V. Bangert and W. Klingenberg, HOMOLOGY GENERATED BY ITERATED CLOSED GEODESICS, Topology, vol.22, issue.4, pp.379-388, 1983.
DOI : 10.1142/9789812812797_0033

R. Bott, On the iteration of closed geodesics and the sturm intersection theory, Communications on Pure and Applied Mathematics, vol.20, issue.2, pp.171-206, 1956.
DOI : 10.1002/cpa.3160090204

M. Chaperon, Une idée du type " géodésiques brisées " pour les systèmes hamiltoniens, C. R. Acad. Sci. Paris Sér. I Math, vol.298, issue.13, pp.293-296, 1984.

K. Chang, Infinite-dimensional Morse theory and multiple solution problems, Progress in Nonlinear Differential Equations and their Applications, 1993.
DOI : 10.1007/978-1-4612-0385-8

C. Conley and E. Zehnder, Subharmonic solutions and Morse theory, Physica A: Statistical Mechanics and its Applications, vol.124, issue.1-3, pp.649-657, 1984.
DOI : 10.1016/0378-4371(84)90282-6

J. Franks and M. Handel, Periodic points of Hamiltonian surface diffeomorphisms, Geometry & Topology, vol.7, issue.2, pp.713-756, 2003.
DOI : 10.2140/gt.2003.7.713

B. [. Ginzburg, Action and index spectra and periodic orbits in Hamiltonian dynamics, Geometry & Topology, vol.13, issue.5, pp.2745-2805, 2009.
DOI : 10.2140/gt.2009.13.2745

J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Applied Mathematical Sciences, vol.42, 1990.

V. L. Ginzburg, The Conley conjecture, Annals of Mathematics, vol.172, issue.2, pp.1127-1180, 2010.
DOI : 10.4007/annals.2010.172.1129

D. Gromoll and W. Meyer, On differentiable functions with isolated critical points, Topology, vol.8, issue.4, pp.361-369, 1969.
DOI : 10.1016/0040-9383(69)90022-6

C. Golé, Symplectic twist maps Advanced Series in Nonlinear Dynamics, NJ, vol.18, 2001.

D. Hein, The Conley conjecture for the cotangent bundle, Archiv der Mathematik, vol.3, issue.1, pp.85-100, 2009.
DOI : 10.1007/s00013-010-0208-z

N. Hingston, Subharmonic solutions of Hamiltonian equations on tori, Annals of Mathematics, vol.170, issue.2, pp.529-560, 2009.
DOI : 10.4007/annals.2009.170.529

H. Hofer and E. Zehnder, Symplectic invariants and Hamiltonian dynamics, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts, 1994.

P. and L. Calvez, Periodic orbits of Hamiltonian homeomorphisms of surfaces, Duke Math, J, vol.133, issue.1, pp.125-184, 2006.

C. Liu and Y. Long, An optimal increasing estimate of the iterated Maslov-type indices, Chinese Science Bulletin, vol.349, issue.13, pp.1063-1066, 1998.
DOI : 10.1007/BF02883073

Y. Long, Multiple periodic points of the Poincar?? map of Lagrangian systems on tori, Mathematische Zeitschrift, vol.233, issue.3, pp.443-470, 2000.
DOI : 10.1007/PL00004805

]. G. Lu09 and . Lu, The Conley conjecture for Hamiltonian systems on the cotangent bundle and its analogue for Lagrangian systems, J. Funct. Anal, vol.256, issue.9, pp.2967-3034, 2009.

M. Mazzucchelli, The Lagrangian Conley conjecture, Commentarii Mathematici Helvetici, vol.86, issue.1, pp.189-246, 2011.
DOI : 10.4171/CMH/222

URL : https://hal.archives-ouvertes.fr/ensl-01404041

D. Mcduff and D. Salamon, Introduction to symplectic topology, 1998.

H. Poincaré, Les méthodes nouvelles de la mécanique céleste. Tome I. Solutions périodiques . Non-existence des intégrales uniformes. Solutions asymptotiques, Les Grands Classiques Gauthier-Villars, 1987.

J. Robbin and D. Salamon, The Maslov index for paths, Topology, vol.32, issue.4, pp.827-844, 1993.
DOI : 10.1016/0040-9383(93)90052-W

D. Salamon, Lectures on Floer homology, Symplectic geometry and topology (Park City, IAS/Park City Math. Ser, pp.143-229, 1997.

M. Schwarz, On the action spectrum for closed symplectically aspherical manifolds, Pacific Journal of Mathematics, vol.193, issue.2, pp.419-461, 2000.
DOI : 10.2140/pjm.2000.193.419

D. Salamon and E. Zehnder, Morse theory for periodic solutions of hamiltonian systems and the maslov index, Communications on Pure and Applied Mathematics, vol.23, issue.10, pp.1303-1360, 1992.
DOI : 10.1002/cpa.3160451004