Lipschitz Regularity for Elliptic Equations with Random Coefficients

Abstract : We develop a higher regularity theory for general quasilinear elliptic equations and systems in divergence form with random coefficients. The main result is a large-scale L ∞-type estimate for the gradient of a solution. The estimate is proved with optimal stochastic integrability under a one-parameter family of mixing assumptions, allowing for very weak mixing with non-integrable correlations to very strong mixing (e.g., finite range of dependence). We also prove a quenched L 2 estimate for the error in ho-mogenization of Dirichlet problems. The approach is based on subadditive arguments which rely on a variational formulation of general quasilinear divergence-form equations.
Type de document :
Article dans une revue
Archive for Rational Mechanics and Analysis, Springer Verlag, 2016, 219, pp.255 - 348. 〈10.1007/s00205-015-0908-4〉
Liste complète des métadonnées

Littérature citée [39 références]  Voir  Masquer  Télécharger

https://hal-ens-lyon.archives-ouvertes.fr/ensl-01401892
Contributeur : Jean-Christophe Mourrat <>
Soumis le : mercredi 23 novembre 2016 - 22:34:50
Dernière modification le : jeudi 11 janvier 2018 - 06:12:31
Document(s) archivé(s) le : mardi 21 mars 2017 - 05:05:39

Fichiers

monotone.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Scott Armstrong, Jean-Christophe Mourrat. Lipschitz Regularity for Elliptic Equations with Random Coefficients. Archive for Rational Mechanics and Analysis, Springer Verlag, 2016, 219, pp.255 - 348. 〈10.1007/s00205-015-0908-4〉. 〈ensl-01401892〉

Partager

Métriques

Consultations de la notice

32

Téléchargements de fichiers

21