Convergence of the solutions of the discounted Hamilton–Jacobi equation

Abstract : We consider a continuous coercive Hamiltonian H on the cotangent bundle of the compact connected manifold M which is convex in the momentum. If uλ:M→ℝ is the viscosity solution of the discounted equation λuλ(x)+H(x,dxuλ)=c(H), where c(H) is the critical value, we prove that uλ converges uniformly, as λ→0, to a specific solution u0:M→ℝ of the critical equation H(x,dxu)=c(H). We characterize u0 in terms of Peierls barrier and projected Mather measures. As a corollary, we infer that the ergodic approximation, as introduced by Lions, Papanicolaou and Varadhan in 1987 in their seminal paper on homogenization of Hamilton–Jacobi equations, selects a specific corrector in the limit.
Type de document :
Article dans une revue
Inventiones Mathematicae, Springer Verlag, 2016, 〈10.1007/s00222-016-0648-6〉
Liste complète des métadonnées

https://hal-ens-lyon.archives-ouvertes.fr/ensl-01412048
Contributeur : Albert Fathi <>
Soumis le : mercredi 7 décembre 2016 - 18:53:48
Dernière modification le : jeudi 11 janvier 2018 - 06:12:31

Lien texte intégral

Identifiants

Collections

Citation

Albert Fathi. Convergence of the solutions of the discounted Hamilton–Jacobi equation. Inventiones Mathematicae, Springer Verlag, 2016, 〈10.1007/s00222-016-0648-6〉. 〈ensl-01412048〉

Partager

Métriques

Consultations de la notice

40