Mesoscopic Higher Regularity and Subadditivity in Elliptic Homogenization

Abstract : We introduce a new method for obtaining quantitative results in stochastic homogenization for linear elliptic equations in divergence form. Unlike previous works on the topic, our method does not use concentration inequalities (such as Poincaré or logarithmic Sobolev inequalities in the probability space) and relies instead on a higher (C k , k ≥ 1) regularity theory for solutions of the heterogeneous equation, which is valid on length scales larger than a certain specified mesoscopic scale. This regularity theory, which is of independent interest, allows us to, in effect, localize the dependence of the solutions on the coefficients and thereby accelerate the rate of convergence of the expected energy of the cell problem by a bootstrap argument. The fluctuations of the energy are then tightly controlled using subadditivity. The convergence of the energy gives control of the scaling of the spatial averages of gradients and fluxes (that is, it quantifies the weak convergence of these quantities) which yields, by a new " multiscale " Poincaré inequality, quantitative estimates on the sublinearity of the corrector.
Type de document :
Article dans une revue
Communications in Mathematical Physics, Springer Verlag, 2016, 347, pp.315 - 361. 〈10.1007/s00220-016-2663-2〉
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal-ens-lyon.archives-ouvertes.fr/ensl-01401898
Contributeur : Jean-Christophe Mourrat <>
Soumis le : mercredi 23 novembre 2016 - 22:42:28
Dernière modification le : jeudi 11 janvier 2018 - 06:12:31
Document(s) archivé(s) le : mardi 21 mars 2017 - 06:53:50

Fichiers

cubes.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Scott Armstrong, Tuomo Kuusi, Jean-Christophe Mourrat. Mesoscopic Higher Regularity and Subadditivity in Elliptic Homogenization. Communications in Mathematical Physics, Springer Verlag, 2016, 347, pp.315 - 361. 〈10.1007/s00220-016-2663-2〉. 〈ensl-01401898〉

Partager

Métriques

Consultations de la notice

213

Téléchargements de fichiers

46