
HAL Id: ensl-01391418
https://ens-lyon.hal.science/ensl-01391418v3

Preprint submitted on 5 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dependent Types for Extensive Games
Pierre Lescanne

To cite this version:

Pierre Lescanne. Dependent Types for Extensive Games. 2016. �ensl-01391418v3�

https://ens-lyon.hal.science/ensl-01391418v3
https://hal.archives-ouvertes.fr

Dependent Types for Extensive Games

Pierre Lescanne

University of Lyon, École normale supérieure de Lyon, CNRS (LIP),
46 allée d’Italie, 69364 Lyon, France

December 5, 2017

Abstract

Extensive games are tools largely used in economics to describe deci-
sion processes of a community of agents. In this paper we propose a formal
presentation based on the proof assistant Coq which focuses mostly on in-
finite extensive games and their characteristics. Coq proposes a feature
called “dependent types”, which means that the type of an object may
depend on the type of its components. For instance, the set of choices or
the set of utilities of an agent may depend on the agent herself. Using
dependent types, we describe formally a very general class of games and
strategy profiles, which corresponds somewhat to what game theorists are
used to. We also discuss the notions of infiniteness in game theory and
how this can be precisely described.

Keywords: extensive game, infinite game, sequential game, coinduction,
Coq, proof assistant.

1 Introduction

Extensive games are used in formalization of economics and in decision pro-
cesses. Rational decision is logic, but it is not exaggerated to claim that rational
decision is essentially a computational process and therefore it should be based
on computational logic, like the calculus of inductive construction of Coq and on
induction. Moreover, an adequate description of the decision process requires
the framework to be infinite. Indeed there is no reason to assume that the pro-
cess is a priori finite, since if we do so we put strong constraints on the model
which prevents some behaviors, like for instance escalation. Beware, in the
framework of games where agents interact, we do not say that the world is infi-
nite, but we say that the agents believe that the world is infinite. Indeed, saying
that the model is finite precludes the phenomenon of escalation, and proving, in
that case, that escalation cannot exist is begging the question. Since we require
a computational approach to infinite processes, the natural concept in modern
logic is this of coinduction as proposed in [16, 13, 15]. But in this paper, by

1

using dependent types, we revise our previous works. Thus we allow considering
formal presentations of very general classes of games, for instance, games with
very general sets of choices depending on agents or very general sets of utilities
also depending on agents. For instance, an agent may have an infinity of choices
and another may have only one choice, or two, whereas utilities are just ordered
sets, even completely trivial ones in some counterexamples, which shows their
generality. Similarly agents may have their own sets of utility. Agents may
prefer flowers for their colors whereas agents use their fragrances. By very small
changes in the formalism, we may easily describe multistage games, that are
games in which agents move simultaneously at each stage.

All the formalism has been developed in Coq [2]. The reader can find scripts
on GitHub at
https://github.com/PierreLescanne/DependentTypesForExtensiveGames.

The paper has 8 sections. The second section presents games and strategy
profiles. Section 3, Section 4 and Section 6 talk about concepts connected with
finiteness. Section 8 considers the way infiniteness is addressed in books on
game theory. Section 9 is the conclusion.

2 Games and Strategy Profiles

This presentation of extensive games differs from this of [16, 13, 15, 1] in the use
of dependant types. However it has connections with composition games [7, 11].
Indeed, for simplicity, in those papers, only binary games were considered1,
that is that only two choices were offered to the agents. In this paper, using
dependent types, we can propose a more general framework. Associated with a
game, a strategy profile is a description of the choices taken by the agents. The
formal definitions of games and strategy profiles relies on three entities, a set of
agents written Agent, a set of choices depending on an agent a written Choice a

and a set of utilities depending on an agent a written Utility a. Moreover there
is a preorder on Utility a. In particular, unlike most of the presentations of
games, utilities need not be natural numbers, but can be any ordered set used
by the agent. The sets of infinite games and of infinite strategy profiles are
defined coinductively and are written respectively Game and StratProf.

Game.

A game which does not correspond to a terminal position and which we call a
node is written <|a,next|> and has two arguments:

• an agent a, the agent whom the node belongs to,

• a function next of type Choice a → Game.

We call leaf a terminal position. A leaf consists in a function

1After Vestergaard [23] who introduced this concept for finite games and finite strategy
profiles.

2

(∀ a:Agent, Utility a) → Game

i. e., a function form an agent a to and element of Utility a, which is the
utility assignment at the end of the game and which is written <| f |>. Notice
that the utility depends on the agent. A node game is made of an agent and
of a function which returns a game given a choice. Assume that the agent is a

and the function is next, then a node game is written <|a,next|>. The formal
definition of a game is given in Coq by:

CoInductive Game : Set :=

| gLeaf : (forall a:Agent, Utility a) -> Game

| gNode : forall (a:Agent), (Choice a -> Game) -> Game.

Since this defines a coinductive, this covers finite and infinite extensive games.

Example 1 Here is game with choices blue, green and red for A and black and
dotted for B and {weak,medium, strong} as utilities for A, and N as utilities
for B.

A

�� ��

// A

�� ''

// A 7→medium,B 7→0

B //
HH

B

%%

TT

A7→weak,B 7→2 A7→strong,B 7→1

A7→weak,B 7→1

Strategy profile.

A strategy profile corresponds to a non terminal position. We call it a node and
we write it �a,c,next�. It has three components:

• an agent a, the agent whom the node belongs to,

• a choice c, which is the choice taken by agent on this specific node,

• a function next of type Choice a → StratProf.

A strategy profile which is a terminal position is a function

(∀ a:Agent, Utility a) → Game

3

like for games. Indeed there is no choice. It is written <<f>>. The inductive
definition in Coq of a strategy profile is:

CoInductive StratProf : Set :=

| sLeaf : (forall a:Agent, Utility a) -> StratProf

| sNode : forall (a:Agent),

Choice a -> (Choice a -> StratProf) -> StratProf.

The two main differences with the approach of [16, 13, 15, 1] lie in the fact that
the set of choices and the set of utilities are not fixed (the same for all agents,
namely a pair) but depend on the agent (dependent type). This way we can
describe a larger class of games. In Example 1, we have shown a game with
choices and games actually depending on the agents. For instance, as we will
see in Section 4, the sets of choices can easily be infinite. Since the built-in Coq
equality is not adequate, we define coinductively an equality on games,

CoInductive gEqual: Game -> Game -> Prop :=

| gEqualLeaf: forall f, gEqual (<| f |>) (<| f |>)

| gEqualNode: forall (a:Agent)(next next’:Choice a->Game),

(forall (c:Choice a), gEqual (next c) (next’ c)) ->

gEqual (<|a,next|>) (<|a,next’|>).

further written ==.

Utility assignment.

Since Coq accepts only terminating functions we define the utility assignment
as a relation:

Inductive Uassign : StratProf -> (forall a:Agent, Utility a) -> Prop :=

| UassignLeaf: forall f, Uassign (<<f>>) f

| UassignNode: forall (a:Agent)(c:Choice a)

(ua: forall a’,Utility a’)

(next:Choice a -> StratProf),

Uassign (next c) ua -> Uassign (<<a,c,next>>) ua.

We prove that Uassign is a functional relation, namely that

forall s ua ua’, Uassign s ua -> Uassign s ua’ -> ua=ua’..

Notice that for proving this property we need an inversion tactic which is some-
what subtle when dealing with dependent types [4, 17].2 Moreover for all conver-
gent strategy profiles (i.e., for all strategy profiles of interest, see next section)
we can prove that the function is total, i.e., that there exists always a utility
assignment associated with this convergent strategy profile.

2We thank Adam Chlipala and Jean-François Monin for their help on this specific example.

4

3 Several notions associated with finiteness

On infinite games and strategy profiles there are several predicates capturing
notions of finiteness.

Finite Games.

A game is finite if it has a finite number of positions. It is naturally an induc-
tive3. Clearly a leaf is finite. A game which is a node is finite if the set of the
choices of the agent is finite 4 and if for all the choices, the next games are finite.
This is made precise by the following definition.

Inductive Finite : Game -> Set :=

| finGLeaf: forall f, Finite <|f|>

| finGNode: forall (a:Agent)(next: Choice a -> Game),

finite (Choice a) ->

(forall c:Choice a, Finite (next c)) ->

Finite <|a,next|>.

Finite strategy profiles would be defined likewise.

Inductive FiniteStratProf : StratProf -> Set :=

| finSLeaf: forall f, FiniteStratProf <<f>>

| finSNode: forall (a:Agent)(c:Choice a)(next: Choice a -> StratProf),

finite (Choice a) ->

(forall c’:Choice a, FiniteStratProf (next c’)) ->

FiniteStratProf <<a,c,next>>.

Games with only finitely many strategy profiles.

Osborne and Rubinstein [19] call “finite”, a game with only finitely many strat-
egy profiles5. In order not to interfere with the previous definition, we prefer
to say that the game is finitely broad.6 This is translated by the fact that for
a game g to have only finitely many strategy profiles, there shall exist a list
that collects all the strategy profiles that have this game g as underlying game.
Since in Coq lists are finite this yields the desired property:

Definition FinitelyBroad (g:Game): Prop :=

exists (l: list StratProf), forall (s:StratProf),

game s == g <-> In s l.

3Roughly speaking, an inductive (definition) is a well-founded definition with basic cases
and constructors

4The predicate finite over choices is not defined here.
5Actually they use the concept of “history” (path), instead of strategy profiles, but this is

not essential.
6Denoted by the predicate FinitelyBroad on Game in Coq

5

Games with only finite histories.

A game has only finite histories if it has only finitely many paths (histories)
from the root to the leaves. This can be described as follows:

Inductive FiniteHistoryGame : Game -> Prop :=

| finHorGLeaf: forall f, FiniteHistoryGame <|f|>

| finHorGNode: forall (a:Agent)(next: Choice a -> Game),

(forall c’:Choice a, FiniteHistoryGame (next c’)) ->

FiniteHistoryGame <|a,next|>.

Those games should not be confused with games with finite horizon. Notice
that Osborne and Rubinstein [19] require a game with a finite horizon to have
only finitely many strategy profiles (p. 90: “[Given a finite game] if the longest
history is finite then the game has finite horizon”), whereas Osborne [18] does
not require the set of strategy profiles associated to the game to be finite (see
Section 8). For strategy profiles we have:

Inductive FiniteHistoryStratProf : StratProf -> Prop :=

| finHorSLeaf: forall f, FiniteHistoryStratProf <<f>>

| finHorSNode: forall (a:Agent) (c:Choice a)

(next: Choice a -> StratProf),

(forall c’:Choice a, FiniteHistoryStratProf (next c’)) ->

FiniteHistoryStratProf <<a,c,next>>.

Convergent strategy profiles.

The finiteness does not apply to all paths (histories) leading to leaves, but applies
only to paths corresponding to the choices of the agents. Mutatis mutandi, the
expression

(forall c’:Choice a, FiniteHistoryStratProf (next c’))

is just replaced by

Convergent (next c)

hence without the

forall c’:Choice a

Related to induction reasoning, this convergence of strategy profiles captures
continuity. Like for the predicate FiniteHistoryGame a leaf is convergent.
A strategy profile which is a node is convergent if the strategy subprofile for the

6

choice made by the agent a (i.e., next c) is convergent.

Inductive Convergent: StratProf -> Prop :=

| ConvLeaf: forall f, Convergent <<f>>

| ConvNode: forall (a:Agent) (c:Choice a)

(next: Choice a -> StratProf),

Convergent (next c) ->

Convergent <<a,c,next>>.

The reader may notice the similarity of that definition with this of finite
histories for games. We are now able to prove a theorem on the totality of
Uassign:

Lemma ExistenceUassign:

forall (s:StratProf),

(Convergent s) -> exists (ua: forall a, Utility a), Uassign s ua.

Convergence is extended to all the strategy subprofiles of a given strategy profile
by a modality Always, abbreviated �, when used in expressions. Always applies
to a predicate on StratProf i.e. a function P:StratProf → Prop Always P s

means that P is fulfilled by all subprofiles of s.

CoInductive Always (P:StratProf -> Prop) : StratProf -> Prop :=

| AlwaysLeaf : forall f, Always P (<<f>>)

| AlwaysNode : forall (a:Agent)(c:Choice a)

(next:Choice a->StratProf),

P (<<a,c,next>>) -> (forall c’, Always P (next c’)) ->

Always P (<<a,c,next>>).

The predicate Always Convergent is shortened in ⇓. ⇓ s means that s

is convergent and also all subprofiles are convergent. It plays a main role in
the definition of other concepts related to strategy profiles, namely equilibria
and escalation. Always convergent strategy profiles are the right objects, that
game theorists are interested in. “Always Convergence” captures the notion of
continuity in the spirit of Brouwer [3].7

4 A game with only finite histories and no longest
history

In this section we show how Coq can be used to prove formally properties about
games. Specifically we give an example of a game with only finite histories and
no longest history as a counterexample to Osborne (see [18] p. 157) definition
of finite horizon. The game has two agents whom we call Alice and Bob and
its definition uses a feature of dependent types, namely that the choices may

7I like to thank Jules Hedges for pointing me this fact and the connection with Brouwer
bar recursion [10].

7

depend on the agent. In this case, Alice has infinitely many choices, namely
the set nat of natural numbers and Bob has one choice, namely the set unit.
The utility of Alice and Bob are meaningless since they are singletons, namely
the Coq built-in unit which contains the only element tt. In Coq we have:

Definition Choice :(AliceBob -> Set) :=

fun a:AliceBob => match a with Alice => nat | Bob => unit end.

and

Definition Utility: AliceBob -> Set := fun a => unit.

Notice that Choice and Utility are functions which take an agent and return
a set. Said otherwise, the set of choices is the result of the function Choice

applied to agents and the set of utilities is the result of the function Utility

applied to agents. If the agent is Alice, the set of choices is nat and the set
of utility is unit. If the agent is Bob the set of choices and the set of utilities
are unit (a singleton). In other words, the set of choices depends on the agents
and the set of utilities looks depending on the agents, but doesn’t. The game
has infinitely many threadlike subgames of length n:

Fixpoint ThreadlikeGame (n:nat): (Game AliceBob Choice Utility) :=

match n with

| 0 => <|fun (a:AliceBob) => match a with | Alice => tt

| Bob => tt end|>

| (S n) => <|Bob,fun c:Choice Bob

=> match c with tt=>ThreadlikeGame n end|>

end.

The game we are interested in is called GameWFH and is defined as a node
with agent Alice and with next games ThreadlikeGame n for Alice’s choice n:

Definition GameWFH:(Game AliceBob Choice Utility) :=

<| Alice, fun n:Choice Alice => ThreadlikeGame n |>.

Let us call triv the utility assignment Alice => tt, Bob => tt. We can
picture GameWFH like in Figure 1. One can prove that ThreadlikeGame n has
only finite histories:

Proposition FiniteHistoryGameWFH:

FiniteHistoryGame AliceBob Choice Utility GameWFH.

Clearly GameWFH has no longest history.

8

A

CtrivB B B B

CtrivB B B

CtrivB B

CtrivB

Figure 1: Picture of game with finite histories and no longest history

5 Subgame Perfect Equilibrium

An agent is rational if her strategy is based on a strategy profile which is a sub-
game perfect equilibrium. So let us present subgame perfect equilibria. Subgame
perfect equilibria are specific strategy profiles that fulfill some “good” proper-
ties. Therefore they are presented by a predicate which we call SPE. In Coq this
is a function of type StratProf -> Prop. A strategy profile, which is a node, is
a subgame perfect equilibrium if first it is always convergent. This is necessary
to be able to compute the utility assignment. Moreover the choice of the agent
is better than or equal to other choices w.r.t. to the utility assignment and all
the strategy subprofiles of this strategy profile are themselves subgame perfect
equilibria. A leaf is a subgame perfect equilibrium. This can be formalized in
Coq:

CoInductive SPE : StratProf -> Prop :=

| SPELeaf : forall (f: forall a:Agent, Utility a), SPE <<f>>

| SPENode : forall (a:Agent)

(c c’:Choice a)

(next:Choice a->StratProf)

(ua ua’:forall a’:Agent, Utility a’),

Always convergent <<a,c,next>> ->

Uassign (next c’) ua’ -> Uassign (next c) ua ->

(pref a (ua’ a) (ua a)) -> SPE (next c’) ->

SPE <<a,c,next>>.

9

6 The simplest escalation

We discussed already the rationality of escalation in infinite games [16, 15]. For
dependent choice games, escalation is a somewhat simple concept and consists
in adjusting the types. The simplest escalation is probably as follows. It may
occur in a game in which there are two agents Alice and Bob, where each agent
has two choices down and right and in which there are two non ordered utilities
ying and yang. We use ying and yang to insist on the fact that there is no
need for numbers and no need for an actual order among the utility values.

A

r
**

d

		

B

r
**

d

		

A

r
**

d

		

B

r
**

d

		

A

r
**

d

		

B

r
((

d

		

r
%%

d

		
ying,yang yang,ying ying,yang yang,ying ying,yang yang,ying ying,yang

10

This is basically the game studied in [15], with the difference that the preference
in Utility = {ying, yang} is just the equality. In other words, agents do not
need to prefer one item over the other, just a trivial preference may lead to an
escalation. The agents are like Buridan’s ass [24], they may not know what to
choose and therefore go forever. This may look strange, but as shown by the
Coq script, the proof is based on exactly the same proof technique as this of
the rationality of the escalation of the dollar auction [22] as shown by the two
following Coq statements and proofs:8

Lemma AlongGoodAndDivergentInDollar :

exists (s:StratProf dollar.Agent dollar.Choice dollar.Utility),

AlongGood dollar.Agent dollar.Choice dollar.Utility dollar.pref s

/\ Divergent s.

Proof.

exists (dollarAcBc 0).

split.

apply AlongGoodDolAcBc.

apply DivergenceDolAcBc.

Qed.

and the proof of the escalation for the YingYang game:

Lemma AlongGoodAndDivergentInYingYang :

exists (s:StratProf yingYang.Agent yingYang.Choice yingYang.Utility),

AlongGood yingYang.Agent yingYang.Choice yingYang.Utility yingYang.pref s

/\ Divergent s.

Proof.

exists yingYangAcBc.

split.

apply AlongGoodYyAcBc.

apply DivergenceYyAcBc.

Qed.

7 Multi-stage games

Multi-stage games are introduced in [6] (Section 3.2). We view them as games
in which a node does not belong to an agent and the choices or the moves of
all the agents are simultaneous. Let us call MSGame the multi-stage games. The
simultaneous or collective choice corresponds to the type:

(forall a: Agent, Choice a) -> MSGame

or written with products: ∏
a∈Agent Choice a.

8Notice that the parameters of StratProf are explicit!

11

Leaves are almost unchanged. The function next is of type

next: (
∏

a∈Agent Choice a)→ MSGame

and a node is just the function next:

CoInductive MSGame :=

| msgLeaf: (forall a: Agent, Utility a) -> MSGame

| msgNode: ((forall a: Agent, Choice a) -> MSGame) -> MSGame.

Example 2 T show the complexity of multistage games, we draw a picture of
a simple multistage game with the same choices and utilities as Example 1.

vvqq

�� yy

�� �� �� ��

%% ��

-- ((

'' %% "" �� �� �� �� 		 �� || yy ww '' %% "" �� �� �� �� 		 �� || yy ww�� �� �� �� �� �� || xx uu
qq nnkk 3300

--
)) && ## �� �� �� �� 		 ���� ��

 �� }} xx ss qq

llffbb`` ??<<8822
-- ++ && !! �� �� �� ��

A7→weak,B 7→1 A7→strong,B 7→0

8 Infinite and infinite

In this section, we look at the way infiniteness is dealt with in textbooks on
game theory.

Two views of infiniteness

Infiniteness is discussed by Poincaré in his book Science et méthode [20], where
he distinguishes mathematical infinite which we would call today potential in-
finite, and actual infinite. Poincaré did not believe in such an actual infinite,
but today we do accept a concept of actual infinite which is the foundation
of the theory of coinduction and infinite games. Let us discuss these two
concepts in the case of words on the alphabet {a, b}. {a, b}+ represents all
the (finite) words made with the letters a and b, like a, b, aa, ab, ba, bb, aaa,
aab, aba, abb, baa, bab, bba, bbb, etc. One can also write:

{a, b}+ =

∞⋃
n=0

{a, b} {a, b}n. (1)

12

{a, b}+ is the least fixpoint of the equation:

X = {a, b} ∪ {a, b}X

There are infinitely many such words. This is a first kind of infinite, indeed
we can build words of all finite lengths. {a, b}ω is the set of infinite words.
Each infinite word can be seen as a function N → {a, b}. An infinite word
represents another kind of infinite. For instance the infinite word ababab... or
(ab)ω corresponds to the function if even(n) then a else b and is a typical
example of actual infinite. {a, b}ω is solution of the fixpoint equation:

X = {a, b}X.

In {a, b}+ there is no infinite objects, but only approximations, whereas in
{a, b}ω there are only infinite objects.

Figure 2 represents the two notions of infiniteness. On the left, the vault
ceiling of Nasir ol Molk Mosque in Chiraz9 pictures potential infiniteness. On the
right, a drawing10 inspired by M.C. Escher Waterfall pictures actual infiniteness.

Figure 2: Two pictures of infinite

Common Knowledge.

Common Knowledge is a central concept in game theory, it relies on the concept
of knowledge of an agent, which is a modality i.e., an operator of modal logic.11

Modality Ka (knowledge of agent a) follows the laws of modal logic S5. For this
and the group G of agents, we create a modality EG (shared knowledge):

EG(ϕ) =
∧
a∈G

Ka(ϕ).

The common knowledge modality is

CG(ϕ) =

∞∧
n=0

En
G(ϕ). (2)

9From Wikimedia, due to User:Pentocelo.
10From Wikimedia.
11We follows the presentation of [12, 14], which took its origin from [5].

13

Usually there is no ambiguity on the group of agents, thus instead CG and EG

one write just C and E. Clearly C has the flavor of + as shown by the analogy
between equation (1) and equation (2) and their fixpoint definitions.

Infinite and fixpoint.

Infinite objects are associated with fixpoints. For instance, {a, b}+ is the least
fixpoint of the equation:

X = {a, b} ∪ {a, b}X

whereas C(ϕ) is the least fixpoint of

X ⇔ ϕ ∧ E(X).

which means that C(ϕ) is a solution:

C(ϕ) ⇔ ϕ ∧ E(C(ϕ)).

Infinite in textbooks.

In general in textbooks on game theory “infinite” is a vague notion which in
not defined precisely and words like “ad infinitum” ([6] p. 542, [9] p. 27) or
“infinite regress” ([6] p. 543) or three dots are used. It is often said that infinite
games resemble repeated games, but this is not true, since repeated games are
typically potential infinite presentations of infinite games, i.e., approximation –
only sequences of games are considered, not their limit – whereas infinite games
are defined by coinduction.

Two main mistakes are worth noticing.

• In [9], Hargreaves and Varoufakis define common knowledge as follows:

(a) each person is instrumentally rational

(b) each person knows (a)

(c) each person knows (b)

(d) each person knows (c)

. . . and son on ad infinitum.

but they add “The idea reminds one of what happens when a camera is
pointing to a television screen that conveys the image recorded by the
very same camera : an infinite self-reflection”, showing that they clearly
mixed up the two kinds of notions. Indeed clearly the infinite self-reflection
illustrates an actual infinite, a little like the infinite word (ab)ω or the
Escher waterfall, whereas, as we said, common knowledge is a potential
infinite. An expression like ad libitum should have been preferred and the
image of a swing going further and further or a tessellation, like this of
Figure 2 should have been more appropriate.

14

• In [18], Osborne uses the “length of longest terminal history” to define
finite horizon, without checking whether this longest history actually ex-
ists. A counterexample is shown in Section 4. We gather that he means
the “least upper bound on N of the lengths of the histories”.

9 Conclusion

If, when reaching this point, the reader has the feeling that there is no proof
or almost no proof, this means that she (he) did not read the Coq files of the
GitHub site, as indicated in the introduction. In those files, there is nothing
but proofs. But those proofs which are mostly meant to be read by a computer
are, at the present time, not part of a scientific paper [8].

The formalization of infinite extensive games in Coq is only at an early stage.
Among possible tracks to develop, there is the connection between multistage
games and extensive (one-stage) games, that is between games where players
move simultaneously and games where players play in alternation, using moves
“do nothing” (see [6] p. 70). More precisely we do not know how to intepret the
sentence of Fudenberg and Tirole:

Common usage to the contrary “simultaneous moves” does not
exclude games where players move in alternation, as we allow for
the possibility that some of the players have the one-element choice
set “do nothing”.

References

[1] Samson Abramsky and Viktor Winschel. Coalgebraic analysis of subgame-
perfect equilibria in infinite games without discounting. arXiv, 2012.

[2] Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Yann
Coscoy, David Delahaye, Daniel de Rauglaudre, Jean-Christophe Filliâtre,
Eduardo Giménez, Hugo Herbelin, Gérard Huet, Henri Laulhère, César
Muñoz, Chetan Murthy, Catherine Parent-Vigouroux, Patrick Loiseleur,
Christine Paulin-Mohring, Amokrane Säıbi, and Benjamin Werner. The
Coq Proof Assistant Reference Manual. INRIA, version 6.3.11 edition, May
2000.

[3] John L. Bell. Continuity and infinitesimals. In Edward N. Zalta, editor,
The Stanford Encyclopedia of Philosophy. Winter 2014 edition, 2014.

[4] Adam Chlipala. Certified Programming with Dependent Types. MIT Press,
2011. http://adam.chlipala.net/cpdt/.

[5] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi.
Reasoning about Knowledge. The MIT Press, 1995.

[6] Drew Fudenberg and Jean Tirole. Game Theory. MIT Press, 1991.

15

[7] Neil Ghani and Jules Hedges. A compositional approach to economic game
theory. CoRR, abs/1603.04641, 2016.

[8] Thomas C. Hales, Mark Adams, Gertrud Bauer, Dat Tat Dang, John Harri-
son, Truong Le Hoang, Cezary Kaliszyk, Victor Magron, Sean McLaughlin,
Thang Tat Nguyen, Truong Quang Nguyen, Tobias Nipkow, Steven Obua,
Joseph Pleso, Jason Rute, Alexey Solovyev, An Hoai Thi Ta, Trung Nam
Tran, Diep Thi Trieu, Josef Urban, Ky Khac Vu, and Roland Zumkeller.
A formal proof of the Kepler conjecture. CoRR, abs/1501.02155, 2015.

[9] Shaun Hargreaves-Heap and Yanis Varoufakis. Game Theory: A Critical
Introduction. Routledge, 2004.

[10] Jules Hedges. Towards compositional game theory. PhD thesis, Queen
Mary University of London, 2016.

[11] Jules Hedges, Paulo Oliva, Evguenia Shprits, Viktor Winschel, and Philipp
Zahn. Selection equilibria of higher-order games. In Yuliya Lierler and
Walid Taha, editors, Practical Aspects of Declarative Languages - 19th In-
ternational Symposium, PADL 2017, Paris, France, January 16-17, 2017,
Proceedings, volume 10137 of Lecture Notes in Computer Science, pages
136–151. Springer, 2017.

[12] Pierre Lescanne. Mechanizing common knowledge logic using COQ. Ann.
Math. Artif. Intell., 48(1-2):15–43, 2006.

[13] Pierre Lescanne. Rationality and escalation in infinite extensive games.
CoRR, abs/1112.1185, 2011.

[14] Pierre Lescanne. Common knowledge logic in a higher order proof assistant.
In Andrei Voronkov and Christoph Weidenbach, editors, Programming Log-
ics - Essays in Memory of Harald Ganzinger, volume 7797 of Lecture Notes
in Computer Science, pages 271–284. Springer, 2013.

[15] Pierre Lescanne. A simple case of rationality of escalation. In Reiko Heckel
and Stefan Milius, editors, CALCO, volume 8089 of Lecture Notes in Com-
puter Science, pages 191–204. Springer, 2013.

[16] Pierre Lescanne and Matthieu Perrinel. ”Backward” coinduction, Nash
equilibrium and the rationality of escalation. Acta Inf., 49(3):117–137,
2012.

[17] Jean-François Monin and Xiaomu Shi. Handcrafted inversions made op-
erational on operational semantics. In Sandrine Blazy, Christine Paulin-
Mohring, and David Pichardie, editors, Interactive Theorem Proving - 4th
International Conference, ITP 2013, Rennes, France, July 22-26, 2013.
Proceedings, volume 7998 of Lecture Notes in Computer Science, pages
338–353. Springer, 2013.

[18] Martin J. Osborne. An Introduction to Game Theory. Oxford, 2004.

16

[19] Martin J. Osborne and Ariel Rubinstein. A Course in Game Theory. The
MIT Press, Cambridge, Massachusetts, 1994.

[20] Henri Poincaré. Science et méthode. Ernest Flammarion, Paris, 1908.
Translated in English as [21].

[21] Henri Poincaré. Science and Method. Thomas Nelson and Sons, 1914.
Translated by Francis Maitland, available online at https://archive.org/
details/sciencemethod00poinuoft.

[22] Martin Shubik. The dollar auction game: A paradox in noncooperative
behavior and escalation. Journal of Conflict Resolution, 15(1):109–111,
1971.

[23] René Vestergaard. A constructive approach to sequential Nash equilibria.
Inf. Process. Lett., 97:46–51, 2006.

[24] Wikipedia. Buridan’s ass — wikipedia, the free encyclopedia, 2016. [Online;
accessed 13-July-2016].

17

