Gibbs partitions: the convergent case

Abstract : We study Gibbs partitions that typically form a unique giant component. The remainder is shown to converge in total variation toward a Boltzmann-distributed limit structure. We demonstrate how this setting encompasses arbitrary weighted assemblies of tree-like combinatorial structures. As an application, we establish smooth growth along lattices for small block-stable classes of graphs. Random graphs with n vertices from such classes are shown to form a giant connected component. The small fragments may converge toward different Poisson Boltzmann limit graphs, depending along which lattice we let n tend to infinity. Since proper addable minor-closed classes of graphs belong to the more general family of small block-stable classes, this recovers and generalizes results by McDiarmid (2009).
Type de document :
Pré-publication, Document de travail
2016
Liste complète des métadonnées

https://hal-ens-lyon.archives-ouvertes.fr/ensl-01408153
Contributeur : Benedikt Stufler <>
Soumis le : samedi 3 décembre 2016 - 11:25:27
Dernière modification le : mercredi 7 décembre 2016 - 01:01:42
Document(s) archivé(s) le : mardi 21 mars 2017 - 05:25:04

Fichier

gibbs.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : ensl-01408153, version 1
  • ARXIV : 1609.08859

Collections

Citation

Benedikt Stufler. Gibbs partitions: the convergent case. 2016. 〈ensl-01408153〉

Partager

Métriques

Consultations de la notice

31

Téléchargements de fichiers

25