Non-commutative standard polynomials applied to matrices

Abstract : The Amitsur–Levitski Theorem tells us that the standard polynomial in 2n non-commuting indeterminates vanishes identically over the matrix algebra M n (K). For K = R or C and 2 ≤ r ≤ 2n − 1, we investigate how big S r (A 1 ,. .. , A r) can be when A 1 ,. .. , A r belong to the unit ball. We privilegiate the Frobenius norm, for which the case r = 2 was solved recently by several authors. Our main result is a closed formula for the expectation of the square norm. We also describe the image of the unit ball when r = 2 or 3 and n = 2. MSC classification : 15A24, 15A27, 15A60
Liste complète des métadonnées

https://hal-ens-lyon.archives-ouvertes.fr/ensl-01402364
Contributeur : Denis Serre <>
Soumis le : jeudi 24 novembre 2016 - 15:46:21
Dernière modification le : lundi 29 janvier 2018 - 13:28:02
Document(s) archivé(s) le : mardi 21 mars 2017 - 06:02:19

Fichier

Deter.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Denis Serre. Non-commutative standard polynomials applied to matrices. Linear Algebra and its Applications, Elsevier, 2016, 490, pp.202 - 223. 〈10.1016/j.laa.2015.11.003〉. 〈ensl-01402364〉

Partager

Métriques

Consultations de la notice

63

Téléchargements de fichiers

160