Beyond universality in random matrix theory

Abstract : In order to have a better understanding of finite random matrices with non-Gaussian entries, we study the 1/N expansion of local eigenvalue statistics in both the bulk and at the hard edge of the spectrum of random matrices. This gives valuable information about the smallest singular value not seen in universality laws. In particular, we show the dependence on the fourth moment (or the kurtosis) of the entries. This work makes use of the so-called complex Gaussian divisible ensembles for both Wigner and sample covariance matrices.
Type de document :
Article dans une revue
The Annals of Applied Probability : an official journal of the institute of mathematical statistics, The Institute of Mathematical Statistics, 2016, 26 (3), pp.1659 - 1697. <10.1214/15-AAP1129>
Liste complète des métadonnées

https://hal-ens-lyon.archives-ouvertes.fr/ensl-01400946
Contributeur : Alice Guionnet <>
Soumis le : vendredi 25 novembre 2016 - 15:13:49
Dernière modification le : mardi 13 décembre 2016 - 17:10:13
Document(s) archivé(s) le : lundi 20 mars 2017 - 16:36:17

Fichier

universality_final2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

A Edelman, Alice Guionnet, S Péché. Beyond universality in random matrix theory. The Annals of Applied Probability : an official journal of the institute of mathematical statistics, The Institute of Mathematical Statistics, 2016, 26 (3), pp.1659 - 1697. <10.1214/15-AAP1129>. <ensl-01400946>

Partager

Métriques

Consultations de
la notice

36

Téléchargements du document

27