ON THE STRUCTURE OF A -FREE MEASURES AND APPLICATIONS

Abstract : We establish a general structure theorem for the singular part of A-free Radon measures, where A is a linear PDE operator. By applying the theorem to suitably chosen differential operators A , we obtain a simple proof of Alberti's rank-one theorem and, for the first time, its extensions to functions of bounded deformation (BD). We also prove a structure theorem for the singular part of a finite family of normal currents. The latter result implies that the Rademacher theorem on the differentiability of Lipschitz functions can hold only for absolutely continuous measures and that every top-dimensional Ambrosio–Kirchheim metric current in R d is a Federer–Fleming flat chain. MSC (2010): 35D30 (primary); 28B05, 42B37 (secondary).
Type de document :
Article dans une revue
Annals of Mathematics, Princeton University, Department of Mathematics, 2016, 184, 〈10.4007/annals.2016.184.3.10〉
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger

https://hal-ens-lyon.archives-ouvertes.fr/ensl-01413644
Contributeur : De Philippis Guido <>
Soumis le : mardi 13 décembre 2016 - 14:50:00
Dernière modification le : vendredi 12 janvier 2018 - 14:26:09

Fichier

1601.06543v2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Guido De Philippis, Filip Rindler. ON THE STRUCTURE OF A -FREE MEASURES AND APPLICATIONS. Annals of Mathematics, Princeton University, Department of Mathematics, 2016, 184, 〈10.4007/annals.2016.184.3.10〉. 〈ensl-01413644〉

Partager

Métriques

Consultations de la notice

112

Téléchargements de fichiers

36