On p-adic absolute Hodge cohomology and syntomic coefficients, I.

Abstract : We interpret syntomic cohomology defined in [49] as a p-adic absolute Hodge cohomology. This is analogous to the interpretation of Deligne-Beilinson cohomology as an absolute Hodge cohomol-ogy by Beilinson [8] and generalizes the results of Bannai [6] and Chiarellotto, Ciccioni, Mazzari [15] in the good reduction case. This interpretation yields a simple construction of the syntomic descent spectral sequence and its degeneration for projective and smooth varieties. We introduce syntomic coefficients and show that in dimension zero they form a full triangulated subcategory of the derived category of potentially semistable Galois representations. Along the way, we obtain p-adic realizations of mixed motives including p-adic comparison isomor-phisms. We apply this to the motivic fundamental group generalizing results of Olsson and Vologodsky [55], [69].
Type de document :
Article dans une revue
Commentarii Mathematici Helvetici, European Mathematical Society, In press
Liste complète des métadonnées

https://hal-ens-lyon.archives-ouvertes.fr/ensl-01420349
Contributeur : Wieslawa Niziol <>
Soumis le : mardi 20 décembre 2016 - 14:41:14
Dernière modification le : mercredi 13 décembre 2017 - 18:29:04
Document(s) archivé(s) le : mardi 21 mars 2017 - 08:46:27

Fichier

avec-fred12.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : ensl-01420349, version 1

Collections

Citation

Frédéric Déglise, Wieslawa Niziol. On p-adic absolute Hodge cohomology and syntomic coefficients, I.. Commentarii Mathematici Helvetici, European Mathematical Society, In press. 〈ensl-01420349〉

Partager

Métriques

Consultations de la notice

129

Téléchargements de fichiers

62