕ∗T ).

This complex is supported in degrees 0, 1, 2 and the differentials are as above for (ϕ,N)-modules. Clearly,
we have Homϕ,N,GK

(M,T ) = H0 Hom]
ϕ,N,GK

(M,T ). Complexes Hom]
ϕ,N,GK

compose naturally. Arguing
as in the proof of Lemma 2.5, we can show that, for M,T ∈ Db

K(ϕ,N,GK),

(2.3) RHomϕ,N,GK
(M,T ) ' Hom]

ϕ,N,GK
(M,T ).

Let M , T be two complexes in Cb(MFK(ϕ,N,GK)). Define the complex Hom[(M,T ) as the following
homotopy fiber

Hom[(M,T ) := Cone(Hom]
ϕ,N,GK

(M0, T0)⊕HomdR(MK , TK)
can− can
−−−−−−→HomGK

(MK , TK))[−1],
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where HomdR(MK , TK) is the group of filtered K-linear morphisms and HomGK
(MK , TK) is the group

of GK -equivariant, K-linear morphisms. Complexes Hom[ compose naturally.

Proposition 2.7. We have RHomDFK
(M,T ) ' Hom[(M,T ).

Proof. We follow the method of proof of Beilinson and Bannai [8, Lemma 1.7], [6, Prop. 1.7]. Denote by
fM,T the morphism in the cone defining Hom[(M,T ). We have the distinguished triangle

ker(fM,T )→ Hom[(M,T )→ coker(fM,T )[−1]

We also have the functorial isomorphism

HomKb(DFK)(M,T [i])
∼
→ Hi(ker(fM,T ))

Hence a long exact sequence

→ Hi−2(coker(fM,T ))→ HomKb(DFK)(M,T [i])→ Hi(Hom[(M,T ))→ Hi−1(coker(fM,T ))→

Let IT be the category whose objects are quasi-isomorphisms s : T → L in Kb(DFK) and whose mor-
phisms are morphisms L → L′ in Kb(DFK) compatible with s. Since inj limIT

HomKb(DFK)(M,L[i]) =

HomD(DFK)(M,T [i]), it suffices to show that inj limIT
Hi(Hom[(M,L)) = Hi(Hom[(M,T )) and that

inj limIT
Hi(coker(fM,L)) = 0. The first fact follows from Lemma 2.5 and the second one from the

Lemma 2.8 below. �

Lemma 2.8. Let u ∈ Homj
GK

(MK , TK). There exists a complex E ∈ Cb(DFK) and a quasi-isomorphism
T → E such that the image of u in the cokernel of the map f is zero.

Proof. We will construct an extension

0→ T → E → Cone(M
Id
→M)[−j − 1]→ 0

in the category of filtered (ϕ,N,GK)-modules. Since the category of admissible modules is closed under
extension, E will be admissible. The underlying complex of Knr

0 -vector spaces is

E0 := Cone(M0[−j − 1]
(0,Id)
→ T0 ⊕M0[−j − 1])

The Frobenius, monodromy operator, and Galois action are defined on Ei+j
0 := T i+j

0 ⊕ M i−1
0 ⊕ M i

0

coordinatewise. The filtration on Ei+j
K := Ei+j

0 ⊗Knr
0

K is defined as

FnEi+j
K = FnT j

K ⊕ {(u
i(x), 0, x)|x ∈ FnM i

K}

⊕ {(dT (ui−1(x)),−x,−dM (x))|x ∈ FnM i−1
K }

Now take ξ = (0, 0, Id) + (ui, 0, Id) ∈ Hom]
ϕ,N,GK

(M i
0, E

i+j
0 ) ⊕ HomdR(M i

K , Ei+j
K ). We have f(ξ) =

(ui, 0, 0), as wanted. �

2.2. The category of p-adic Hodge complexes.

2.9. Let V G
K

be the category of K-vector spaces with a smooth K-semilinear action of GK . It is a
Grothendieck abelian category. We will consider the following functors:

• FdR : V K
dR → V G

K
, which to a filtered K-vector space (E,F •) associates the K-vector space

E ⊗K K with its natural action of GK .
• F0 : MK(ϕ,N,GK) → V G

K
, which to a (ϕ,N,GK)-module M associates the K-vector space

M ⊗Knr
0

K whose GK -action is induced by the given GK -action on M .

Both functors are exact and monoidal. Note in particular that they induces functors on the respective
categories of complexes which are dg-functors.
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2.10. Let Db(V G
K

) and Db(V G
K

) denote the bounded derived dg category and the bounded derived cat-
egory of V G

K
, respectively. We define the dg category DpH of p-adic Hodge complexes as the homotopy

limit

DpH := holim(Db(MK(ϕ,N,GK))
F0→ Db(V G

K
)

FdR← Db(V K
dR))

We denote by DpH the homotopy category of DpH . By [62, Def. 3.1], [13, 4.1], an object of DpH consists
of objects M0 ∈ Db(MK(ϕ,N,GK)), MK ∈ Db(V K

dR), and a quasi-isomorphism

F0(M0)
aM→ FdR(MK)

in D(V G
K

). We will denote the object above by M = (M0,MK , aM ). The morphisms are given by the
complex HomDpH ((M0,MK , aM ), (N0, NK , aN )):

Homi
DpH

((M0,MK , aM ), (N0, NK , aN ))

= Homi
Db(MK(ϕ,N,GK))(M0, N0)⊕Homi

Db(V K
dR)(MK , NK)⊕Homi−1

Db(V G
K

)
(F0(M0), FdR(NK))

(2.4)

The differential is given by

d(a, b, c) = (da, db, dc + aNF0(a)− (−1)iFdR(b)aM )

and the composition

HomDpH ((N0, NK , aN ),(T0, TK , aT ))⊗HomDpH ((M0,MK , aM ), (N0, NK , aN ))(2.5)

→ HomDpH
((M0,MK , aM ), (T0, TK , aT ))

is given by
(a′, b′, c′)(a, b, c) = (a′a, b′b, c′F0(a) + FdR(b′)c)

It now follows easily that a (closed) morphism (a, b, c) ∈ HomDpH
((M0,MK , aM ), (N0, NK , aN )) is a

quasi-isomorphism if and only so are the morphisms a and b (see [13, Lemma 4.2]).
By definition, we get a commutative square of dg categories over Qp:

(2.6) DpH
TdR //

T0 ��

Db(V K
dR)
FdR��

Db(MK(ϕ,N,GK))
F0 // Db(V G

K
).

Given a p-adic Hodge complex M , we will call TdR(M) (resp. T0(M)) the generic fiber (resp. special
fiber) of M . As pointed out above, a morphism f of p-adic Hodge complexes is a quasi-isomorphism if
and only if TdR(f) and T0(f) are quasi-isomorphisms.

2.11. Let us recall that, since the category DpH is obtained by gluing, it has a canonical t-structure
[36, Prop. 4.1.12]. We will denote by DpH,≤0 (resp. DpH,≥0) the full dg subcategory of DpH made of
non-positive (resp. non negative) p-adic Hodge complexes. Let M be a p-adic Hodge complex. We define
its non positive truncation τ≤0(M) according to the following formula:

τ≤0(M) := (τ≤0M0, τ≤0MK , τ≤0aM ).

The functors FdR and F0 being exact, this is indeed a p-adic Hodge module. The non negative truncation
is obtained using the same formula. According to this definition, we get a canonical morphism of p-adic
Hodge complexes:

τ≤0(M)→M

whose cone is positive. This is all we need to get that the pair (DpH,≤0, DpH,≥0) forms a t-structure on
DpH .

Definition 2.12. The t-structure (DpH,≤0, DpH,≥0) defined above will be called the canonical t-structure
on DpH .
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2.13. Let M ∈ Cb(MFK(ϕ,N,GK)). Define θ(M) ∈ DpH to be the object

θ(M) := (M0,MK , IdM : MK 'MK)

Through this functor we can regard MFK(ϕ,N,GK) as a subcategory of the heart of the t-structure on
DpH .

Lemma 2.14. The natural functor

θ : MFK(ϕ,N,GK)→D♥
pH

is fully faithful.

Proof. Analogous to [36, Prop. 4.1.12], [60, 1.2.27]. �

Definition 2.15. We will say that a strict p-adic Hodge complex M is admissible if its cohomology
filtered (ϕ,N,GK)-modules Hn(M) are (weakly) admissible. Denote by Dad

pH the full dg subcategory of
DpH of admissible p-adic Hodge complexes. It carries the induced t-structure.

Since θ preserves quasi-isomorphisms, it induces a canonical functor:

θ : Db(DFK)→ Dad
pH .

This is a functor between dg categories compatible with the t-structures.

Lemma 2.16. The natural functor

θ : DFK
∼
→ Dad,♥

pH

is an equivalence of abelian categories.

Proof. By Lemma 2.14, it suffices to prove essential subjectivity. Note that a strict p-adic Hodge complex
M is in the heart of the t-structure if and only if M is isomorphic to τ≤0τ≥0(M). According to the formula
for this truncation, we get that M is isomorphic to an object M̃ such that M̃0 is a (ϕ,N,GK)-module,
M̃K is a filtered K-vector space, and one has a GK -equivariant isomorphism

M̃0 ⊗Knr
0

K ' M̃K ⊗K K.

In particular, M̃0 has the structure of a filtered (ϕ,N,GK)-module, as wanted. �

Theorem 2.17. The functor θ induces an equivalence of dg categories

θ : Db(DFK)
∼
→ Dad

pH

Proof. Since, by Lemma 2.16, we have the equivalence of abelian categories

θ : DFK = Db(DFK)♥
∼
→ Dad,♥

pH

and we work with bounded complexes, it suffices to show that, given two complexes M , M ′ of Cb(MF pst
K ),

the functor θ induces a quasi-isomorphism:

θ : HomDb(DFK)(M,M ′)→ HomDpH
(θ(M), θ(M ′))

By (2.3) and Proposition 2.7, since F0(M0) = FdR(MK) = MK , F0(M ′
0) = FdR(M ′

K) = M ′
K

, we have the
following sequence of quasi-isomorphisms

HomDpH
(θ(M), θ(M ′)) = HomDpH

((M0,MK , IdM ), (M ′
0,M

′
K , IdM ′))

' (HomDb(MK(ϕ,N,GK))(M0,M
′
0)

F0→ HomDb(V G
K

)(MK ,M ′
K

)
FdR← HomDb(V K

dR)(MK ,M ′
K))

' (Hom]
ϕ,N,GK

(M0,M
′
0)

F0→ HomGK
(MK ,M ′

K
)

FdR← HomdR(MK ,M ′
K))

' HomDb(DFK)(M,M ′).

This concludes our proof. �
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2.3. The absolute p-adic Hodge cohomology.

2.18. Any potentially semistable p-adic representation is a p-adic Hodge complex. Therefore, we can
define the Tate twist in DpH as follows: given any integer r ∈ Z, we let K(r) be the p-adic Hodge complex

K(−r) = (Knr
0 ,K, IdK : K

∼
→ K)

that is equal to Knr
0 and K concentrated in degree 0; the Frobenius is ϕK(−r)(a) = prϕ(a), the Galois

action is canonical and the monodromy operator is zero; the filtration is F i = K for i ≤ r and zero
otherwise.

As usual, given any p-adic Hodge complex M , we put M(r) := M ⊗K(r). In other words, twisting a
p-adic Hodge complex r-times divides the Frobenius by pr, leaves unchanged the monodromy operator,
and shifts the filtration r-times.

Example 2.19. Given any p-adic Hodge complex M , by formula (2.5) and by (2.3), we have the quasi-
isomorphism of complexes of Qp-vector spaces

HomDpH
(K(0),M(r)) ' Cone(M ]

0 ⊕ F rMK
aM−can
−−−−→FdR(MK)GK )[−1],

where M ]
0 is defined as the following homotopy limit (we set ϕi := ϕ/pi)

M ]
0 :=









MGK
0

1−ϕr //

N

��

MGK
0

N

��
MGK

0

1−ϕr−1// MGK
0









2.20. Let X be a variety over K. Consider the following complex in Dad
pH

RΓpH(XK , 0) := (RΓB
HK(XK), (RΓdR(X), F •), RΓB

HK(XK)
ιdR−→ RΓdR(XK))

Here RΓB
HK(XK) is the (geometric) Beilinson-Hyodo-Kato cohomology [10], [49, 3.4]; by definition it

is a bounded complex of (ϕ,N,GK)-modules. The filtered complex RΓdR(X) is the Deligne de Rham
cohomology. The map ιdR is the Beilinson-Hyodo-Kato map [10] that induces a quasi-isomorphism

ιdR : RΓB
HK(XK)⊗Knr

0
K

∼
→ RΓdR(XK).

The comparison theorems of p-adic Hodge theory (proved in [31], [64], [52], [10], [14]) imply that the
p-adic Hodge complex RΓpH(XK , 0) is admissible.

We will denote by
RΓpH(XK , r) := RΓpH(XK , 0)(r) ∈ Dad

pH

the r’th Tate twist of RΓpH(XK , 0). We will call it the geometric p-adic Hodge cohomology of X. The
complexes RΓpH(XK , ∗) form a dg Qp-algebra. Since the Beilinson-Hyodo-Kato map is a map of dg
Knr

0 -algebras, the assignment X 7→ RΓpH(XK , ∗) is a presheaf of dg Qp-algebras on V arK . Moreover,
we also have the external product RΓpH(XK , r)⊗ RΓpH(YK , s) in Dad

pH .

Lemma 2.21 (Künneth formula). The natural map

RΓpH(XK , r)⊗ RΓpH(YK , s)
∼
→ RΓpH(XK × YK , r + s)

is a quasi-isomorphism.

Proof. This follows easily from the Künneth formulas in the filtered de Rham cohomology and the Hyodo-
Kato cohomology (use the Hyodo-Kato map to pass to de Rham cohomology). �

Set

RΓDFK
(XK , r) := θ−1RΓpH(XK , r) ∈ Db(DFK),

RΓpst(XK , r) := Vpstθ
−1RΓpH(XK , r) ∈ Db(Reppst(GK)).
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Lemma 2.22. There exists a canonical quasi-isomorphism in Db(Rep(GK))

RΓpst(XK , r) ' RΓét(XK ,Qp(r)).

Proof. To start, we note that we have the following commutative diagram of dg categories.

Db(Reppst(GK))

Dpst

��

can // Db(Rep(GK))

can

��
Db(DFK)

Vpst

OO

θ // Dad
pH

rét // D(Spec(K)proét)

Here the functor

rét : Dad
pH → D(Spec(K)proét)

associates to a p-adic Hodge complex (M0,MK , aM : F0(M0)→ FdR(MK)) the complex

[[M0 ⊗Knr
0

Bst]
ϕ=Id,N=0 ⊕ F 0(MK ⊗K BdR)

aM⊗ι−can⊗ι
−−−−−−−−−→ FdR(MK)⊗K BdR]

= [[M0 ⊗Knr
0

Bst]
ϕ=Id,N=0 aM⊗ι

−−−−→ (FdR(MK)⊗K BdR)/F 0]

where ι : Bst ↪→ BdR is the canonical map of period rings2. To see that the diagram commutes, recall
that we have the fundamental exact sequence

(2.7) 0→ Qp(r)→ Bϕ=pr,N=0
st ⊕ F rBdR

ι
→ BdR → 0, r ∈ N.

It follows that, for V ∈ Db(Reppst(GK)), we have a canonical morphism

V ' [V ⊗Qp Bϕ=Id,N=0
st ⊕ V ⊗Qp F 0BdR

Id⊗ι−can⊗ι
−−−−−−−−→ V ⊗Qp BdR]

' [[V ⊗Qp Bst]
ϕ=Id,N=0 ⊕ V ⊗Qp F 0BdR

Id⊗ι−can⊗ι
−−−−−−−−→ V ⊗Qp BdR]

(ρpst⊕ρdR,ρdR)
−−−−→ [[Dpst(V )⊗Knr

0
Bst]

ϕ=Id,N=0 ⊕ F 0(DK(V )⊗K BdR)
aM⊗ι−can⊗ι
−−−−−−−−−→ DK(V )⊗K BdR]

' rétθDpst(V )

Since the abstract period morphisms ρpst, ρdR from (2.2) are isomorphisms, the above morphism is a
quasi-isomorphism and we have the commutativity we wanted.

The above diagram gives us the first quasi-isomorphism in the following formula.

RΓpst(XK , r) ' rétRΓpH(XK , r) ' RΓét(XK ,Qp(r)).

It suffices now to prove the second quasi-isomorphism. But, we have

RΓpH(XK , r) = (RΓB
HK(XK , r), (RΓdR(X), F •+r), RΓB

HK(XK , r)⊗Knr
0

K
ιdR→ RΓdR(XK)),

where we twisted the Beilinson-Hyodo-Kato cohomology to remember the Frobenius twist. Recall that
Beilinson has constructed period morphisms (of dg-algebras) [9, 3.6], [10, 3.2] 3

ρpst : RΓB
HK(XK)⊗Knr

0
Bst ' RΓét(XK ,Qp)⊗Qp

Bst,

ρdR : RΓdR(XK)⊗K BdR ' RΓét(XK ,Qp)⊗Qp
BdR,

The first morphism is compatible with Frobenius, monodromy, and GK -action; the second one - with
filtration. These morphisms allow us to define a quasi-isomorphism

β : rétRΓpH(XK , r) ' RΓét(XK ,Qp(r))

2For an explanation why we work with the pro-étale site as well as the technicalities involved in the passage between

continuous Galois cohomology and pro-étale cohomology see [49, proof of Theorem 4.8].
3We will be using consistently Beilinson’s definition of the period maps. It is likely that the uniqueness criterium stated

in [53] can be used to show that these maps coincide with the other existing ones.
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in D(Spec(K)proét) as the composition

β : rétRΓpH(XK , r) = [[RΓB
HK(XK)⊗Knr

0
Bst]

ϕ=pr,N=0 ιdR−−→(RΓdR(XK)⊗K BdR)/F r]
(ρHK,ρdR)
−−−−−−→[RΓét(XK ,Qp)⊗Qp Bϕ=pr,N=0

st
ι
−−→RΓét(XK ,Qp)⊗Qp (BdR)/F r]

∼
← RΓét(XK ,Qp(r))

Here the last quasi-isomorphism follows from the fundamental exact sequence (2.7). We are done. �

Remark 2.23. The geometric p-adic Hodge cohomology RΓpH(XK , r) we work with here is not the same
as the geometric syntomic cohomology RΓsyn(XK,h, r) defined in [49]. While the first one, by the above
lemma, represents the étale cohomology RΓét(XK ,Qp(r)), the second one represents only its piece, i.e.,
we have τ≤rRΓsyn(XK,h, r) ' τ≤rRΓét(XK ,Qp(r)).

2.24. The p-adic absolute Hodge cohomology of X (also called syntomic cohomology of X if this does not
cause confusion) is defined as

RΓH (X, r) = RΓsyn(X, r) := HomDpH
(K(0), RΓpH(XK , r)).(2.8)

By Theorem 2.17, we have

RΓH (X, r) ' HomDb(DFK)(K(0), RΓDFK (XK , r))

' HomDb(Reppst(GK))(Qp, RΓpst(XK , r)).

The assignment X 7→ RΓH (X, r) = RΓsyn(X, ∗) is a presheaf of dg Qp-algebras on V arK .
Set Hi

syn(X, r) := HiRΓsyn(X, r).

Theorem 2.25. (1) There is a functorial syntomic descent spectral sequence

(2.9) synEi,j := Hi
st(GK , Hj

ét(XK ,Qp(r)))⇒ Hi+j
syn (X, r),

where Hi
st(GK , ∙) is the group of (potentially) semistable extensions Exti

Reppst(GK)(Qp, ∙) as defined
in [35, 1.19].

(2) There is a functorial syntomic period morphism

ρsyn : RΓsyn(X, r)→ RΓét(X,Qp(r)).

(3) The syntomic descent spectral sequence is compatible with the Hochschild-Serre spectral sequence

(2.10) étEi,j
2 = Hi(GK , Hj

ét(XK ,Qp(r)))⇒ Hi+j
ét (X,Qp(r)).

More specifically, there is a natural map synEi,j
2 → étEi,j

2 that is compatible with the syntomic
period map ρsyn.

Proof. From the definition (2.8) of RΓpH(XK , r) we obtain the following spectral sequence

Ei,j
2 = Exti

Reppst(GK)(Qp, H
jRΓpst(XK , r))⇒ Hi+jRΓsyn(X, r)

Since, by Lemma 2.22, we have RΓpst(XK , r)) ' RΓét(XK ,Qp(r)), the first statement of our theorem
follows.

We define the syntomic period map ρsyn : RΓsyn(X, r)→ RΓét(X,Qp(r)) as the composition

ρsyn : RΓsyn(X, r) = HomDpH
(K(0), RΓpH(XK , r)))

rét→ HomD(Spec(K)proét)(Qp, rétRΓpH(XK , r)))
β
→ HomD(Spec(K)proét)(Qp, RΓét(XK ,Qp(r))) = RΓét(X,Qp(r)).

The second statement of the theorem follows.
Finally, since the Hochschild-Serre spectral sequence

étEi,j
2 := Hi(GK , Hj(XK ,Qp(r)))⇒ Hi+j(X,Qp(r))

can be identified with the spectral sequence
étEi,j

2 := Hi(Spec(K)proét, H
j(XK ,Qp(r)))⇒ Hi+j(X,Qp(r))
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we get that the syntomic descent spectral sequence is compatible with the Hochschild-Serre spectral
sequence via the map ρsyn, as wanted. �

Theorem 2.26. Let RΓsyn(Xh, r) be the syntomic cohomology defined in [49, 3.3]. There exists a natural
quasi-isomorphism (in the classical derived category)

RΓsyn(Xh, r)
∼
→ RΓsyn(X, r), r ≥ 0.

It is compatible with syntomic period morphisms and the syntomic as well as the étale descent spectral
sequences.

Proof. Let r ≥ 0. Recall that we have a natural quasi-isomorphism [49, Prop. 3.20]

RΓsyn(Xh, r) ' Cone(RΓB
HK(X)ϕ,N ⊕ F rRΓdR(X)

ιdR−can
−−−−→RΓdR(X))[−1],

where

RΓB
HK(Xh)ϕ,N :=









RΓB
HK(X)

1−ϕr //

N

��

RΓB
HK(X)

N

��
RΓB

HK(X)
1−ϕr−1// RΓB

HK(X)









and the complex RΓB
HK(X) is the (arithmetic) Beilinson-Hyodo-Kato cohomology [10] that comes equipped

with the Beilinson-Hyodo-Kato map ιdR : RΓB
HK(X)→ RΓdR(X) [49, 3.3].

Since RΓB
HK(X) ' RΓB

HK(XK)GK and RΓdR(X) ' RΓdR(XK)GK by [49, Prop. 3.22], Example 2.19
and Theorem 2.17 yield

RΓsyn(Xh, r) ' HomDpH
(K(0), RΓpH(XK , r))) ' HomDb(DFK)(K(0), RΓDFK

(XK , r))) ' RΓsyn(X, r),

as wanted. The last claim of the theorem is now clear. �

Remark 2.27. The above theorems gives an alternative construction of the syntomic descent spectral
sequence from [49, 4.2] (that construction used the geometric syntomic cohomology mentioned in Re-
mark 2.23) and an alternative proof of its compatibility with the Hochschild-Serre spectral sequence [49,
Theorem 4.8]. In the present approach the syntomic descent spectral sequence is a genuine descent spec-
tral sequence: from geometric étale cohomology to syntomic cohomology. In the approach of [49] this
sequence appears as a piece of a larger descent spectral sequence that remains to be understood.

Remark 2.28. In everything above, the variety X can be replaced by a finite simplicial scheme or a
finite diagram of schemes. In particular, we obtain statements about cohomology with compact support:
use resolutions of singularities to get a compactification of the variety with a divisor with normal crossing
at infinity and then represent cohomology with compact support as a cohomology of a finite simplicial
scheme built from the closed strata. In particular, we get the syntomic descent spectral sequence with
compact support:

syn,cEi,j
2 := Hi

st

(
GK , Hj

ét,c(XK ,Qp(r))
)
⇒ Hi+j

syn,c(X, r)

that is compatible with the Hochschild-Serre spectral sequence for étale cohomology with compact sup-
port.

Corollary 2.29. For X smooth and projective over K, the syntomic descent spectral sequence (2.9)
synEi,j

2 (r) = Hi
st(GK , Hj

ét(XK ,Qp(r)))⇒ Hi+j
syn (X, r)

degenerates at E2.

Proof. The argument proceeds along standard lines [25, Thm 1.5]. Let X be a smooth and projective
variety over K, of equal dimension d. Recall that we have the Hard Lefschetz Theorem [26, Thm 4.1.1]:
if L ∈ H2(XK ,Qp(1)) is the class of a hyperplane, then for i ≤ d, the map Li : Hd−i

ét (XK ,Qp) →
Hd+i

ét (XK ,Qp(i)), a 7→ a ∪ Li, is an isomorphism. This gives us the Lefschetz primitive decomposition

(2.11) Hi
ét(XK ,Qp(r)) = ⊕k≥0L

kHi−2k
prim (XK ,Qp(r − k)),
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where
Ha

prim(XK ,Qp(b)) := Ker Ld−a+1 ⊂ Ha
ét(XK ,Qp(b)).

Moreover, we get a morphism of spectral sequences

L : synEi,j
2 (r)→ synEi,j+2

2 (r + 1).

Take s ≥ 2. Assume that the differentials of our spectral sequence d2 = ∙ ∙ ∙ = ds−1 = 0. We
want to show that ds = 0. This assumption is trivially true for s = 2. By the inductive assumption
synEi,j

s = synEi,j
2 . We note that Hard Lefschetz gives us that the differentials

ds : Hj
st(GK , H i−2k

prim (XK ,Qp(r − k)))→ Hj+s
st (GK , H i−2k−s+1

ét (XK ,Qp(r − k)))(2.12)

are trivial. Indeed, we have the following commutative diagram (we set q = i− 2k, t = r − k, a=d-q+1)

Hj
st(GK , Hq

prim(XK ,Qp(t)))
ds //

La=0

��

Hj+s
st (GK , Hq−s+1

ét (XK ,Qp(t)))

La

��
'

ss

Hj
st(GK , Hq+2a

ét (XK ,Qp(t + a)))
ds // Hj+s

st (GK , Hq−s+1+2a
ét (XK ,Qp(t + a)))

Ls−2

��
Hj+s

st (GK , Hq+2a+s−3
ét (XK ,Qp(t + a + s− 2)))

which implies that the top map ds is zero. Applying Lk to the differentials in (2.12) we obtain that the
differentials

ds : Hj
st(GK , LkHi−2k

prim (XK ,Qp(r − k)))→ Hj+s
st (GK , H i−s+1

ét (XK ,Qp(r)))

are trivial as well. By (2.11), this gives that ds = 0, as wanted.

Remark 2.30. In fact, we have the Decomposition Theorem, i.e., there is a natural quasi-isomorphism
in Db(Reppst(GK))

⊕

i

Hi
ét(XK ,Qp)[−i]

∼
→ RΓpst(XK ,Qp).

Our Corollary follows immediately from that.

�

3. A p-adic absolute Hodge cohomology, II: Beilinson’s definition

In this section we will describe the definition of p-adic absolute Hodge cohomology due to Beilinson [11].
Beilinson associates to any variety over K a canonical complex of potentially semistable representations
of GK representing the geometric étale cohomology of the variety as a Galois module. Then he defines
p-adic absolute Hodge cohomology of this variety as the derived Hom in the category of potentially
semistable representations from the trivial representation to this complex.

3.1. Potentially semistable complex of a variety.

3.1.1. Potentially semistable cellular complexes. The Basic Lemma of Beilinson [7, Lemma 3.3] allows one,
in analogy with the cellular complex for CW -complexes, to associate a canonical complex of potentially
semistable representations of GK to any affine variety over K. Recall that the cellular complex associated
to a CW -complex X is a complex of singular homology groups

(3.1) ∙ ∙ ∙ → HB
2 (X2, X1)

d2→ HB
1 (X1, X0)

d1→ HB
0 (X0, ∅)

d0→ 0

where Xj denotes the j-skeleton of X. The homology of the above complex computes the singular ho-
mology of X: we have HB

j (Xj/Xj−1) ' HB
j (∨|I|Sj) '

∑
i∈I eiZ, I being the index set of j-cells in

X.
We will briefly sketch the construction of potentially semistable (cohomological) cellular complexes

and we refer interested reader for details to [43], [54], [39].
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Definition 3.1. (1) A pair is a triple (X,Y, n), for a closed K-subvariety Y ⊂ X of a K-variety X
and an integer n.

(2) Pair (X,Y, n) is called a good pair if the relative geometric étale cohomology

Hj(XK , YK ,Qp) = 0, unless j 6= n.

(3) A good pair is called very good if X is affine and X \ Y is smooth and either X is of dimension
n and Y of dimension n− 1 or X = Y is of dimension less than n.

Lemma 3.2. (Basic Lemma) Let X be an affine variety over K and let Z ⊂ X be a closed subvariety
such that dim(Z) < dim(X). Then there is a closed subvariety Y ⊃ Z such that dim(Y ) < dim(X) and
(X,Y, n), n := dim(X), is a good pair, i.e.,

Hj(XK , YK ,Qp) = 0, j 6= n.

Moreover, X \ Y can be chosen to be smooth.

Proof. See [7, Lemma 3.3] (a result in any characteristic), [54], [40, 7], [43]. �

Corollary 3.3. (1) Every affine variety X over K has a cellular stratification

F•X : ∅ = F−1X ⊂ F0X ⊂ ∙ ∙ ∙ ⊂ Fd−1X ⊂ FdX = X

That is, a stratification by closed subvarieties such that the triple (FjX,Fj−1X, j) is very good.
(2) Celullar stratifications of X form a filtered system.
(3) Let f : X → Y be a morphism of affine varieties over K. Let F•X be a cellular stratification on

X. Then there exists a cellular stratification F•Y such that f(FiX) ⊂ FiY .

Proof. See Corollary D.11, Corollary D.12 in [39]. �

Having the above facts it is easy to associate a potentially semistable analog of the cellular complex
(3.1) to an affine variety X over K [39, Appendix D]. We just pick a cellular stratification

F•X : ∅ = F−1X ⊂ F0X ⊂ ∙ ∙ ∙ ⊂ Fd−1X ⊂ FdX = X

and take the complex

RΓpst(XK , F•X) := 0→ H0(F0XK ,Qp)→ ∙ ∙ ∙ → Hj(FjXK , Fj−1XK ,Qp)
dj
→ Hj+1(Fj+1XK , FjXK ,Qp)

dj+1
→ ∙ ∙ ∙ → Hd(XK , Fd−1XK ,Qp)→ 0

This is a complex of Galois modules that, by p-adic comparison theorems, are potentially semistable. To
get rid of the choice we take the homotopy colimit over all cellular stratifications, i.e., we set

RΓT
pst(XK) := hocolimF•X RΓpst(XK , F•X)

It is a complex in D(Ind−Reppst(GK)) whose cohomology groups are in Reppst(GK) hence we can think
of it as being in D(Reppst(GK)).

The complex RΓT
pst(XK) computes the étale cohomology groups H∗(XK ,Qp) as Galois modules. More

precisely, we have the following proposition.

Proposition 3.4. ( [43, Prop. 2.1])

(1) Let F•X be a cellular stratification of X. There is a natural quasi-isomorphism

κ(X,F•X) : RΓpst(XK , F•X) ' RΓét(XK ,Qp)

that is compatible with the action of GK .
(2) Let f : Y → X be a map of affine schemes and let F•Y be a cellular stratification of Y such that,

for all i, FiY ⊂ FiX. Then the following diagram commutes (in the dg derived category)

RΓpst(YK , F•Y )
κ(Y,F•Y )

∼
// RΓét(YK ,Qp)

RΓpst(XK , F•X)

f∗

OO

κ(X,F•X)

∼
// RΓét(XK ,Qp)

f∗

OO
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(3) There exists a natural quasi-isomorphism

κX : RΓT
pst(XK) ' RΓét(XK ,Qp)

that is compatible with the action of GK .

Proof. We have the following commutative diagram of Galois equivariant morphisms

H0(F0XK ,Qp)

o

��

// ∙ ∙ ∙ // Hk(FkXK , Fk−1XK ,Qp) //

o

��

∙ ∙ ∙ // Hd(XK , Fd−1XK ,Qp)

o

��
RΓét(F0XK ,Qp) //

��

∙ ∙ ∙ // [RΓét(FkXK ,Qp)→ RΓét(Fk−1XK ,Qp)][k] //

��

∙ ∙ ∙ // [RΓét(XK ,Qp)→ RΓét(Fd−1XK ,Qp)][d]

��
0 // ∙ ∙ ∙ // 0 // ∙ ∙ ∙ // RΓét(XK ,Qp)[d]

The first vertical maps are the truncations τ≤dτ≥d. We obtain the map κ(X,F•X) from the first statement
of the proposition by taking homotopy fibers of the rows of the diagram. Second statement is now clear.
The third one is an immediate corollary of the first statement and Corollary 3.3. �

3.1.2. Potentially semistable complex of a variety. For a general variety X over K, one (Zariski) covers
it with (rigidified) affine varieties defined over K, takes the associated Čech covering, and applies the
above construction to each level of the covering [39, D.5-D.10]. Then, to make everything canonical, one
goes to limit over such coverings.

Proposition 3.4 implies now the following result [39, Prop. D.3].

Theorem 3.5. Let X be a variety over K. There is a canonical complex RΓB
pst(XK) ∈ Db(Reppst)

which represents the étale cohomology RΓét(XK ,Qp) of XK together with the action of GK , i.e., there is
a natural quasi-isomorphism

κX : RΓB
pst(XK) ' RΓétXK ,Qp),

that is compatible with the action of GK .

3.2. Beilinson’s p-adic absolute Hodge cohomology. Beilinson [11] uses the above construction of
the potentially semistable complexes to define his syntomic complexes.

Definition 3.6. ([11]) Let X be a variety over K, r ∈ Z. Set RΓB
pst(XK ,Qp(r)) := RΓB

pst(XK)(r) and

RΓB
H (X, r) = RΓB

syn(X, r) := HomDb(Reppst(GK))(Qp, RΓB
pst(XK ,Qp(r))), H i

syn(X, r) := HiRΓB
syn(X, r).

Immediately from this definition we obtain that

(1) For X = Spec(K), we have RΓB
syn(X, r) = HomDb(Reppst(GK))(Qp,Qp(r)).

(2) There is a natural syntomic descent spectral sequence

(3.2) synEi,j
2 := Hi

st(GK , Hj(XK ,Qp(r)))⇒ Hi+j
syn (X, r)

(3) We have a natural period map

ρB
syn : RΓB

syn(X, r)→ RΓét(X,Qp(r))

defined as the composition

RΓB
syn(X, r) = HomDb(Reppst(GK))(Qp, RΓB

pst(XK ,Qp(r)))→ HomDb(Spec(K)proét)(Qp, RΓB
pst(XK ,Qp(r)))

κX→ HomDb(Spec(K)proét)(Qp, RfX
∗ Qp(r)) = RΓét(X,Qp(r))

It follows that the syntomic descent spectral sequence is compatible with the Hochschild-Serre
spectral sequence via the map ρB

syn.
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3.3. Comparison of the two constructions of syntomic cohomology. We will show now that the
syntomic complexes defined in 2.24 and by Beilinson are naturally quasi-isomorphic.

Corollary 3.7. (1) There is a canonical quasi-isomorphism in Db(Reppst(GK))

RΓpst(XK , r)
∼
→ RΓB

pst(XK ,Qp(r)).

(2) There is a canonical quasi-isomorphism

ρB
syn : RΓB

syn(X, r) ' RΓsyn(X, r), r ∈ Z.

It is compatible with period maps to étale cohomology and the syntomic as well as the étale descent
spectral sequences.

Proof. The second statement follows immediately from the first one. To prove the first statement, con-
sider the complex RΓB

DFK
(XK , r) in Db(DFK) defined by a procedure analogous to the one we used in

Proposition 3.4 to define RΓB
pst(XK ,Qp(r))(but starting with cohomology RΓpH(YK , r) of good pairs

Y instead of pst-representations RΓét(YK ,Qp(r)) of such pairs). This is possible since, for a good pair
(X,Y, j), we have

RΓpH(XK , YK , r) ' (Hj
HK(XK , YK , r), (Hj

dR(X,Y ), F •+r), Hj
HK(XK , YK)

ιdR−−→Hj
dR(XK , YK)),

and, by p-adic comparison theorems, this is an element of DFK . Proceeding as in the proof of Proposition
3.4, we get a functorial quasi-isomorphism in Db(DFK):

κX : RΓB
DFK

(XK , r) ' RΓDFK
(XK , r).

For good pairs (X,Y, j), the Beilinson period maps ρHK, ρdR [9, 3.6], [10, 3.2] induce the period
isomorphism VpstRΓpH(XK , YK , r)

∼
→ Hj(XK , YK ,Qp(r)). This period map lifts to a period map

VpstRΓB
DFK

(XK , r)
∼
→ RΓB

pst(XK ,Qp(r)).

We define the map RΓpst(XK , r)
∼
→ RΓB

pst(XK ,Qp(r)) as the following composition

RΓpst(XK , r)
κ−1

X→ VpstRΓB
DFK

(XK , r) ' RΓB
pst(XK ,Qp(r)).

�

3.4. The Bloch-Kato exponential and the syntomic descent spectral sequence. Let V be a
potentially semistable representation. Let D = Dpst(V ) ∈ DFK . The Bloch-Kato exponential

expBK : DK/F 0 → H1(GK , V )

is defined as the composition [49, 2.14]

DK/F 0 → C(GK , Cpst(D)[1])→ C(GK , C(D)[1])
∼
← C(GK , V [1]),

where C(GK , ∙) denotes the continuous cochains cohomology of GK . The complexes Cpst(D), C(D) are
defined as follows

Cpst(D) : Dst
(N,1−ϕ,ι)
−−−−→Dst ⊕Dst ⊕DK/F 0(1−pϕ)−N

−−−−→Dst,

C(D) : D ⊗Knr
0

Bst
(N,1−ϕ,ι)
−−−−→D ⊗Knr

0
Bst ⊕D ⊗Knr

0
Bst ⊕ (DK ⊗K BdR)/F 0(1−pϕ)−N

−−−−→D ⊗Knr
0

Bst

We have Cpst(D) = C(D)GK .
The following compatibility result is used in the study of special values of L-functions. Its f -analog

was proved in [51, Theorem 5.2]4.

4There the exponential expst is called l.
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Proposition 3.8. Let i ≥ 0, r ≥ 0. The composition

Hi−1
dR (X)/F r ∂

→ Hi
syn(Xh, r)

ρsyn
−→ Hi

ét(X,Qp(r))→ Hi
ét(XK ,Qp(r))

is the zero map. The induced (from the syntomic descent spectral sequnce) map

Hi−1
dR (X)/F r → H1(GK , H i−1

ét (XK ,Qp(r)))

is equal to the Bloch-Kato exponential associated with the Galois representation Hi−1
ét (XK ,Qp(r)).

Proof. By the compatibility of the syntomic descent spectral sequence and the Hochschild-Serre spectral
sequence [49, Theorem 4.8], we have the commutative diagram

HiRΓsyn(Xh, r)0
ρsyn //

δ1

��

Hi
ét(X,Qp(r))0

δ1

��
H1

st(GK , H i−1
ét (XK ,Qp(r)))

can // H1(GK , H i−1
ét (XK ,Qp(r))),

where

HiRΓsyn(Xh, j)0 := ker(HiRΓsyn(Xh, r)→ H0
st(GK , H i

ét(XK ,Qp(r)))),

Hi
ét(X,Qp(r))0 := ker(Hi

ét(X,Qp(r))→ Hi
ét(XK ,Qp(r))).

It suffices thus to show that the dotted arrow in the following diagram

HiRΓsyn(Xh, r) HiRΓsyn(Xh, r)0

δ1

��

oo

Hi−1
dR (X)/F r

∂

44

∂

OO

// H1
st(GK , H i−1

ét (XK ,Qp(r))))

exists and that this diagram commutes.
To do that, we will use freely the notation from the proof of Corollary 3.7. Set

R̃ΓB
syn(X, r) = HomDb(DFK)(K(0), RΓB

DFK
(XK , r)) = holim Cpst(RΓB

DFK
(XK , r)).

Arguing as in the proof of Proposition 3.4, we get the following commutative diagram (we denoted by
(H∗

HK(X, r), H∗
dR(X, r)) the r’th twist of the canonical Dieudonné-Fontaine modules associated to X)

HiR̃ΓB
syn(X, r)0

δ1

((

δ′
1

��

∼
κX // HiRΓsyn(Xh, r)0

δ′
1ttjjjjjjjjjjjjjjjj

δ1

vv

H1(Cpst(H
i−1
dR (X, r)))

o (ρHK,ρdR)

��
H1

st(GK , H i−1
ét (XK ,Qp(r)))

Moreover the comparison map κX is compatible with the boundary maps ∂ from the de Rham cohomology
complexes RΓdR(X) and RΓB

dR(X). It suffices thus to show that the dotted arrow in the following diagram

HiR̃Γsyn(X, r) HiR̃Γsyn(X, r)0

δ′
1

��

oo

Hi−1
dR (X)/F r

∂

55

∂

OO

// H1(Cpst(H
i−1
dR (X, r)))

exists and that this diagram commutes.
Let

RΓB
DFK

(XK , r) = D• = D0 d0

−−→D1 d1

−−→D2 d2

−−→∙ ∙ ∙
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Then holim Cpst(RΓB
DFK

(XK , r)) is the total complex of the double complex below.

∙ ∙ ∙ ∙ ∙ ∙ // ∙ ∙ ∙ // ∙ ∙ ∙

Cpst(D2) :

d2

OO

D2
st

(N,1−ϕ,ι) //

d2

OO

D2
st ⊕D2

st ⊕D2
K/F 0

(1−pϕ)−N //

d2

OO

D2
st

d2

OO

Cpst(D1) :

d1

OO

D1
st

(N,1−ϕ,ι) //

d1

OO

D1
st ⊕D1

st ⊕D1
K/F 0

(1−pϕ)−N //

d1

OO

D1
st

d1

OO

Cpst(D0) :

d0

OO

D0
st

(N,1−ϕ,ι) //

d0

OO

D0
st ⊕D0

st ⊕D0
K/F 0

(1−pϕ)−N //

d0

OO

D0
st

d0

OO

We note that D•
st = RΓB

HK(X, r), D•
K = RΓB

dR(X). The following facts are easy to check.

(1) The map ∂ : RΓB
dR(X)/F r → R̃ΓB

syn(X, r)[1] is given by the canonical morphism

D•
K/F 0 → [D•

st−−→D•
st ⊕D•

st ⊕D•
K/F 0−−→D•

st][1]

Similarly, the map Hi−1
dR (X)/F r → H1(Cpst(H

i−1
dR (X, r))) is given by the canonical morphism

Hi−1
dR (X)/F r → [Hi−1

HK (X, r)→ Hi−1
HK (X, r)⊕Hi−1

HK (X, r)⊕Hi−1
dR (X, r)/F 0 → Hi−1

HK (X, r)][1].

(2) The map HiR̃ΓB
syn(X, r)→ H0(Cpst(Hi

dR(X, r))) is induced by (a, b, c) 7→ a.

(3) The map δ′1 : HiR̃ΓB
syn(X, r)0 → H1(Cpst(H

i−1
dR (X, r))) is induced by (a, b, c) 7→ b − d0a

′, where
a′ is such that dia′ = a.

(4) As a corollary of the above, we get that the composition

Hi−1
dR (X)/F r → HiR̃ΓB

syn(X, r)0
δ′
1→ H1(Cpst(H

i−1
dR (X, r)))

is induced by the map b 7→ (0, b, 0) 7→ b.

This proves our proposition. �

4. p-adic realizations of motives

4.1. p-adic realizatons of Nori’s motives. We start with a quick review of Nori’s motives. We follow
[39], [44], [5], and [2, 2].

Take an embedding K ↪→ C and a field F ⊃ Q. A diagram Δ is a directed graph. A representation
T : Δ→ VF assigns to every vertex in Δ an object in VF and to every edge e from v to v′ a homomorphism
T (e) : T (v)→ T (v′). Let C (Δ, T ) be its associated diagram category [44, Thm 41], [2, 2.1]: the category
of finite dimentional right End∨(T )-comodules. It is the universal F -linear abelian category together
with a unique representation T̃ : Δ→ C (Δ, T ) and a faithful, exact, F -linear functor T : C (Δ, T )→ VF

extending the original representation T . If Δ is an abelian category then we have an equivalence Δ '
C (Δ, T ).

More specifically we have the following result of Nori.

Proposition 4.1. (Nori, [2, Cor. 2.2.10], [2, Cor. 2.2.11])

(1) Let R be an F -linear abelian category with a faithful exact functor ρ : R → VF . Assume that
the representation T : Δ→ VF factors, up to natural equivalence, as T1ρ. Let A be an F -linear
abelian category equipped with a faithful exact functor U : A → R. If G : Δ→ A is a morphism
of directed graphs such that T1 is equivalent to UG, then there exist functors C (Δ, T ) → R,
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G̃ : C (Δ, T )→ A such that the following diagram

Δ
G //

T̃
�� T1

&&MMMMMMMMMMMMM A

U

��
C (Δ, T ) //_____

T

&&MMMMMMMMMMM

G̃

88qqqqqq
R

ρ

��
VF

commutes up to natural equivalence.
(2) For a commutative (up to natural equivalence) diagram

Δ

π

��

G //

T
((QQQQQQQQQQQQQQQ A

��

U

!!CCCCCCCC

VF

Δ′

T ′

66mmmmmmmmmmmmmmm
G′

// A ′

U ′

=={{{{{{{{

we have a commutative (up to natural equivalence) diagram

C (Δ, T )

π

��

G̃ // A

��
C (Δ′, T ′) G̃′

// A ′

Example 4.2. The following diagrams appear in the construction of Nori’s motives.

(1) The diagram Δeff of effective pairs consists of pairs (X,Y, i) and two types of edges:
(a) (functoriality) for every morphism f : X → X ′, with f(Y ) ⊂ Y ′, an edge f∗ : (X ′, Y ′, i) →

(X,Y, i).
(b) (coboundary) for every chain X ⊃ Y ⊃ Z of closed K-subvarieties of X, an edge ∂ :

(Y,Z, i)→ (X,Y, i + 1).
(2) The diagram Δeff

g (resp. Δeff
vg ) of effective good (resp. of effective very good) pairs is the full

subdiagram of Δeff with vertices good (resp. very good) pairs (X,Y, i).
(3) The diagrams Δ of pairs, Δg of good pairs, and Δvg of very good pairs are obtained by localization

with respect to the pair (Gm, {1}, 1) [39, B.18].

Let H∗ : Δg → VF be the representation which assigns to (X,Y, i) the relative singular cohomology
Hi(X(C), Y (C), F ).

Definition 4.3. The category of (reps. effective) Nori motives MM(K)F (resp. MM(K)F ) is defined as
the diagram category C (Δg, H

∗) (resp. C (Δeff
g , H∗)). For a good pair (X,Y, i), we denote by Hi

mot(X,Y )
the object of EMM(K)F (resp. MM(K)F ) corresponding to it and we define the Tate object as

1(−1) := H1
mot(Gm,K , {1}) ∈ EMM(K)F , 1(−n) := 1(−1)⊗n.

We have [39, Thm 1.6, Cor. 1.7]

• EMM(K)F ' EMM(K)Q ⊗Q F and MM(K)F ' MM(K)Q ⊗Q F .
• As an abelian category EMM(K)F is generated by Nori motives of the form Hi

mot(X,Y ) for good
pairs (X,Y, i); every object of EMM(K)F is a subquotient of a finite direct sum of objects of the
form Hi

mot(X,Y ).
• EMM(K)F ⊂ MM(K)F are commutative tensor categories.
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• MM(K)F is obtained from EMM(K)F by ⊗-inverting 1(−1).
• The diagram categories of Δeff and of Δeff

vg with respect to singular cohomology with coefficients
in F are equivalent to EMM(K)F as abelian categories. The diagram categories of Δ and of Δvg

are equivalent to MM(K)F .5 In particular, any pair (X,Y, i) defines a Nori motive Hi
mot(X,Y ).

• Nori shows that these categories are independent of the embedding K ↪→ C.

From the universal property of the category EMM(K)F it is easy to construct realizations. We will
describe the ones coming from p-adic Hodge Theory.

Construction 4.4. (Galois realization) Consider the map Δeff → Rep(GK):

(X,Y, i) 7→ Hi(XK , YK ,Qp).

We have Hi(XK , YK ,Qp) ' Hi(X(C), Y (C),Qp). Thus, by Proposition 4.1, we obtain an extension
which is the exact étale realization functor

Rét : EMM(K)Qp
→ Rep(GK).

Note that Rét(1(−1)) = H1(Gm,K , {1},Qp) = Qp(−1). Hence the functor Rét lifts to MM(K)Qp
.

In analogous way we obtain the exact potentially semistable realization

Rpst : MM(K)Qp
→ Reppst(GK).

It factors Rét via the natural functor Reppst(GK)→ Rep(GK).

Construction 4.5. (Filtered (ϕ,N,GK) realization) Consider the map Δeff → DFK :

(X,Y, i) 7→ Hi
DF (X,Y ) := (Hi

HK(XK , YK), (Hi
dR(X,Y ), F •), ιdR : Hi

HK(XK , YK)⊗Knr
0

K
∼
→ Hi

dR(XK , YK)).

By p-adic comparison theorems, we have

Dpst(H
i
DF (X,Y )) ' Hi(XK , YK ,Qp) ' Hi(X(C), Y (C),Qp).

Thus, by Proposition 4.1, we obtain an extension which is the exact filtered (ϕ,N,GK) realization functor

RDFK
: EMM(K)Qp → DFK .

Since RDF (1(−1)) = K(−1), the functor RDF lifts to MM(K)Qp .
Projections yield faithful exact functors from DFK to the categories MK(ϕ,N,GK) and V K

dR. Com-
posing them with the realization RDF we get

• the exact Hyodo-Kato realization

RHK : MM(K)Qp →MK(ϕ,N,GK),

• the exact de Rham realization

RdR : MM(K)Qp → V K
dR.

Composing RDFK
with the projection on the third factor of the filtered (ϕ,N,GK)-module, we obtain

the Hyodo-Kato natural equivalence

(4.1) ιdR : RHK ⊗Knr
0

K ' RdR ⊗K K : MM(K)Qp
→ VK ,

where the tensor product is taken pointwise.

Construction 4.6. (Realization of period isomorphism) To realize period isomorphisms, we define the
category of realizations R(K). An object of R(K) is a tuple M := (MDF ,Mpst, ρpst) consisting of
MDF ∈ DFK , Mpst ∈ Reppst(GK), and a comparison isomorphism ρpst : VpstM ' Mpst of Galois
modules. It is a abelian category (it is naturally equivalent to the category Reppst(GK)). Projections
yield faithful exact functors from R(K) to the categories DFK and Reppst(GK).

5This is shown by an argument analogous to the one we have used in the construction of Beilinson’s potentially semistable

complex of a variety in Section 3.1.2 : via cellular complexes and Čech coverings one lifts the representation H∗ from very

good pairs to all pairs to a representation that canonically computes relative singular cohomology.
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Consider the following map Δeff → R(K):

(X,Y, i) 7→ (Hi
DF (X,Y ), H i(XK , YK ,Qp), ρpst : VpstH

i
DF (X,Y ) ' Hi(XK , YK ,Qp)).

Since the functor R(K)→ Reppst(GK)→ VQp is faithful and exact, Proposition 4.1 gives us an extension
EMM(K)Qp → R(K) that is compatible with the étale realization. Since

(Gm, {1}, 1) 7→ (K(−1),Qp(−1), VpstK(−1) ' Qp(−1)),

again by Proposition 4.1, we obtain the exact realization

RR : MM(K)Qp → R(K).

Projecting on the first two factors we get back the realizations RDFK and Rpst and projecting on the
third factor we get that the above two realizations are related via a period morphism, i.e., we have a
natural equivalence

ρpst : VpstRDFK
' Rpst : MM(K)Qp

→ Reppst(GK).

To sum up, we have a potentially semistable comparison theorem for Nori’s motives.

Corollary 4.7. For M ∈ MM(K)Qp
, there is a functorial isomorphism

ρpst : RHK(M)⊗Knr
0

Bst ' Rét(M)⊗Qp
Bst

that is compatible with Galois action, Frobenius, and the monodromy operator. Moreover, after passing
to BdR via the Hyodo-Kato map (4.1), it yields a functorial isomorphism

ρdR : RdR(M)⊗K BdR ' Rét(M)⊗Qp BdR

that is compatible with filtration.

We can illustrate the above constructions by the following, essentially commutative, diagram of exact
functors

Rep(GK)

⊗QpBst **UUUUUUUUUU

⊗QpBdR

''
Reppst(GK)

ι

55jjjjjjjjj
MBst(ϕ,N,GK) // MFBdR

MM(K)Qp

RHK //

Rpst
44hhhhhhhhhhh

RDFK **UUUUUUUUUUUUUU

Rét
..

RdR 11

MK(ϕ,N,GK)
⊗Knr

0
Bst

44iiiiiiiiii

F0

**TTTTTTTTTTTTT

DFK

55kkkkkkkkkkk

))SSSSSSSSSSSSS

Vpst

OO

V G
K

V K
dR

⊗KBdR

GG

FdR

44jjjjjjjjjjjjjjjj

Here MBst(ϕ,N,GK) is the exact category of free finite rank Bst-modules equipped with an action of
ϕ,N,GK (ϕ is an isomorphism, N is nilpotent, and GK -action is continuous - everything being compatible
in the usual way and compatible with the same structures on Bst). MFBdR is the exact category of filtered
finite rank BdR-modules equipped with a continuous action of GK compatible with its action on BdR;
MBst →MBdR is the natural functor.

4.2. p-adic realizations of Voevodsky’s motives.

Recall 4.8. The category of Voevodsky’s motives DM(K,Qp) with rational coefficients admits several
equivalent constructions, each interesting in its own. In this section, we will be using the one of Morel
(see [47]) for a review of which we refer the reader to [24, §1].

By construction, the triangulated category DM(K,Qp) is stable under taking arbitrary coproducts.
In this category, each smooth K-scheme X admits a homological motive M(X), covariant with respect to
morphism of K-schemes (and even finite correspondences). Each motive can be twisted by an arbitrary



24 FRÉDÉRIC DÉGLISE, WIES LAWA NIZIO L

integer power of the Tate object Qp(1), and as a triangulated category stable under taking coproducts,
DM(K,Qp) is generated by motives of the form M(X)(n), X/K smooth, and n ∈ Z.

The category of constructible motives (see also 5.4) is the thick6 triangulated subcategory of DM(K,Qp)
generated by the motives M(X)(n), X/K smooth, and n ∈ Z, without requiring stability by infinite co-
products. It is equivalent to Voevodsky’s category of geometric motives DMgm(K,Qp) ([68, chap. 5])
and can also be described in an elementary way as follows. Let Qp[Smaff

K ] be the Qp-linearization of
the category of smooth affine K-varieties, Kb(Qp[Smaff

K ]) its bounded homotopy category. This is a
triangulated monoidal category, the tensor structure being induced by cartesian products of K-schemes.
First we get the geometric A1-derived category DA1,gm(K,Qp) out of Kb(Qp[Smaff

K ]) by the following
operations:

(1) Take the Verdier quotient with respect to the triangulated subcategory generated by complexes
of the form:
• (homotopy) . . .→ 0→ A1

X

p
−→ X → 0 . . ., for X ∈ Smaff

K , p canonical projection;

• (excision) . . .→ 0→W
q−k
−−→ U⊕V

j+p
−−→ X . . ., for any cartesian square W

k //
q ��

V
p��

U
j // X

in Smaff
K

such that j is an open immersion, p is étale and an isomorphism above the complement of j.
(2) Formally invert the Tate object Qp(1), which is the cokernel of {1} → Gm placed in cohomological

degree +1.
(3) Take the pseudo-abelian envelope.

Let τ be the automorphism of Qp(1)[1]⊗Qp(1)[1] in DA1,gm(K,Qp) which permutes the factors. Because
Qp(1) is invertible, it induces an automorphism ε of Qp in DA1,gm(K,Qp) such that ε2 = 1. Then we can
define complementary projectors: p+ = (1 − ε)/2, p− = (ε − 1)/2, which cut the objects, and therefore
the category, into two pieces:

DA1,gm(K,Qp)+ = Im(p+), DA1,gm(K,Qp)− = Im(p−).

Then, according to a theorem of Morel (cf. [18, 16.2.13]), DMgm(K,Qp) ' DA1,gm(K,Qp)+.

Example 4.9. Let F be an extension field of Qp and A be a Tannakian F -linear category with a fiber
functor ω : A → VF . Consider a contravariant functor:

R : (Smaff
K )op → Cb(A ).

It automatically extends to a contravariant functor R′ : Kb(Qp[Smaff
K ])op → Db(A ). The conditions for

R′ to induce a contravariant functor defined on DMgm(K,Qp) are easy to state given the description of
DMgm given above. We will use the following simpler criterion:

We now suppose that the functor R takes its values in the bigger category Cb(Ind−A ) but we assume
that there exists a functorial isomorphism

HiωR(X) ' Hi(X(C), F )

and that the product map Hi(X(C), F ) ⊗ Hj(Y (C), F ) → Hi+j(X(C) × Y (C), F ) can be lifted to a
map R(X)⊗R(Y )→ R(X ×K Y ) in Cb(A ).

Then the functor R′ uniquely extends to a realization functor

R̃∨ : DMgm(K,Qp)
op → Db(A )

which is monoidal and such that Hi(R̃∨(M(X))) = Hi(R(X)).7 After composing this functor with the
canonical duality endofunctor of the (rigid) triangulated monoidal category Db(A ), we get a covariant
realization:

R̃ : DMgm(K,Qp)→ Db(A )

6i.e. stable by direct factors
7Note in particular that the permutation ε acts by −1 on singular cohomology.
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such that HiR̃(M(X)) = Hi(R(X))∨. Note also that, by construction, the preceding identification can
be extended to closed pairs. Also, because DMgm(K,Qp) satisfies h-descent (see section 5.5), it can be
extended to singular K-varieties and pairs of such.

Using this example we can easily build realizations:

Proposition 4.10. Let F be an extension field of Qp and A be a Tannakian F -linear category with a
fiber functor ω : A → VF . Consider a representation A∗ : Δg → A such that ωA∗ is isomorphic to the
singular representation (see Definition 4.3).

Then there exists a canonical covariant monoidal realization:

RA : DMgm(K,Qp)→ Db(A )

such that for any good pair (X,Y, i), HiRA(M(X,Y )) = Ai(X,Y )∨ and this identification is functorial
in (X,Y, i) – including with respect to boundaries.

Moreover, this construction is funtorial with respect to exact morphisms of representations.

Proof. Let X be a smooth affine K-scheme. To any cellular stratification of X (cf. Corollary 3.3) F•X,
we can associate the complex

R′
A(F•X) := 0→ A0(F0X)→ A1(F1X,F0X)→ . . .→ Ad(X,Fd−1X)→ 0.

We put: R′
A(X) := colimF•XR′

A(F•X). This defines a contravariant functor:

R′
A : (Smaff

K )op → Cb(Ind−A )

which satisfies the assumptions of the previous example. Hence we get the proposition by applying the
construction of this example. �

Remark 4.11. Consider again a fiber functor ω : A → VF and a contravariant functor

R : (SchK)op → Cb(Ind−A )

such that for any K-variety X, one has a functorial isomorphism HiωR(X) ' Hi(X(C), F ). Then we can
apply the preceding example to R|Smaff

K
and also the preceding proposition to the unique representation

A∗ induced by R such that Ai(X,Y ) = Hi(Cone(R(X) → R(Y )[−1]). By applying the construction of
the preceding proof, we get for any smooth affine K-scheme a canonical map of complexes

R(X)→ RA(X)

which is a quasi-isomorphism. By the functoriality of the construction of the previous example, we thus
get a canonical isomorphism between the two realizations of any Voevodsky’s motive M :

R̃(M)
∼
−→ R̃A(M)

Remark 4.12. Voevodsky’s motives M(X) are homological: they are covariant in X. In fact, the
monoidal category DMgm(K,Qp) is rigid: any object has a strong dual; this follows from [57] and
from the existence of the monoidal triangulated functor SH(K) → DM(K,Qp) [18, 5.3.35]. Then
for any smooth K-variety X, M(X)∨ is the cohomological motive of X/K. Using the notations of
the previous proposition, because RA is monoidal and therefore commutes with strong duals, we get:
HiRA(M(X)∨) = Ai(X).

Recall that the category DMgm(K,Qp) can be extended to any base and satisfies the 6 functors
formalism (cf. [18], in particular 16.1.6). According to loc. cit., 15.2.4, M(X)∨ = f∗(1X) where f : X →
Spec(K) is the structural morphism. The preceding relation can be rewritten:

HiRA(f∗(1X)) = Ai(X).

Note finally that f∗ exists for any K-variety X. One can extend the above identification to this general
case using De Jong resolution of singularities and h-descent, which is true for Voevodsky’srational motives
([18, 14.3.4]) and for Betti cohomology.

There is fully faithful monoidal functor

CHM(K)op
Qp
→ DMgm(K,Qp), h(X) 7→M(X)
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from the category of Chow motives (X is smooth projective over K). Applying duality on the right hand
side, we get a covariant fully faithful monoidal functor:

CHM(K)Qp → DMgm(K,Qp), h(X) 7→M(X)∨ = f∗(1X).

In view of this embedding, it is convenient to identify the Chow motive h(X) with the Voevodsky’s(cohomological)
motive M(X)∨.

Let us also state the following corollary which follows from the preceding proposition and [27]:

Corollary 4.13. In the assumptions of the previous proposition, for any smooth projective K-scheme X
of dimension d, the complex RA(h(X)) = RA(M(X)∨) is split: there exists a canonical isomorphism:

RA(h(X)) =
2d⊕

i=0

Hi
(
RA(h(X))

)
[−i] =

2d⊕

i=0

Ai(X)[−i].

This decomposition statement follows simply from loc. cit. as the derived category Db(A ) satisfies
the assumptions of loc. cit. and the object RA(h(X)) satisfies the assumption (L.V.) for the map
h(X) → h(X)(1)[2] given by multiplication by the (motivic) first Chern class of an ample invertible
bundle on X.

Example 4.14. In particular, applying the preceding proposition to the singular representation, we get
the classical realization,8 due to Nori, of (cohomological) Nori’s motives:

Γ : DMgm(K,Qp)→ Db(MM(K)Qp).

By definition, and applying the preceding remark, we get for any smooth projective (resp. smooth, any)
K-variety f : X → Spec(K):

HiΓ(h(X)) = Hi
mot(X), resp. HiΓ(M(X)) = Hi

mot(X)∨, H iΓ(f∗(1X)) = Hi
mot(X).

When X is smooth projective of dimension d, we also get by the above corollary the decomposition:

Γ(h(X)) =
2d⊕

i=0

Hi
mot(X)[−i]

Moreover, because of the functorialility statement of the proposition, this realization of Voevodsky’s
motives is the universal (initial) one.

4.15. More interestingly, using either Example 4.9 or Proposition 4.10, we can get various p-adic realiza-
tions of Voevodsky’s motives, and extend the de Rham p-adic comparison theorem to the derived situation
as summarized in the following essentially commutative diagram of triangulated monoidal functors:

Db
(
Rep(GK)

)

⊗QpBdR

((RRRRRRRR

DMgm(K,Qp)

RΓDFK **VVVVVVVVVVVV

RΓpst //

RΓét ..

RΓdR

44

Db
(
Reppst(GK)

) ι

55jjjjjjjjj
Db(MFBdR)

Db(DFK)

Vpst

OO

// Db(V K
dR)

⊗KBdR

55llllllll

where ι is the canonical functor.9 The functors RΓét, RΓpst and RΓDFK
are obtained either from 4.9 or

equivalently from 4.10 (according to Remark 4.11) by considering respectively the following functors:

• X ∈ Smaff
K , f : X → Spec(K) 7→ R f∗(Qp) and (X,Y, i) 7→ Hi

ét(XK , YK ,Qp);
• X ∈ Smaff

K 7→ RΓpst(XK , r) ' RΓB
pst(XK ,Qp(r))

and (X,Y, i) 7→ Hi
ét(XK , YK ,Qp) ∈ Reppst(GK);

8Conjecturally, this is more than a realization: it is thought to be an equivalence of categories!
9One should be careful that though ι is induced by a fully faithful functor on the corresponding abelian categories, it is

a non full faithful functor.
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• (X,Y, i) 7→ Hi
DF (X,Y ) (see Construction 4.5).

The functor RΓdR is obtained by composing RΓDFK
with the canonical functor DFK → V K

dR.
For ε = ét, pst, DFK , one has defined in the preceding section an analoguous exact monoidal realization

functor Rε from the category of Nori’s motives MM(K)Qp
. This functor being exact induces a functor

on the (bounded) derived categories and according to the functoriality in Proposition 4.10, one gets for
any Voevodsky motive M ∈ DMgm(K,Qp):

(4.2) RΓε(M) = Rε

(
Γ(M)

)
.

Same for the de Rham realizations: we have RΓdR(M) = RdR

(
Γ(M)

)
. Therefore, the essential commuta-

tivity of the previous diagram simply follows from the de Rham comparison theorem for Nori’s motives.
More precisely, it yields, for any Voevodsky’s motive M , the de Rham comparison isomorphism:

ρdR : RΓdR(M)⊗K BdR ' RΓét(M)⊗Qp BdR

which is a quasi-isomorphism of complexes of filtered finite rank BdR-modules equipped with an action
of GK (continuous and compatible with the canonical action on BdR).

This comparison can be made more precise through the Hyodo-Kato realization, as illustrated in the
essentially commutative diagram:

Db
(
Rep(GK)

)

⊗QpBst

++VVVVVVVVVVV

(1)Db
(
Reppst(GK)

) ι

44hhhhhhhhhh
Db
(
MBst(ϕ,N,GK)

)

DMgm(K,Qp)
RΓHK //

RΓpst
33gggggggggggg

RΓDFK ++WWWWWWWWWWWWWWW

RΓét

..

RΓdR 00

Db
(
MK(ϕ,N,GK)

) ⊗Knr
0

Bst

33hhhhhhhhhhh

F0

++VVVVVVVVVVVVV

(2)Db(DFK)

44iiiiiiiiiiii

**VVVVVVVVVVVVVV

Vpst

OO

Db
(
V G

K

)
.

Db(V K
dR)

FdR

33hhhhhhhhhhhhhhhh

The Hyodo-Kato realization RΓHK is obtained by composing RΓDFK
with the projection DKF →

MK(ϕ,N,GK). Then the essential commutativity of the part (1) and (2) of the above diagram cor-
responds, respectively, for any Voevodsky’s motive M , to the potentially semistable comparison theorem
and to the Hyodo-Kato quasi-isomorphism:

ρpst : RΓHK(M)⊗Knr
0

Bst ' RΓét(M)⊗Qp Bst,

ιdR : RΓHK(M)⊗Knr
0

K ' RΓdR(M)⊗K K.

Again, the identification (4.2) holds when ε = HK and the above canonical comparison quasi-isomorphisms
correspond to the comparison isomorphisms obtained in the previous section.

Remark 4.16. By construction, for any (smooth) K-variety f : X → Spec(K), one has a canonical
identification: RΓét(f∗(1X)) = R f∗(Qp) where the right hand side denotes the right derived functor of
the direct image for étale p-adic sheaves.

This implies that the realization functor RΓét constructed above coincides with that of [19, 7.2.24],
denoted by ρ∗p, and equivalently to the one defined in [4]. In particular, it can be extended to any base
and commutes with the six functors formalism. This explains the preceding relation and why we have
prefered the covariant realization rather than the contravariant one (see the end of Example 4.9).10

Example 4.17. The above realizations allow us to define syntomic cohomology of a motive M in
DMgm(K,Qp) as

RΓsyn(M) := RHomD(Reppst)
(Qp, RΓpst(M)) = RHomD(DFK)(K(0), RΓDFK (M)).

10In Section 5, we will similarly extend the realization functor RΓpst to arbitrary K-bases (see more precisely Rem.

5.16).
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In particular, we have the syntomic descent spectral sequence
synEi,j

2 := Hi
st

(
GK , HjRΓét(M)

)
⇒ Hi+jRΓsyn(M).

If we apply it to the cohomological Voevodsky’s motive M(X)∨ = f∗(1X) of any K-variety X with
structural morphism f , we get back the results of Theorem 2.25.

An interesting case is obtained by using the (homological) motive with compact support M c(X) in
DMgm(K,Qp) of Voevodsky for any K-variety X, and its dual M c(X)∨ = Hom(M c(X),Qp) which
belongs to DMgm(K,Qp). Then RΓsyn(M c(X)∨(r)) is the n-th twisted syntomic complex with compact
support and we recover the syntomic descent spectral sequence with compact support from Remark 2.28:

syn,cEi,j
2 := Hi

st

(
GK , Hj

ét,c(XK ,Qp(r))
)
⇒ Hi+j

syn,c(X, r).

Indeed, in terms of the 6 functors formalism, M c(X)∨(r) = f!(1X)(r) and the identification relevant to
compute the above E2-term follows from the previous remark.

4.3. Example I: p-adic realizations of the motivic fundamental group. Let EHM(K)Qp de-

note the category of effective homological Nori’s motives, i.e., the diagram category C (Δ̃eff
g , H∗), H∗ :=

(H∗)∗ := Hom(H∗,Qp), where the diagram Δ̃eff
g is obtained from the diagram Δeff

g by reversing the
edge f∗ to f∗ : (X,Y, i) → (X ′, Y ′, i) and changing ∂ to ∂ : (X,Y, i) → (Y,Z, i − 1). There is a duality
functor ∨ : EHM(K)Qp → EMM(K)opQp

respecting the representations H∗ and H∗ via the usual dual-
ity that sends a good pair (X,Y, i) to (X,Y, i). This induces an equivalence on the derived categories
∨ : Db(EHM(K)Qp

)
∼
→ Db(EMM(K)Qp

)op.
In [21] Cushman developed a motivic theory of the fundamental group, i.e., he showed that the

unipotent completion of the fundamental group of varieties over complex numbers carries a motivic
structure in the sense of Nori. We will recall his main theorem.
• Let V ar∗K be the category of pairs (X,x), where X is a variety defined over K and x is a K-rational

base point; morphism between such pairs are morphisms between the corresponding varieties defined over
K that are compatible with the base points.
• Let V ar∗∗K be the category of triples (X; x1, x2), where X is defined over K and x1, x2 are K-rational

base points.
For a variety X over C, let π1(X,x) be the fundamental group of X with base point x and let

π1(X; x1, x2) be the space of based paths up to homotopy from x1 to x2. Denote by Ix2 – the augmen-
tation ideal in Qp[π1(X,x2)] (i.e., the kernel of the augmentation map Qp[π1(X,x2)] → Qp) which
acts on the right on π1(X; x1, x2). The following theorem [22, Thm 3.1] shows that the quotient
Qp[π1(X; x1, x2)]/In

x2
, n ∈ N, has motivic version Πn(X; x1, x2) (in the sense of Nori).

Theorem 4.18. For every n ∈ N, there are functors

Πn : V ar∗∗K → EHM(K)Qp , Πn : V ar∗K → EHM(K)Qp .

These functors have the following properties.

(1) There is a natural transformation

Πn+1(X; x1, x2)→ Πn(X; x1, x2).

(2) We have a natural isomorphism of Qp-vector spaces

H̃∗(Π
n(X(C); x1, x2)) ' Qp[π1(X(C); x1, x2)]/In

x2
.

(3) There are natural transformations

Πn(X; x1, x2)⊗Πn(X; x2, x3)→ Πn(X; x1, x3)

Πn+m+1(X,x2)→ Πm+1(X,x2)⊗Πn+1(X,x2)

Via the natural isomorphisms in (2), these transformations are compatible with the product and
coproduct structures as well as with the inversion in the path space.

This data is equivalent to giving a pro-EHM structure on the inverse limit Qp[π1(X(C); x1, x2)]/In
x2

such
that all the obvious maps are motivic, and the completed ideal I∧x2

is a sub-motive.
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Dualizing the realization functors of Nori’s motives used in Constructions 4.4, 4.5 we obtain the
following functors

Πn
ét : V ar∗∗K → Rep(GK), Πn

ét := RétΠ
n;

Πn
HK : V ar∗∗K →MK(ϕ,N,GK), Πn

HK := RHKΠn;

Πn
dR : V ar∗∗K → V K

dR, Πn
dR := RdRΠn.

These realizations are compatible with change of the index n and with the structure maps that endow
these realizations with Hopf algebra structures.

From Constructions 4.5,4.6 (again dualizing) we obtain also the following comparison isomorphisms.

Corollary 4.19. (1) There exists the Hyodo-Kato natural equivalence

ιdR : Πn
HK(X; x1, x2)⊗Knr

0
K ' Πn

dR(X; x1, x2)⊗K K.

(2) There exists a natural equivalence (potentially semistable period isomorphism)

ρpst : Πn
HK(X; x1, x2)⊗Knr

0
Bst ' Πn

ét(X; x1, x2)⊗Qp Bst

that is compatible with Galois action, Frobenius, the monodromy operator. Extending to BdR and
using the Hyodo-Kato equivalence, we get the de Rham period isomorphism

ρdR : Πn
dR(X; x1, x2)⊗K BdR ' Πn

ét(X; x1, x2)⊗Qp BdR

that is compatible with filtrations.
These comparison isomorphisms are compatible with change of the index n and with Hopf algebra

structures.

The above comparison statements were proved before in the case of curves in [37], [1], for varieties
with good reduction over slightly ramified base in [69], and for varieties with good reduction over an
unramified base in [55]. The various realizations appearing in these constructions should be naturally
isomorphic with ours but we did not check it.

4.4. Example II: p-adic comparison maps with compact support and compatibilities.

4.20. When ε = HK, ét, dR, DFK , pst, we get from the preceding section, for any K-variety, a complex

RΓε(X) := RΓε(M(X)∨) = RΓε(M(X))∗

which computes the ε-cohomology with enriched coefficients. When ε = ét, HK, dR this is the usual
complex, respectively, of Galois representations, (ϕ,N,GK)-modules, filtered K-vector spaces which com-
putes, respectively, geometric étale cohomology, Hyodo-Kato cohomology and De Rham cohomology with
their natural algebraic structures. These complexes are related by the comparison isomorphisms ρdR, ρpst,
and ιdR.

An interesting point is that these complexes, as well as the comparison isomorphisms are contravari-
antly functorial in the homological motive M(X). Recall Voevodsky’s motives are equipped with special
covariant functorialities.

Let X and Y be K-varieties. A finite correspondence α from X to Y is an algebraic cycle in X ×K Y
whose support is finite equidimensional over X and which is special over X in the sense of [18, 8.1.28].11

Then by definition, α induces a map α∗ : M(X)→M(Y ).
Assume now that X and Y are smooth. Let f : X → Y be any morphism of schemes of constant

relative dimension d. Then we have the Gysin maps f∗ : M(Y )→M(X)(d)[2d] (cf. [23]).

Corollary 4.21. Consider the notations above.
Then RΓε(X) is contravariant with respect to finite correspondences and covariant with respect to

morphisms of smooth K-varieties.
Moreover, the comparison isomorphisms ρdR, ρpst, ιdR are natural with respect to these functorialities.

11If X is geometrically unibranch, every α whose support is finite equidimensional over X is special (cf. [18, 8.3.27]). If

Z is a closed subset of X ×K Y which is flat and finite over X, the cycle associated with Z is a finite correspondence (cf.

[18, 8.1.31]).
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Remark 4.22. (1) Note in particular that covariance with respect to finite correspondences implies
the existence of transfer maps f∗ for any finite equidimensional morphism f : X → Y which is
special (eg. flat, or X is geometrically unibranch).

(2) The syntomic descent spectral sequence and the syntomic period map of Example 4.17 are natural
with respect to the functorialities of the corollary.

(3) We can deduce from [23] the usual good properties of covariant funtoriality (compatibility with
composition, projection formulas, excess of intersection formulas,...)

4.23. Products. Consider again the notations of the Paragraph 4.20. As said previously, from the
Künneth formula, RΓε is a monoidal functor and the comparison isomorphisms are isomorphisms of
monoidal functors.

Consider a K-variety X with structural morphism f . Recall from Remark 4.12 that M(X)∨ = f∗(1X).
The functor f∗ is left adjoint to a monoidal functor. Therefore it is weakly monoidal and we get a pairing:

μ : M(X)∨ ⊗M(X)∨ = f∗(1X)⊗ f∗(1X)→ f∗(1X) = M(X)∨

in DMgm(K,Qp). This induces a cup-product on the ε-complexes:

RΓε(X)⊗ RΓε(X) = RΓε

(
f∗(1X))⊗ RΓε(f∗(1X)

) K
' RΓε(f∗(1X)⊗ f∗(1X))

μ∗−→RΓε(f∗(1X)

= RΓε(X),
(4.3)

where the isomorphism labelled K stands for the structural morphism of the monoidal functor RΓε –
and corresponds to the Künneth formula in ε-cohomology. When ε = ét, HK, dR, we deduce from the
definition of this structural isomorphism that these products correspond to the natural products on the
respective cohomology. As the comparison isomorphisms are isomorphisms of monoidal functors, we
deduce that they are compatible with the above cup-products.

From the end of Example 4.17, we can also define the ε-complex of X with compact support:

RΓε,c(X) = RΓε(f!(1X)).

Because we have a natural map f∗ → f! of functors ([18, 2.4.50(2)]), we also deduce, as usual, a natural
map:

RΓε,c(X)→ RΓε(X).

From the 6 functors formalism, we get a pairing in DMgm(K,Qp):

μc : f∗(1X)⊗ f!(1X)
(1)
' f!(f

∗f∗(1X)⊗ 1X) = f!(f
∗f∗(1X))

(2)
−−→ f!(1X)

where the isomorphism (1) stands for the projection formula ([18, 2.4.50(5)]) and the map (2) is the unit
map of the adjunction (f∗, f∗). Then, using μc instead of μ in formula (4.3), we get the pairing between
cohomology and cohomology with compact support:

(4.4) RΓε(X)⊗ RΓε,c(X)→ RΓε,c(X).

Using again the fact that the comparison isomorphisms ρdR, ρpst, ιdR are isomorphisms of monoidal
functor, we deduce that they are compatible with this pairing. Let us summarize:

Proposition 4.24. For ∗ = ∅, c, we have comparison isomorphisms

ιHK,∗ : RΓHK,∗(X)⊗Knr
0

K ' RΓdR,∗(X)⊗K K,

ρpst,∗ : RΓHK,∗(X)⊗Knr
0

Bst ' RΓét,∗(XK)⊗Qp
Bst,

ρdR,∗ : RΓdR,∗(X)⊗K BdR ' RΓét,∗(XK)⊗Qp
BdR,

that are compatible with cup-products (4.3) and with the pairing (4.4).
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5. Syntomic modules

5.1. Definition. In this section we use the dg-algebra Esyn,K , which represents syntomic cohomology of
varieties over K [49, Appendix] to define a category of syntomic modules over any such variety. This
is our candidate for coefficients systems (of geometric origin) for syntomic cohomology. We prove that
in the case of Spec K itself the category of syntomic coefficients is (via the period map) a subcategory
of potentially semistable representations that is closed under extensions. We call such representations
constructible representations.

Let us first recall the setting of Voevodsky’s h-motives, with coefficients in a given ring R and over any
noetherian base scheme S. We let Sh(S,R) be the category of h-sheaves12 of R-modules on SchS – the
category of separated schemes of finite type over S. This is a monoidal Grothendieck abelian category
with generators the free R-linear h-sheaves represented by any X in SchS ; we denote them by Rh

S(X). In
particular, its derived category D(Sh(S,R)) has a canonical structure of a stable monoidal ∞-category
in the sense of [58, Def. 3.5] (see also [46]).13 Moreover, it admits infinite direct sums. Let us define the
Tate object as the following complex of R-sheaves: RS(1) := Rh

S(P1
S)/Rh

S({∞})[−2].

The following theorem is an ∞-categorical summary of a classical construction phrased in terms of
model categories in [19]:

Theorem 5.1. There exists a universal monoidal ∞-category DMh(S,R) which admits infinite direct
sums and is equipped with a monoidal ∞-functor

Σ∞ : D(Sh(S,R))→ DMh(S,R)

such that:

• A1-Homotopy: for any scheme X in SchS, the induced map Σ∞Rh
S(A1

X) → Σ∞Rh
S(X) is an

isomorphism;
• P1-stability: the object Σ∞RS(1) is ⊗-invertible.

Moreover, the monoidal ∞-category DMh(S,R) is stable and presentable.

Concerning the first point, the statement follows from the existence of localization for monoidal ∞-
categories. The statement for the second point follows from [58, 4.16] and the fact that, up to A1-
homotopy, the cyclic permutation on RS(1)⊗,3 is the identity.

Remark 5.2. According to [19] and [58, 4.29], the ∞-category DMh(S,R) is associated with an under-
lying symmetric monoidal model category – this also implies it can be described by a canonical R-linear
dg-category. According to the description of this model category, up to quasi-isomorphism, the objects
of DMh(S,R) can be understood as N-graded complexes of R-linear h-sheaves (Er)r∈N which satisfy the
following properties:

• (Homotopy invariance) for any integer r, the h-cohomology presheaves H∗
h(−, Er) are A1-invariant;

• (Tate twist) there exists a (structural) quasi-isomorphism Er → Hom(RS(1), Er+1).

One should be careful however that, in order to get the right symmetric monoidal structure on the
underlying model category, one has to consider in addition an action of the symmetric group of order r on
Er, in a way compatible with the structural isomorphism associated with Tate twists. The corresponding
objects are called symmetric Tate spectra.14

Example 5.3. Let S = Spec(K) and R = Qp. Consider the h-sheaf associated with the presheaf of
dg-Qp-algebras

X 7→ (RΓsyn(Xh, r) ' RΓsyn(X, r))

defined in 2.8 (see Theorem 2.26 for the isomorphism). Because of [49], it satisfies the homotopy invariance
and Tate twist properties stated above; thus as explained in Appendix B of [49], it canonically defines an

12h-sheaf is a sheaf in h-topology.
13Actually, this follows from the existence of a closed monoidal category structure on the category of complexes of

Sh(S, R) (cf. [16] or [19]) and from [58, Sec. 3.9.1].
14See [18, Sec. 5.3] for the construction in motivic homotopy theory.
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object Esyn of DMh(K,Qp). Moreover, the dg-structure allows us to put a canonical ring structure on this
object, which corresponds to a strict structure (the diagrams encoding commutativity and associativity
are commutative not only up to homotopy).

For any scheme X in SchS , we put MS(X) := Σ∞Rh
S(X), called the (homological) h-motive associated

with X/S.

Definition 5.4. We define the stable monoidal ∞-category of h-motives DMh(S,R) (resp. constructible
h-motives DMh,c(S,R)) over S with coefficients in R as the sub-∞-category of DMh(S,R), spanned by
infinite direct sums of objects of the form MS(X)(n)[i] (resp. objects of the form MS(X)(n)[i]) for a
smooth S-scheme X and integers (n, i) ∈ Z2.

We let DMh(S,R) (resp. DMh,c(S,R)) be the associated homotopy category, as a triangulated
monoidal category.

Example 5.5. When R is a Q-algebra (resp. R is a Z/n-algebra where n is invertible on S), DMh(S,R)
is equivalent to the triangulated monoidal category of rational mixed motives (resp. derived category of
R-sheaves on the small site étale of S): see [19], Th. 5.2.2 (resp. Cor. 5.4.4). In particular, DMh(S,R)
is presentable by a monoidal model category.

The justification of the axioms of A1-homotopy and P1-stability added to the derived category of
h-sheaves comes from the following theorem:

Theorem 5.6 ([19]). The triangulated categories DMh(S,R) for various schemes S are equipped with
Grothendieck 6 functors formalism and satisfy the absolute purity property. If one restricts to quasi-
excellent schemes S and morphisms of finite type, the subcategories DMh,c(S,R) are stable under the 6
operations, and satisfy Grothendieck-Verdier duality.

We refer the reader to [18, A.5] or [19, Appendix A] for a summary of Grothendieck 6 functors formalism
and Grothendieck-Verdier duality.

Let us now take the notations of Example 5.3. We view Esyn in the model category underlying
DMh(K,Qp), equiped with its structure of (commutative) dg-algebra. According to [18, 7.1.11(d)], one
can assume that Esyn is cofibrant (by taking a cofibrant resolution in the category of dg-algebras according
to loc. cit.). Given any morphism f : S → Spec(K), we put

Esyn,S := Lf∗(Esyn)

which is again a dg-algebra because f∗ is monoidal. According to the construction of [18, Sec. 7.2], the
category Esyn−M odS of modules over this dg-algebra is endowed with a monoidal model structure, and
therefore with a structure of monoidal ∞-category. The free Esyn-module functor induces an adjunction
of ∞-categories:

Rsyn : DMh(S,Qp)� Esyn−M odS : Osyn.

Given any S-scheme X, and any integer n ∈ Z, we put Esyn,S(X)(n) := Rsyn(MS(X)(n)) .

Definition 5.7. Using the above notations, we define the ∞-category of syntomic modules (resp. con-
structible syntomic modules ) over S as the ∞-subcategory of Esyn−M odS stable under taking infinite
direct sums (resp. finite direct sums) and generated by Esyn,S(X)(n)[i] for a smooth S-scheme X and
integers (n, i) ∈ Z2.

We denote it by Esyn−M odS (resp. Esyn−M odc,S) and let Esyn−modS (resp. Esyn−modc,S) be its
associated homotopy category. This is a monoidal triangulated category.

In particular, we get an adjunction of triangulated categories:

Rsyn : DMh(S,Qp)� Esyn−modS : Osyn,

such that Rsyn, called the realization functor, is monoidal and sends constructible motives to constructible
syntomic modules.



ON p-ADIC ABSOLUTE HODGE COHOMOLOGY AND SYNTOMIC COEFFICIENTS, I. 33

Remark 5.8. By definition, the triangulated category Esyn−modS (resp. DMh(S,Qp)) is generated by
the objects of the form Esyn,S(X)(n) (resp. MS(X)(n)) for a smooth S-scheme X and an integer n ∈ Z.
By construction, the functor Osyn commutes with arbitrary direct sums. Thus, because MS(X)(n) is
compact15 in DMh(S,Qp) (see [18, 15.1.4]), we deduce that Esyn,S(X)(n) is compact. This implies that
a syntomic module is constructible if and only if it is compact.16

Note also that Esyn−modS is a compactly generated triangulated category.

Essentially using the previous theorem and the good properties of the forgetful functor Osyn – we get
the following result:

Theorem 5.9. The triangulated categories Esyn−modS for various schemes S are equipped with Grothen-
dieck 6 functors formalism and satisfy the absolute purity property. If one restricts to quasi-excellent K-
schemes S and morphisms of finite type, the subcategories Esyn−modc,S are stable under the 6 operations,
and satisfy Grothendieck-Verdier duality.

If one restricts to K-varieties S, the syntomic (pre-)realization functors:

R′
syn : DMh,c(S,Qp)→ Esyn−modc,S ,

for various S, commute with the 6 operations and in particular with duality.

See Corollary 5.15 for the computation of this functor over the base field K.

Proof. The first assertion comes from [18, Prop. 7.2.18], which also implies that the motivic category
Esyn−mod is separated.17 Thus the second assertion comes from [18, Th. 4.2.29].18 The last assertion is
[18, Th. 4.4.25]. �

Remark 5.10. To get a feeling for the category Esyn−modc,S the reader might want to recall a more
classical case of coefficients defined by de Rham cohomology. Let K = C be the field of complex numbers;
let EdR be the commutative ring spectrum representing de Rham cohomology X 7→ RΓdR(X), for varieties
X over K. We have

Hn
dR(X) = RHomDMh(K,C)(M(X), EdR[n]).

We can define, in a way analogous to what we have done above, the category of constructible de Rham
coefficients EdR − modc,S , for varieties S that are smooth over K. By [18, Example 17.2.22] (using
the Riemann-Hilbert correspondence) or by [28, Theorem 3.3.20] (more directly, using the isomorphism
between Betti and de Rham cohomologies) this category is equivalent to the bounded derived category
of analytic regular holonomic D-modules on S that are constructible, of geometric origin.

5.11. Recall the Grothendieck-Verdier duality property means that for any regular K-scheme S and any
separated morphism of finite type f : X → S, the syntomic module MX = f !(Esyn,S) is dualizing for the
category of constructible syntomic modules over X. In other words, the functor

(5.1) DX := Hom(−,MX) : (Esyn−modc,X)op → Esyn−modc,X

is an anti-equivalence of monoidal triangulated categories. Moreover, it exchanges usual functors with
exceptional functors: given any separated morphism of finite type p : Y → X, one has: DY p∗ = p!DX

and DXp∗ = p!DY .

15Recall an object M of a triangulated category T is compact when the functor HomT (M,−) commutes with arbitrary

direct sums.
16This corresponds to the description of perfect complexes of a ring as compact objects of the derived category.
17Recall from [18, 2.1.7] that this means the following: for any K-schemes X, Y and surjective morphism f : Y → X of

finite type, the base change functor f∗ : Esyn−modX → Esyn−modY is conservative.
18As we work over a field of characteristic 0, the absolute purity property is easy to get. Thus the premotivic triangulated

category Esyn−mod is compatible with Tate twist in the sense of Def. 4.2.20 of [18].
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5.2. Comparison theorem.

5.12. Consider the abelian category Reppst(GK) of potentially semistable representations and the coin-
variants functor

ω! : Reppst(GK)→ V f
Qp

where the right hand side is the category of finite dimensional Qp-vector spaces. It admits a right adjoint
denoted by ω! which to a finite dimensional Qp-vector space V associates the representation V with
trivial action of GK . It is obviously exact and monoidal. One could also put ω∗ = ω! because it also
admits a right adjoint ω∗ which to a potentially semistable representation V associates the Qp-vector
V GK of GK -invariants. The situation can be pictured as follows:

Reppst(GK)
ω! //

ω∗
// V

f
Qp

.ω!=ω∗oo

It will be convenient for what follows to enlarge the category Reppst(GK). Consider the category

Rep∞
pst(GK) := Ind−Reppst(GK)

of ind-objects. Thus, for us, an infinite potentially semistable representation V will be a Qp-vector space
V with an action of GK which is a filtering union of sub-Qp-vector spaces stable under the action of
GK which are potentially semistable representations of GK . The category Rep∞

pst(GK) is an abelian
(symmetric closed) monoidal category which contains Reppst(GK) as a full abelian thick subcategory.
Moreover, it is a Grothendieck abelian category – it admits infinte direct sums and filtering colimits are
exact. The above diagram of functors extends to this larger category. Note in particular that according
to this definition, Formula (2.8) can be rewritten:

(5.2) Vpstθ
−1 : RΓsyn(X, r)

∼
→ Rω∗RΓpst(XK , r).

Due to the Drew’s thesis [28] together with our main construction (§2.24), we get the following com-
putation of syntomic modules over K:

Theorem 5.13. There exist a canonical pair of adjoints of triangulated categories:

ρ∗ : Esyn−modK � D
(
Rep∞

pst(GK)
)

: ρ∗

such that ρ∗ is monoidal and which can be promoted to an adjunction of stable ∞-categories. Moreover,
the functor ρ∗ is fully faithful and induces by restriction a monoidal fully faithfull triangulated functor:

ρ∗ : Esyn−modc,K → Db
(
Reppst(GK)

)

such that for any K-variety X with structural morphism f , there exists a canonical quasi-isomorphism
of complexes of GK-representations:

(5.3) ρ∗ (f∗Esyn,X(r)) ' RΓpst(XK , r).

Proof. We will apply Theorem 2.2.7 and Proposition 2.2.21 of [28]. To be consistent with the notations
of loc. cit., we take B = Spec(K) and put T0 = Reppst(GK), T = Rep∞

pst(GK).

Consider the functor Ẽsyn : X 7→ RΓpst(XK , 0) (recall that RΓpst(XK , 0) ' RΓét(XK ,Qp(0)) as Galois
representations). This is a presheaf of dg-Qp-algebras on K-varieties with values in T0. Then Ẽsyn satisfies
the axioms of a mixed Weil T0-theory in the sense of [28, 2.1.1]: the axiom (W1) comes from the fact
Ẽsyn satisfies h-descent which is stronger than Nisnevich descent, (W2), (W3) comes from homotopy
invariance of geometric p-adic Hodge cohomology and the computation of the syntomic cohomology of
K, (W4) comes from the projective bundle formula for geometric p-adic Hodge cohomology, and (W5)
was proved in Lemma 2.21. Then we can apply 2.2.7 and 2.2.21 of loc. cit. to Ẽsyn and this gives the
theorem.

Let us explain this in more detail. First, Drew generalizes Theorem 5.1, to the category SHReppst(GK)(S)
of Nisnevich sheaves with values in the category of ind-representations T , seen as an enriched category
over T – morphisms are not simply sets but ind-representations. This defines the Reppst(GK)-enriched
stable homotopy category over any base scheme S. Drew proves that this category is a stable monoidal
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∞-category – actually it is defined by a monoidal model category – that we will denote here by DA1(K, T ).
We will denote by DA1(K,Qp) the usual monoidal ∞-category of A1-homology, obtained by replacing T
with the category of Qp-vector spaces– and the associated homotopy category still satisfies the 6 functors
formalism (cf. loc. cit., Prop. 1.6.7).19

Then applying Theorem 2.1.4 of loc. cit. to the presheaf Ẽsyn we get that the geometric p-adic Hodge
cohomology is representable in SHReppst(GK)(S) by a commutative monoid Ẽsyn in the underlying model
category – in our case the corresponding object is simply the collections of presheaves X 7→ RΓpst(XK , r),
as a N-graded dg-algebra indexed by r, seen as presheaves on SmK (the category of smooth K-varieties)
with values in T .

Then Drew shows that one can define a monoidal ∞-category of modules over the dg-algebra Ẽsyn

which is enriched over T , that we will denote here by Ẽsyn−modK . It follows that we have the following
interpretation of the Künneth formula: by Theorem 2.2.7 of loc. cit. the functor

ρ̃ : Ẽsyn−modK
∼
−→ D(T ), M 7→ RHomT

Ẽsyn
(Ẽsyn,M),

where HomT
? indicates the enriched Hom (with values in complexes of T ), is an equivalence of monoidal

triangulated categories. Recall that any smooth K-variety X defines a canonical Ẽsyn-module Ẽsyn(X).
It follows from the construction that, for any smooth K-variety X and any integer r ∈ Z, there exists a
canonical quasi-isomorphism:

(5.4) RHomT
Ẽsyn

(Ẽsyn(X), Ẽsyn(r)) ' RΓpst(XK , r)

functorial in X.
Now we descend. According to loc. cit., 1.6.8, the pair of adjoint functors (ω∗, ω∗) induces an adjunc-

tion of stable ∞-categories:
L ω∗ : DA1(K,Qp)� DA1(K, T ) : R ω∗

such that L ω∗ is monoidal. Then Drew defines (loc. cit., 2.2.13) the absolute cohomology associated with
the enriched mixed Weil cohomology Ẽsyn as R ω∗(Ẽsyn), seen as a monoid in DA1(K,Qp) – recall Rω∗ is
weakly monoidal. According to this definition, Formula (5.2), and the definition recalled in Example 5.3,
we get:

Esyn ' Rω∗(Ẽsyn),

the absolute cohomology associated with Ẽsyn. According to this definition, we deduce from the adjunc-
tion (L ω∗, R ω∗) an adjunction of stable ∞-categories:

L ω̃∗ : Esyn−modK � Ẽsyn−modK : Rω̃∗

whose left adjoint, L ω̃∗, is monoidal. Therefore, one gets the first two statements of the Theorem by
putting:

ρ∗ = ρ̃ ◦ L ω̃∗, ρ∗ = ω̃∗ ◦ R ρ̃−1.

Moreover, Prop. 2.2.21 of loc. cit. tells us that L ω̃∗ is an equivalence of categories if one restricts to
constructible objects on both sides (i.e., generated by, respectively, the objects of the form Esyn(X)(r)
and Ẽsyn(X)(r) for a smooth K-scheme X and an integer r ∈ Z). The fact that ρ∗ is fully faithful is
a formal consequence of this result together with the fact that Esyn−modK is compactly generated (cf.
Rem. 5.8).

Recall that, for any smooth K-variety X with structural morphism f : X → Spec(K), one gets:

Ẽsyn(X) = L ω̃∗(Esyn(X)) = L ω̃∗(f!f
!Esyn,K) = L ω̃∗DK(f∗f

∗Esyn,K) = L ω̃∗DK(f∗Esyn,X),

where DK is the Grothendieck-Verdier duality operator on constructible syntomic modules over K defined
in Paragraph 5.11. Thus, in the case when X is a smooth K-variety, Formula (5.3) follows from this
identification, the definition of ρ∗, and (5.4). One removes the assumption that X is smooth using the
fact that the quasi-isomorphism (5.3) can be extended to diagrams of smooth K-varieties and that both
the left and the right hand side satisfies (by definition) cohomological descent for the h-topology.

19Essentially, its object are graded presheaves on the category of smooth S-scheme with values in T satisfying homotopy

invariance, Tate twist, as in Remark 5.2, but we have to add the Nisnevich descent property.
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Remark 5.14. As a consequence, the category of constructible syntomic modules over K can be identified
with a full triangulated subcategory D of the derived category Db

(
Reppst(GK)

)
.

It is easy to describe this subcategory: using resolution of singularities, all objects of Esyn−modc,K

are obtained by taking iterated extensions20 or retracts of syntomic modules of the form f∗(Esyn,X)(r)
for a smooth projective morphism f : X → Spec(K) and an integer r ∈ Z (this is an easy case of the
general result [18, 4.4.3]). So D is the full subcategory of Db

(
Reppst(GK)

)
whose objects are obtained by

taking retract of iterated extensions of complexes of the form RΓpst(XK , r) for X/K smooth projective
and r ∈ Z.

Similarly, the (essential image of the) category of (not necessarily constructible) syntomic modules over
K can be identified with the smallest full triangulated subcategory of D

(
Rep∞

pst(GK)
)

stable under taking
(infinite) direct sums and which contains complexes of the form RΓpst(XK , r) with the same assumptions
as above.

Composing the syntomic realization functor over K with the fully faithful functor ρ∗ above, we get:

Corollary 5.15. The syntomic (pre-)realization functor of Theorem 5.9 in the case S = Spec(K) defines
a triangulated monoidal realization functor:

Rsyn : DMgm(K,Qp) ' DMh,c(K,Qp)
R′

syn
−−−→ Esyn−modc,K

ρ∗

−→ Db
(
Reppst(GK)

)
.

It coincides with the functor RΓpst defined in Paragraph 4.15.

Proof. Only the last statement requires a proof. By definition, RΓpst is the functor defined on DMgm(K,Qp)
applying Example 4.9 to the functor which to a smooth affine K-variety X associates the complex
RΓpst(XK , r). Thus the statement follows from the description of the functor ρ∗ in the above proof and
the identification (5.4). �

Remark 5.16. The corollary means in particular that the realization R′
syn of Theorem 5.9 does indeed

extends the realization RΓpst to arbitrary K-bases in a way compatible with the 6 operations.

Corollary 5.17. For a variety f : X → Spec(K), we have a natural quasi-isomorphism

RΓH (X, r) = RHomEsyn−modX
(Esyn,X , Esyn,X(r)).

Proof. Since, by the above theorem, ρ∗(f∗Esyn,X(r)) ' RΓpst(XK , r), we have

RHomEsyn−modX
(Esyn,X , Esyn,X(r)) = RHomEsyn−modX

(f∗Esyn,K , Esyn,X(r))

= RHomEsyn−modK
(Esyn,K , f∗Esyn,X(r)) = RHomD(Reppst(GK)(Qp, RΓpst(XK , r))

' RΓH (X, r),

as wanted. �

This means that we can define syntomic cohomology of a syntomic module in the following way.

Definition 5.18. Let X be a variety over K and M ∈ Esyn−modX . Syntomic cohomology of M is the
complex

RΓH (X, M ) = RΓsyn(X, M ) := RHomEsyn−modX
(Esyn,X , M ).

This definition is compatible with the definition of syntomic cohomology of Voyevodsky’s motives from
Example 4.17. That is, for M ∈ DMgm(K,Qp), we have a canonical quasi-isomorphism

RΓsyn(Spec(K), R′
syn(M)) ' RΓsyn(M).

This follows easily from Theorem 5.13 and Corollary 5.15.

20Recall: in a triangulated category T , an object M is an extension of M ′′ by M ′ if there exists a distinguished triangle

M ′ → M → M ′′ → M ′[1] in T .
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Remark 5.19. Syntomic cohomology with coefficients was studied before in [54], [51], [63], [6]. The
coefficients used there could be called ”syntomic local systems”. They are variants of the crystalline and
semistable local systems introduced by Faltings [30], [31]. There exists also a notion of ”de Rham local
systems”. Those were introduced by Tsuzuki in his (unpublished) thesis [65] and later by Scholze [61] in
the rigid analytic setting.

In all these cases, syntomic local systems have a de Rham avatar and an étale one. These two avatars
are related by relative Fontaine theory and their cohomologies (de Rham, étale, and syntomic) satisfy p-
adic comparison isomorphisms. We hope that this is also the case for the syntomic coefficients introduced
here and we will discuss it in a forthcoming paper.

5.3. Geometric and constructible representations.

Definition 5.20. Keep the notations of the previous section. We define the category Repgm(GK)
(resp. RepNgm(GK), resp. Repc(GK)) of geometric (resp. Nori’s geometric, resp. constructible) p-adic
representations of GK as the essential image of the following (composite) functor:

DMgm(K,Qp)
Rsyn
−−−→ Db

(
Reppst(GK)

) H0

−−→ Reppst(GK),

resp. Rpst : MM(K)Qp → Reppst(GK),

resp. Esyn−modc,K
ρ∗

−→ Db
(
Reppst(GK)

) H0

−−→ Reppst(GK).

Thus a geometric GK -representation can be described as the geometric étale p-adic cohomology of a
Voevodsky’s motive over K with its natural Galois action and Nori’s geometric GK -representation - as the
geometric étale p-adic cohomology of a Nori’s motive. By Corollary 5.15, a geometric GK -representation
is constructible and by the compatibility of realizations of Nori’s and Voevodsky’s motives (4.2) geometric
representation is Nori’s geometric. So we have the following inclusions of categories

(5.5) Repgm(GK) ⊂ RepNgm(GK) ⊂ Repc(GK) ⊂ Reppst(GK).

We do not know much about these subcategories. For example we even do not have a conjectural
description of them in purely algebraic terms (for example in terms of (ϕ,N,GK)-modules) – this contrasts
very much with the case of number fields, see [34].

Here are few trivial facts:

• All three subcategories are stable under taking tensor products and twists.
• All three categories contain representations of the form Hi

ét(XK ,Qp(r)) for any integers i, r ∈
N× Z and any K-variety X (possibly singular). They also contain kernel of projectors of these
particular representations when the projector is induced by an algebraic correspondence modulo
rational equivalence for X/K projective smooth, and any finite correspondence for an arbitrary
X/K.

We do not know if any of these subcategories are stable under taking sub-objects, quotients, or even
direct factors.

The following fact is the only nontrivial result about stability.

Proposition 5.21. The category Repc(GK) contains all potentially semistable extensions of representa-
tions of the form Hi

ét(XK ,Qp(r)) for X/K smooth and projective, i ∈ N, r ∈ Z.

Proof. Let D be the essential image of the functor ρ∗ : Esyn−modc,K → Db
(
Reppst(GK)

)
. Note that D is

stable under taking retracts, suspensions, and extensions (see Remark 5.14). We first prove that for any
smooth projective morphism f : X → Spec(K) and any integer r ∈ Z, the representation Hi

ét(XK ,Qp(r))
belongs to D .

The complex or representations RΓpst(XK , r) ' R f∗(Qp)(r) belongs to D (according to the end of
Theorem 5.13). Moreover, using [26, 4.1.1] and [25], there exists an isomorphism in Db

(
Reppst(GK)

)
:

R f∗(Qp)(r) '
⊕

i∈Z

Ri f∗(Qp)(r)[−i].
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This means that Ri f∗(Qp)(r) is the kernel of a projector of R f∗(Qp)(r), thus belongs to D because the
later is stable under taking retracts.

Thus the result follows, using the fact that D is stable under taking extensions in Db
(
Reppst(GK)

)
. �

Remark 5.22. The preceding proof shows that the essential image D of constructible syntomic modules
in complexes of pst-representations contains arbitrary truncations of the complexes RΓpst(XK , r). A
natural question would be to determine if, more generally, D is stable under taking truncation. This
would immediately imply that Repc(GK) is a thick abelian subcategory of Rep(GK) (i.e.it is stable under
taking sub-objects and quotients) and that D is the category of bounded complexes of pst-representations
whose cohomology groups are constructible in the above sense.

Remark 5.23. In the sequence of inclusions

Repgm(GK) ⊂ RepNgm(GK) ⊂ Repc(GK) ⊂ Reppst(GK)

we believe that the first one is an equality and the following two are strict. We can support this belief with
the following observations. The first inclusion should be an equality since the category of Nori’s motives
is expected to be the heart of a motivic t-structure on DMgm(K,Qp) (see [42, p. 374]). The second
inclusion should be strict by the philosophy of weights: by Proposition 5.21, we allow all potentially
semistable extensions as extensions of certain geometric representations in the constructible category but
in the geometric category such extensions should satisfy a weight filtration condition. For properties of
geometric representations coming from abelian varieties over Qp see the work of Volkov [66], [67].

For the third inclusion, take k = Fq, the finite field with q = ps elements. Let V ∈ Repc(GK)
be a constructible representation. Then, by the Conjecture of purity of the weight filtration, the ϕ-
module Dpst(V ) is an extension of ”pure” ϕ-modules, i.e., ϕ-modules such that, for a number a ≥ s,
ϕa has eigenvalues that are pa - Weil numbers21 (cf., [41, Conjecture 2.6.5]). But there are crystalline
representations that do not have this property. For example, any unramified character χ : GK0 → Qp,
Fr 7→ μ ∈ Q∗

p, such that μ is not a pa -Weil number for any a ≥ 0 (such a μ exists by a uncountability
of Qp).
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1981), 5-171, Astérisque, 100, Soc. Math. France, Paris, 1982.

[13] O. Ben-Bassat, J. Block, Milnor descent for cohesive dg-categories. J. K-Theory 12 (2013), no. 3, 433–459.

[14] B. Bhatt, p-adic derived de Rham cohomology, preprint, arXiv:1204.6560.

[15] B. Chiarellotto, A. Ciccioni, N. Mazzari, Cycle classes and the syntomic regulator, Algebra and Number Theory 7

(2013), no. 3, 533–566.
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[18] D.-C. Cisinski and F. Déglise, Triangulated categories of mixed motives. arXiv:0912.2110v3, 2012.
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