S. N. Armstrong and C. K. Smart, Quantitative stochastic homogenization of convex integral functionals, Annales scientifiques de l'Ecole normale supérieure

S. N. Armstrong and J. Mourrat, Lipschitz regularity for elliptic equations with random coefficients, Archive for Rational Mechanics and Analysis

G. Bal, Central Limits and Homogenization in Random Media, Multiscale Modeling & Simulation, vol.7, issue.2, pp.677-702, 2008.
DOI : 10.1137/070709311

URL : http://arxiv.org/abs/0710.0363

G. Bal, Homogenization with Large Spatial Random Potential, Multiscale Modeling & Simulation, vol.8, issue.4, pp.1484-1510, 2010.
DOI : 10.1137/090754066

URL : http://arxiv.org/abs/0809.1045

G. Bal and Y. Gu, Limiting models for equations with large random potential: A review, Communications in Mathematical Sciences, vol.13, issue.3, pp.729-748, 2015.
DOI : 10.4310/CMS.2015.v13.n3.a7

A. Bensoussan, J. Lions, and G. Papanicolau, Asymptotic Analysis for Periodic Structures, 1978.
DOI : 10.1090/chel/374

M. Biskup, M. Salvi, and T. Wolff, A Central Limit Theorem for the Effective Conductance: Linear Boundary Data and Small Ellipticity Contrasts, Communications in Mathematical Physics, vol.86, issue.5-6, pp.701-731, 2014.
DOI : 10.1007/s00220-014-2024-y

R. M. Burton, M. Goulet, and R. Meester, On 1-Dependent Processes and $k$-Block Factors, The Annals of Probability, vol.21, issue.4, pp.2157-2168, 1993.
DOI : 10.1214/aop/1176989014

L. A. Caffarelli and P. E. Souganidis, Rates of convergence for the homogenization of??fully nonlinear uniformly elliptic pde in??random media, Inventiones mathematicae, vol.23, issue.2, pp.301-360, 2010.
DOI : 10.1007/s00222-009-0230-6

J. Conlon and A. Fahim, Strong convergence to the homogenized limit of parabolic equations with random coefficients, Transactions of the American Mathematical Society, vol.367, issue.5, pp.3041-3093, 2015.
DOI : 10.1090/S0002-9947-2014-06005-4

A. Egloffe, A. Gloria, J. Mourrat, and T. N. Nguyen, Random walk in random environment, corrector equation and homogenized coefficients: from theory to numerics, back and forth, IMA Journal of Numerical Analysis, vol.35, issue.2, pp.35-499, 2015.
DOI : 10.1093/imanum/dru010

URL : https://hal.archives-ouvertes.fr/hal-00749667

S. N. Ethier and T. G. Kurtz, Markov processes: characterization and convergence, 1986.
DOI : 10.1002/9780470316658

R. Figari, E. Orlandi, and G. Papanicolaou, Mean Field and Gaussian Approximation for Partial Differential Equations with Random Coefficients, SIAM Journal on Applied Mathematics, vol.42, issue.5, pp.1069-1077, 1982.
DOI : 10.1137/0142074

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Gloria and D. Marahrens, Annealed estimates on the Green functions and uncertainty quantification, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.33, issue.5, 2014.
DOI : 10.1016/j.anihpc.2015.04.001

URL : https://hal.archives-ouvertes.fr/hal-01093386

A. Gloria, S. Neukamm, and F. Otto, Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on glauber dynamics An optimal quantitative two-scale expansion in stochastic homogenization of discrete elliptic equations A regularity theory for random elliptic operators, Inventiones Mathematicae ESAIM: Mathematical Modelling and Numerical Analysis, vol.1718, issue.48, pp.1-61, 2013.

A. Gloria and F. Otto, An optimal variance estimate in stochastic homogenization of discrete elliptic equations An optimal error estimate in stochastic homogenization of discrete elliptic equations, The Annals of Applied Probability, Quantitative results on the corrector equation in stochastic homogenization, pp.779-856, 2011.

Y. Gu and G. Bal, Fluctuations of parabolic equations with large random potentials, SPDEs: Analysis and Computations, pp.1-51, 2015.

Y. Gu and J. Mourrat, Scaling Limit of Fluctuations in Stochastic Homogenization, Multiscale Modeling & Simulation, vol.14, issue.1, 2015.
DOI : 10.1137/15M1010683

URL : https://hal.archives-ouvertes.fr/ensl-01401894

Q. Han and F. Lin, Elliptic partial differential equations, 1997.
DOI : 10.1090/cln/001

J. F. Kingman, Poisson Processes, 1993.
DOI : 10.1002/0470011815.b2a07042

C. Kipnis and S. Varadhan, Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions, Communications in Mathematical Physics, vol.28, issue.1, pp.1-19, 1986.
DOI : 10.1007/BF01210789

T. Komorowski, C. Landim, and S. Olla, Fluctuations in Markov processes: time symmetry and martingale approximation, 2012.
DOI : 10.1007/978-3-642-29880-6

URL : https://hal.archives-ouvertes.fr/hal-00722537

S. M. Kozlov, AVERAGING OF RANDOM OPERATORS, Mathematics of the USSR-Sbornik, vol.37, issue.2, pp.188-202, 1979.
DOI : 10.1070/SM1980v037n02ABEH001948

D. Marahrens and F. Otto, Annealed estimates on the Green's function, Probability Theory and Related Fields

J. Mourrat, [31] , A quantitative central limit theorem for the random walk among random conductances Kantorovich distance in the martingale CLT and quantitative homogenization of parabolic equations with random coefficients, Annales de l'Institut H. Poincaré Probabilités et Statistiques, pp.47-294, 2011.

J. Mourrat and J. Nolen, A Scaling limit of the corrector in stochastic homogenization, preprint, 2015.

J. Mourrat and F. Otto, Correlation structure of the corrector in stochastic homogenization, The Annals of Probability, vol.44, issue.5
DOI : 10.1214/15-AOP1045

URL : https://hal.archives-ouvertes.fr/ensl-01401887

J. Nolen, Normal approximation for a random elliptic equation, Probability Theory and Related Fields, pp.1-40, 2011.
DOI : 10.1007/s00440-013-0517-9

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

G. C. Papanicolaou and S. R. Varadhan, Boundary value problems with rapidly oscillating random coefficients, Random fields, pp.835-873, 1979.

R. Rossignol, Noise-stability and central limit theorems for effective resistance of random electric networks, The Annals of Probability, vol.44, issue.2
DOI : 10.1214/14-AOP996

V. Yurinskii, Averaging of symmetric diffusion in random medium, Siberian Mathematical Journal, vol.34, issue.No. 4, pp.603-613, 1986.
DOI : 10.1007/BF00969174