G. Alberti, Synopsis, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, vol.580, issue.02, pp.239-274, 1993.
DOI : 10.1215/S0012-7094-89-05820-1

G. Alberti, M. Csörnyei, and D. Preiss, Structure of null sets in the plane and applications Differentiability of Lipschitz functions, structure of null sets, and other problems, Proceedings of the Fourth European Congress of Mathematics Proceedings of the International Congress of Mathematicians, pp.3-22, 2004.

G. Alberti and A. Marchese, On the differentiability of Lipschitz functions with respect to measures in the Euclidean space, Geometric and Functional Analysis, vol.74, issue.199, 2015.
DOI : 10.1007/s00039-016-0354-y

W. K. Allard, An integrality theorem and a regularity theorem for surfaces whose first variation with respect to a parametric elliptic integrand is controlled, Geometric Measure Theory and the Calculus of Variations (F, Proceedings of Symposia in Pure Mathematics, 1986.

L. Ambrosio, Transport equation and Cauchy problem for BV vector fields, Inventiones mathematicae, vol.22, issue.2, pp.227-260, 2004.
DOI : 10.1007/s00222-004-0367-2

L. Ambrosio, A. Coscia, and G. Dal-maso, Fine Properties of Functions with Bounded Deformation, Archive for Rational Mechanics and Analysis, vol.139, issue.3, pp.201-238, 1997.
DOI : 10.1007/s002050050051

L. Ambrosio and G. Dal-maso, On the relaxation in BV(??; Rm) of quasi-convex integrals, Journal of Functional Analysis, vol.109, issue.1, pp.76-97, 1992.
DOI : 10.1016/0022-1236(92)90012-8

L. Ambrosio, N. Fusco, and D. Pallara, Free Discontinuity Problems and Special Functions with Bounded Variation, 2000.
DOI : 10.1007/978-3-0348-8974-2_2

L. Ambrosio and B. Kirchheim, Currents in metric spaces, Acta Mathematica, vol.185, issue.1, pp.1-80, 2000.
DOI : 10.1007/BF02392711

G. Bouchitté, I. Fonseca, and L. Mascarenhas, A Global Method for Relaxation, Archive for Rational Mechanics and Analysis, vol.145, issue.1, pp.51-98, 1998.
DOI : 10.1007/s002050050124

S. Conti and M. Ortiz, Dislocation Microstructures and the Effective Behavior of Single Crystals, Archive for Rational Mechanics and Analysis, vol.17, issue.1, pp.103-147, 2005.
DOI : 10.1007/s00205-004-0353-2

C. and D. Lellis, A note on Alberti's rank-one theorem, Transport equations and multi-D hyperbolic conservation laws, Lecture Notes of the Unione Matematica Italiana, pp.61-74, 2005.

R. J. Diperna, Compensated compactness and general systems of conservation laws, Transactions of the American Mathematical Society, vol.292, issue.2, pp.383-420, 1985.
DOI : 10.1090/S0002-9947-1985-0808729-4

H. Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, 1969.

I. Fonseca and S. Müller, Relaxation of quasiconvex functionals in BV(?, R p ) for integrands f (x, u, ?u) A-quasiconvexity, lower semicontinuity, and Young measures, Arch. Ration. Mech. Anal. SIAM J. Math. Anal, vol.12319, pp.1-49, 1993.

M. Fuchs and G. Seregin, Variational methods for problems from plasticity theory and for generalized Newtonian fluids, Lecture Notes in Mathematics, vol.1749, 2000.
DOI : 10.1007/BFb0103751

L. Grafakos, Classical Fourier Analysis [22] , Modern Fourier Analysis, Graduate Texts in Mathematics Graduate Texts in Mathematics, vol.249, issue.250, 2014.

P. Jones, Product formulas for measures and applications to analysis and geometry, talk given at the conference Geometric and algebraic structures in mathematics, 2011.

B. Kirchheim and J. Kristensen, On Rank One Convex Functions that are Homogeneous of Degree One, Archive for Rational Mechanics and Analysis, vol.19, issue.3, pp.527-558, 2016.
DOI : 10.1007/s00205-016-0967-1

J. Kristensen and F. Rindler, Characterization of generalized gradient Young measures generated by sequences in W 1,1 and BV Relaxation of signed integral functionals in BV, Calc, Piecewise affine approximations for functions of bounded variation, pp.539-598, 2010.

A. Massaccesi and D. Vittone, An elementary proof of the rank one theorem for BV functions, 2016.

F. Murat, [30] , Compacité par compensation. II, Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis Compacité par compensation: condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant, Pitagora, pp.489-507, 1978.

T. O. Neil, A measure with a large set of tangent measures, Proc. Amer, pp.2217-2220, 1995.

D. Preiss, Geometry of Measures in R n : Distribution, Rectifiability, and Densities, The Annals of Mathematics, vol.125, issue.3, pp.537-643, 1987.
DOI : 10.2307/1971410

D. Preiss and G. Speight, Differentiability of Lipschitz functions in Lebesgue null sets, Inventiones mathematicae, vol.2005, issue.5, pp.517-559, 2015.
DOI : 10.1007/s00222-014-0520-5

F. Rindler, Lower semicontinuity for integral functionals in the space of functions of bounded deformation via rigidity and Young measures [37] , Lower semicontinuity and Young measures in BV without Alberti's Rank-One Theorem A local proof for the characterization of Young measures generated by sequences in BV, Directional oscillations, concentrations, and compensated compactness via microlocal compactness forms, pp.63-113, 2011.

A. Schioppa, Metric currents and Alberti representations, Journal of Functional Analysis, vol.271, issue.11, 2015.
DOI : 10.1016/j.jfa.2016.08.022

URL : http://arxiv.org/abs/1403.7768

E. M. Stein, Harmonic Analysis, 1993.

L. Tartar, Compensated compactness and applications to partial differential equations, Nonlinear analysis and mechanics: Heriot-Watt Symposium, IV, Res. Notes in Math, vol.39, pp.136-212, 1979.

R. Temam, Mathematical Problems in Plasticity, 1985.

R. Temam and G. Strang, Functions of bounded deformation, Archive for Rational Mechanics and Analysis, vol.75, issue.1, pp.7-21, 1980.
DOI : 10.1007/BF00284617