On 4-reflective complex analytic planar billiards

Abstract : The famous conjecture of Ivrii (Funct Anal Appl 14(2):98–106, 1980) says that in every billiard with infinitely-smooth boundary in a Euclidean space the set of periodic orbits has measure zero. In the present paper we study its complex analytic version for quadrilateral orbits in two dimensions, with reflections from holomorphic curves. We present the complete classification of 4-reflective complex analytic counterexamples: billiards formed by four holomorphic curves in the projective plane that have open set of quadrilateral orbits. This extends the author’s previous result (Glutsyuk, Moscow Math J 14(2):239–289, 2014) classifying 4-reflective complex planar algebraic counterexamples. We provide applications to real planar billiards: classification of 4-reflective germs of real planar C4-smooth pseudo-billiards; solutions of Tabachnikov’s Commuting Billiard Conjecture and the 4-reflective case of Plakhov’s Invisibility Conjecture (both in two dimensions; the boundary is required to be piecewise C4-smooth).We provide a survey and a small technical result concerning higher number of complex reflections.
Type de document :
Article dans une revue
Journal of Geometric Analysis, 2016, 27 (2017), pp.183--238. 〈10.1007/s12220-016-9679-x〉
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

https://hal-ens-lyon.archives-ouvertes.fr/ensl-01409258
Contributeur : Alexey Glutsyuk <>
Soumis le : samedi 10 décembre 2016 - 00:09:44
Dernière modification le : jeudi 11 janvier 2018 - 06:12:31
Document(s) archivé(s) le : lundi 27 mars 2017 - 15:21:12

Fichier

anal-4.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Alexey Glutsyuk. On 4-reflective complex analytic planar billiards. Journal of Geometric Analysis, 2016, 27 (2017), pp.183--238. 〈10.1007/s12220-016-9679-x〉. 〈ensl-01409258〉

Partager

Métriques

Consultations de la notice

131

Téléchargements de fichiers

28