C. [. Armstrong and . Smart, Quantitative Stochastic Homogenization of Elliptic Equations in Nondivergence Form, Archive for Rational Mechanics and Analysis, vol.39, issue.3, pp.867-911, 2014.
DOI : 10.1007/s00205-014-0765-6

URL : https://hal.archives-ouvertes.fr/hal-00838187

G. Bal, Central Limits and Homogenization in Random Media, Multiscale Modeling & Simulation, vol.7, issue.2, pp.677-702, 2008.
DOI : 10.1137/070709311

G. Bal, Homogenization with Large Spatial Random Potential, Multiscale Modeling & Simulation, vol.8, issue.4, pp.1484-1510, 2010.
DOI : 10.1137/090754066

URL : http://arxiv.org/abs/0809.1045

G. Bal, Convergence to Homogenized or Stochastic Partial Differential Equations, Applied Mathematics Research eXpress, vol.2011, issue.2, pp.215-241, 2011.
DOI : 10.1093/amrx/abr006

URL : http://amrx.oxfordjournals.org/cgi/content/short/2011/2/215

G. Bal, J. Garnier, Y. Gu, and W. Jing, Corrector theory for elliptic equations with long-range correlated random potential, Asymptot. Anal, vol.77, pp.3-4, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00708142

G. Bal, J. Garnier, S. Motsch, and V. Perrier, Random integrals and correctors in homogenization, Asymptot. Anal, vol.59, issue.12, pp.1-26, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00355004

G. Bal and Y. Gu, Limiting models for equations with large random potential; a review. Preprint, http://www.columbia, 2013.
DOI : 10.4310/cms.2015.v13.n3.a7

G. Bal and W. Jing, Corrector theory for elliptic equations in random media with singular Green???s function. application to random boundaries, Communications in Mathematical Sciences, vol.9, issue.2, pp.383-411, 2011.
DOI : 10.4310/CMS.2011.v9.n2.a3

M. [. Berger and . Biskup, Quenched invariance principle for simple random walk on percolation clusters, Probability Theory and Related Fields, vol.137, issue.1-2, pp.83-120, 2007.
DOI : 10.1007/s00440-006-0498-z

M. Biskup and H. Spohn, Scaling limit for a class of gradient fields with nonconvex potentials, The Annals of Probability, vol.39, issue.1, pp.224-251, 2011.
DOI : 10.1214/10-AOP548

D. Boivin, Tail estimates for homogenization theorems in random media, ESAIM: Probability and Statistics, vol.13, pp.51-69, 2009.
DOI : 10.1051/ps:2007036

URL : https://hal.archives-ouvertes.fr/hal-00480187

A. Bourgeat and A. Piatnitski, Approximations of effective coefficients in stochastic homogenization, Annales de l?Institut Henri Poincare (B) Probability and Statistics, vol.40, issue.2, pp.153-165, 2004.
DOI : 10.1016/j.anihpb.2003.07.003

L. A. Caffarelli and P. E. Souganidis, Rates of convergence for the homogenization of??fully nonlinear uniformly elliptic pde in??random media, Inventiones mathematicae, vol.23, issue.2, pp.301-360, 2010.
DOI : 10.1007/s00222-009-0230-6

P. Caputo and D. Ioffe, Finite volume approximation of the effective diffusion matrix: The case of independent bond disorder, Annales de l'Institut Henri Poincare (B) Probability and Statistics, vol.39, issue.3, pp.505-525, 2003.
DOI : 10.1016/S0246-0203(02)00016-X

J. Conlon and A. Fahim, Strong convergence to the homogenized limit of parabolic equations with random coefficients, Transactions of the American Mathematical Society, vol.367, issue.5, 2015.
DOI : 10.1090/S0002-9947-2014-06005-4

J. Conlon and T. Spencer, Strong convergence to the homogenized limit of elliptic equations with random coefficients, Transactions of the American Mathematical Society, vol.366, issue.3, pp.1257-1288, 2014.
DOI : 10.1090/S0002-9947-2013-05762-5

R. Figari, E. Orlandi, and G. Papanicolaou, Mean Field and Gaussian Approximation for Partial Differential Equations with Random Coefficients, SIAM Journal on Applied Mathematics, vol.42, issue.5, pp.1069-1077, 1982.
DOI : 10.1137/0142074

T. Funaki, Stochastic interface models. Lectures on probability theory and statistics 103?274, Ecole d'été de probabilités de Saint-Flour XXXIII, Lecture notes in mathematics, p.1869, 2005.

G. Giacomin, S. Olla, and H. Spohn, Equilibrium fluctuations for ? interface model, Ann. Probab, vol.29, issue.3, pp.1138-1172, 2001.

A. Gloria and J. Mourrat, Spectral measure and approximation of homogenized coefficients, Probability Theory and Related Fields, vol.25, issue.4, pp.287-326, 2012.
DOI : 10.1007/s00440-011-0370-7

URL : https://hal.archives-ouvertes.fr/inria-00510513

A. Gloria, S. Neukamm, and F. Otto, Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on Glauber dynamics, Inventiones mathematicae, vol.27, issue.4, 2015.
DOI : 10.1007/s00222-014-0518-z

URL : https://hal.archives-ouvertes.fr/hal-01093405

A. Gloria, S. Neukamm, and F. Otto, An optimal quantitative two-scale expansion in stochastic homogenization of discrete elliptic equations, ESAIM: Mathematical Modelling and Numerical Analysis, vol.48, issue.2, pp.325-346, 2014.
DOI : 10.1051/m2an/2013110

URL : https://hal.archives-ouvertes.fr/hal-00863488

A. Gloria and F. Otto, An optimal variance estimate in stochastic homogenization of discrete elliptic equations, The Annals of Probability, vol.39, issue.3, pp.779-856, 2011.
DOI : 10.1214/10-AOP571

URL : https://hal.archives-ouvertes.fr/hal-00383953

A. Gloria and F. Otto, An optimal error estimate in stochastic homogenization of discrete elliptic equations, The Annals of Applied Probability, vol.22, issue.1, pp.1-28, 2012.
DOI : 10.1214/10-AAP745

URL : https://hal.archives-ouvertes.fr/inria-00457020

Y. Gu and G. Bal, Random homogenization and convergence to integrals with respect to the Rosenblatt process, Journal of Differential Equations, vol.253, issue.4, pp.1069-1087, 2012.
DOI : 10.1016/j.jde.2012.05.007

Y. Gu and G. Bal, Fluctuations of parabolic equations with large random potentials, Stochastic Partial Differential Equations: Analysis and Computations, vol.27, issue.1, 2015.
DOI : 10.1007/s40072-014-0040-8

B. Helffer and J. Sjöstrand, On the correlation for Kac-like models in the convex case, Journal of Statistical Physics, vol.28, issue.9, pp.349-409, 1994.
DOI : 10.1007/BF02186817

]. R. Kü83 and . Künnemann, The diffusion limit for reversible jump processes on Z d with ergodic random bond conductivities, Comm. Math. Phys, vol.90, issue.1, pp.27-68, 1983.

D. Marahrens and F. Otto, Annealed estimates on the Green's function, 2013.

J. Miller, Fluctuations for the Ginzburg-Landau $${\nabla \phi}$$ Interface Model on a Bounded Domain, Communications in Mathematical Physics, vol.33, issue.3-4, pp.591-639, 2011.
DOI : 10.1007/s00220-011-1315-9

J. Mourrat, Variance decay for functionals of the environment viewed by the particle, Annales de l'Institut Henri Poincar??, Probabilit??s et Statistiques, vol.47, issue.1, pp.294-327, 2011.
DOI : 10.1214/10-AIHP375

URL : https://hal.archives-ouvertes.fr/hal-01271688

J. Mourrat, Kantorovich distance in the martingale CLT and quantitative homogenization of parabolic equations with random coefficients, Probability Theory and Related Fields, vol.129, issue.2, pp.279-314, 2014.
DOI : 10.1007/s00440-013-0529-5

J. Mourrat, First-order expansion of homogenized coefficients under Bernoulli perturbations, Journal de Math??matiques Pures et Appliqu??es, vol.103, issue.1, pp.68-101, 2015.
DOI : 10.1016/j.matpur.2014.03.008

J. Mourrat and Y. Gu, Scaling limit of fluctuations in stochastic homogenization
URL : https://hal.archives-ouvertes.fr/ensl-01401894

J. Mourrat and J. Nolen, Scaling limit of the corrector in stochastic homogenization

A. Naddaf and T. Spencer, On homogenization and scaling limit of some gradient perturbations of a massless free field, Communications in Mathematical Physics, vol.74, issue.1/2, pp.55-84, 1997.
DOI : 10.1007/BF02509796

A. Naddaf and T. Spencer, Estimates on the variance of some homogenization problems, 1998.

G. C. Papanicolaou and S. R. Varadhan, Boundary value problems with rapidly oscillating random coefficients Random fields (Esztergom, 1979), Colloq. Math. Soc. János Bolyai, vol.27, pp.835-873, 1981.

J. Sjöstrand, Correlation asymptotics and Witten Laplacians, Algebra i Analiz Engl. transl. St. Petersburg Math. J, vol.8, issue.81, pp.160-191, 1996.

V. V. Yurinski?-i, Averaging of symmetric diffusion in a random medium. (Russian) Sibirsk English transl. Siberian Math, Mat. Zh. J, vol.27, issue.274, pp.167-180, 1986.